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Generation and propagation of interface to a Lotka-Volterra
competition diffusion system with large interaction rate

WU R PEER AR PEEE (Kimie Nakashima)

Tokyo University of Marine Science and Technology

1 Introduction

This is a joint work with Georgia Karali (University of Toronto), Masato lida (Iwate
university), Masayasu Mimura (Meiji university), Eiji Yanagida (Tohoku university), and
Tohru Wakasa (Waseda university) ([7], [9]).

Habitat segregation phenomena in mathematical ecology supply us with various prob-
lems which are interesting from the aspect of interfacial dynamics. We mathematically
discuss regional partition by competitive two species and their competition for their own
Labitats. When the competition between two species is bitter, they cannot coexist at the
sawe point. In such cases we can expect that the two species with a suitable initial state
segregate their habitats and compete on the interface between both the habitats. Then
it is significant to understand the dynamics of the segregation patterns.

In this article we treat a competition-diffusion system for two species in competition
of the Lotka-Volterra type:

w = diAu+ (a1 - byu - ¢v)u,

vy = doSv + (ag — bav -~ cou)v.

Here g, by, o and di (b = 1,2) are positive constants; u = u(t,z) and v = v(t,x) are
the population densities of competitive two species. Our concern is the situation where
the interspecific competition is exceedingly bitter: in particular, the situation close to the
singular limit as ¢j, ¢; — oo with ¢;/¢; fixed. Thus we simply rewrite the above system
as

uy = Au+ (1 —u)u — cMuv,

1)

vy = dAv + (a —v)v — bMuw,

wliere a, b, ¢, d are fixed positive constants and M is a huge parameter. As seen in the
following section, the spatial supports of u and v satisfying (1) become separated from
cach other by an interface in a short time-period. Then after that the segregated (u,v)



behaves like a solution of a two phase free boundary problem for the Fisher equation.
We will establish a rigorous mathematical theory both for the formation of interfaces at
the initial stage and for the motion of those interfaces in the later stage. More precisely,
we will show that, given virtually arbitrary smooth initial data, the solution develops
interfaces within the time scale of O(e?). We will then prove that the motion of the
interfaces converges to the free boundary problem as € — 0.

There are several related works on singular limits of some reaction-diffusion systems
as the effect of interaction tends to infinity: [1], [3], [4], [5] and [11] investigate the
fast reaction limit of chemnical reaction systems (see also the references therein). As for
competition-diffusion systems, [2] investigates singular limits of the stationary problems
as the interspecific competition rate tends to infinity. The most related work is [6], which
we will mention after giving the formal derivation of the singular limit.

2 Formal derivation of the singular limit

In this section we present a formal derivation of the singular limit of (1).
We consider (1) with an initial data (u(z,0),v(z,0)) = (ug(z), vo(z)). We will put
some assurmnption on the initial data.

Assumption 1 Let ug, vy be smooth and bounded up to the second derivatives. Consider
the situation where both Dy = { x| bug(z) > cuo(z) } and its complement possess interior
points. Suppose that

inf [bVuy — cVug| > 0.

8Dy

Remark 1 Assumption 1 assures that Dy is an N — 1 dimensional hypersurface with
bounded mean curvature.

When M is sufficiently large, the dynamics of (1) consists of two consecutive stages.
The first stage is a short time-period of the rapid evolution, where u, v, Au and Av
are negligible compared with Muv so that the ordinary differential equations

Uy = —CUT,
(2)
U, = —bi?,
approximates (1) in the time scale 7 = Mt. Since bii — ¢t is independent of 7, @ satisfies
Ur = (w— bil)a
with w = w(z) = bug(z) — cvp(z) and hence

lim 4 = max{0, w/b}.
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Consequently (u(t,z),v(t,z)) essentially becomes the continuous function

(w(z)/b, 0) in Dy,
(ui(z), ni(z)) = 3)
(0, —w(z)/c) in RM\Dy

after a short period of time scale t. The non-degeneracy of Vw on 8Dy = {z| w(z) =0}
causes the gap of (Vu;, Vuy) across the surface 8Dg. Thus sharp transition of (Vu, Vv)
appears near 0Dy. Namely the corner layer of (u(t,-), v(t,-)) is generated along the
surface 3Dy in a short time-period.

The second stage of the dynamics of (1) describes the propagation of the corner layer.
The stretching (u,v) with a suitable scale makes the analysis of the corner layer easier.
To rescale the system in the best possible way, we need to estimate the length scale
€ = ¢(M) of the width of the corner layer. We note that u;, v; are continuous functions
with bounded gradients and that the mean curvature of the surface 3D, is bounded.
It is natural to assumne in the second stage that v = O(e), v = O(e), ur = O(1) and
Au = O(e™!) on the corner layer for huge M and that the effects of Au and Muv in (1)
are well-balanced. Then we have e = O(M~%/3). For simplicity we put M = €73 and
rewrite (1) as

up = Au+ (1 —u)u — E%-uv,

. @
v = dAv + (a —v)v — g
Set
D(t) = { z| bu(t, z;€) > cu(t,z;€) }.

for the solution (u(t, z; €), v(t,z;€)) of (4) corresponding to the initial datum (uo(z), vo(z)).
Taking account of (3) and the argument for the first stage, we can expect that u(t,z;€)
(resp. v(t,z;€)) almost vanishes in IRV\D*(t) (resp. D%(t)); further the corner layer of
(u(t, -;€), v(t, ;€)) remains along the interface 0D*(t). Around each point y € 9D*(t) we
introduce a local orthogonal coordinate system (£, 0) such that o = (01,... ,0n-1) is &
local coordinate along D¢ (t) whereas £ = £(x, OD*(t)) is the signed distance from z to
OD<(t) locally defined near y so that £ > 0 in D*(t). Around the corner layer we stretch
the solution and see it using a moving coordinate system (¢, p, o), where p = {/e is a
rescaled coordinate in the normal direction to dD¢(t). Suppose that (u(t,z;€), v(t, z;€))
is asymptotically written as

(u*,v*) + O(e) away from the layer (outer expansion),
(u,v) =

e(Ur, Vi) + €2(Uy, V3) + O(e®) around the layer (inner expansion),

where (u*,v*) is a bounded continuous function of the fixed coordinate (¢, z) and (Uy, V1)
and (Uy, V,) are smooth functions of the moving coordinate (t, p, o) with a bounded gra-
dient; all of them are independent of ¢. By a formal argument based on the matched



asymptotic ezpansion method, we can formally conclude that (u*,v*) satisfy

up = Au* 4+ (1 —uw*)u*, v*=0 in D(t),

vf = dAv* + (e —v* )", v =0 in RV\D(t), (5)
ou* ov*
bm = Cd'a; on 6D(t),
and (Uy, V1) satisfy
Uipp = U1V}, —00 < p < +00,
AVipp = UL VI, —00 < p < +00,
6 *
(U0, ttp.00) = (0. -0 20 (t,y)> 3 p— —o0, (6)

6 *
Uitk ,0), Vilt, 9y ) = (pgg;@,y), o) a8 p— +o00,

\
and (Us, V3) satisfies (10) which is given later.

Here D(t) is the formal limit of D*(t) as € — +0, 1*(+°) inner (outer) normal to D(t),
and y a point on 0D(t) corresponding to the coordinate (0,0). In (6) the boundary
conditions at p = Foo reflect the request that (u*,v*) and €(Uy, V1) should be matched.
The boundary condition on 8D(t) in (5) is requested for (u*, v*) in order that the elliptic
boundary value problem (6) possesses a solution. Consequently, in the second stage the
supports of u(t,-;€) and v(t, -;¢) are almost separated by the corner layer which remains
in a narrow range of O(e) along the propagating interface dD(t). The dynamics of the
segregation pattern is essentially determined by the free boundary problem (5). We see
from the elliptic equations in (6) that the population on the interface supplied by the
diffusion from both the habitats instantly disappears by the strong competition between
two species.

3 Main result

The formal derivation of the free boundary problem (5) from (4) as € — +0 is justified by
[6] on a bounded domain in RY under the no-flux boundary condition in the framework
of weak topology of H!. It also gives a result on the uniqueness and existence of a Holder-
continuous weak solution to (5). However we need to justify the derivation of (5) at least
in the framework of C°-topology in order to investigate the dynamics of the segregating
interface. To accomplish this end we impose the existence of a classical solution to (5) as
follows.

Let D(t) be a one-parameter family of open subsets of R", and denote dD(t) by I'(t)
for simplicity. and let u*(¢,z) and v*(t,z) be nonnegative continuous functions defined
on [0, 7] x RY with some T > 0. We assume the following hold for ¢ € [0, T]:
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Assumption 2 The boundary of D(t), which is denoted by T'(t), is in C? for each t and
in C with respect to t;

Assumption 3 (u*,v*) satisfies (5) in the classical sense;

Assumption 4 |u*|,|Vu*|,|Au*| are bounded in D(t) uniformly with respect to t, and
|v*], |Vv*|,|Av*| are bounded in RN\ D(t) uniformly with respect to t;

Assumption 5 inf  lim |Vu*(z)| >0, inf lim  |Vv*(z)| > 0.
yeodD(o) T Y yedD(o) TY
z € D(0) z € RV\D(0)

If the free boundary condition in (5) is replaced by

d ou* ov*
af(t) = bal/i - Cdaljo

n on I'(t),

. " d .
where p is a positive constant and —tI‘(t) denotes the propagation speed of I'(t) in the

outer normal direction, then the regularity of I'(t) will be assured by the parabolicity as
treated in [8] and [10]. However, in our case which corresponds to the case p = 0, it is not
easy to deduce the regularity of I'(t) in (5), because the parabolicity is partially broken
on [(t). Nevertheless, a recent result in {11] suggests that the partial regularity of I'(%) in
the classical sense can hold also for (5). Thus we believe the above assumptions natural.

Now we will give our main theorem.

Theorem 1 Under Assumptions 1-5, there exist a positive constant C > 0 such that for
sufficiently small € > 0, the following hold:

lU(t,(L‘;E) - ’I.L*(t,ilj)l < CEHOgd,

lu(t,z;€) — v*(t,z)| < Ce|loge| for (t,z) € [, T] x RY,
where (u(t, z;¢€), v(t, T;€)) is a nonnegative solution of (4).

Theorem 1 shows that |, for virtually arbitrary smooth initial data, the solution devel-
ops interfaces in time ¢t = € and the motion of the interface is approximated by the free
boundary problem (5) for t € [€2, T

Our main tool for deriving the above results is the method of upper and lower solutions.
We will use two different pairs of upper and lower solutions, namely (u*,v*) and (U*, V).
The first one (u®,v*) is used to analyze the generation of the interface that takes place
in a very fast time scale. The second one (U*,V*) is used to study the motion of the
interface in a relatively slow time scale. The transition from the initial stage to the second
stage occurs within a time scale of €2. Since the behaviors of solutions are so different
between the two stages, it is important to construct suitable upper and lower solutions
for each stage and to know the right timing to switch from (u*,v*) to (U¥, V).

In the following Section 4, we deal with the generation of the interface, and in Section
5, the motion of the interface. Section 4 is depend on [9], and Section 5 is on (7).



4 Generation of interface

In this section we study the generation of interface that takes place in the initial stage.
We will construct an upper and lower solution for this stage.

Consider two functions ¢(7;&,7) and ¥(7;&,n) defined by
{4'3: —cgp, $(0)=¢€>0,
Y =-boyp, ¥(0)=n>0.
We can observe that A = A(¢(7),% (7)) = bg — st is preserved for any 7 > 0, so we have

EAeA‘r

)= ) = A
¢(T:§an) - A+b€(€AT o 1)’ 1/)(7—7£"’7) - A+CT](1 __e_A.,.),

and

[50). e, 516 =462

c

lim ¢(7;€,7) = max

T—++00

As we have mentioned in the introduction, we can expect that the solution (u(z,t), v(z, t))
would be approximated by

(6553 10(2), v(@)), 95 00(z), () ™

by a formal argument. The upper and lower solutions in this stage is given by modifying
the approximated solution (7):

W) = o5 u(a) + acexp(S), () - ceexp(S),
vH(z,t) = w(é, ug(z) + i€ exp(;i), vo(x) — o€ exp(gti)), @
u=(z,t) = ¢(g§,u0(g¢) — cleexp(e—ti), vo(z) + czeexp(;;)),

v‘(z,t) — ¢(5§,uo(x) — C1€ exp(-f%), Uo(:v) + C2€exp(€i2))>

where ¢y, ¢y > 0 are constants to be determined.

Theorem 2 (Nakashima- Wakasa [9]) Suppose that Assumption 1 holds. Then there
exists c1,c2 > 0 such that for sufficiently small e > 0, (u™,v"), (u™,v™) are pair of upper
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and lower solutions of (4) for 0 <t < €2. Moreover the following estimates hold:

lu*(z, €%) — max{#ﬁh < Cie, zeRN

|vE(z, €2) — max {0, _w_(CxZ}I < Cie z€RV

lut(z, €?)] < Coe®, in {x € RN\Dy ; dist(z,0Dp) > Cae},
loE(z, €2)| < Cae’, in {z € Dy ; dist(z,0Dg) > Cse}
where Cy,Ca, Cs > 0 are positive constant independent of € > 0, and

w(z) = A(ug(-),vo(-)) = buo(z) — cvo(z).

Theorem 2 shows that, for virtually arbitrary initial data, the solution forms interfaces
in time t = €2. More precisely, at time t = €2, (u*,v¥) stays between another pair of
upper and a lower solution which are given in the next section, Motion of interface. This
makes it possible to combine two different pairs of upper and lower solutions.

5 Motion of interface

In this section we construct another pair of upper and lower solutions for the second stage,
motion of interface. This upper and lower solutions (U*, V¥) has interface near T'(t), the
solution of the free boundary problem (5).

We first construct upper and lower solutions (U, V:3) in a tubular neighborhood of
['(¢t) by modifying the first two terms of the inner expansion. After that we construct an
upper and a lower solution (UZ,, V.,) outside the tubular neighborhood using the first
term of outer expansion. Then we match (UZ, V;Z) and (UL, V5,), then obtain (U*, V*).
Once (U%,V?*) are obtained, they will later be combined with another set of upper and

lower solutions (u®,v*) that take care of the generation of interface at the initial stage.

5.1 An upper and a lower solution near the interface

Let d(z,t) be the signed distance function with respect to the interface I'(t), namely,
—dist(z,T'(t)), =z € D(t),
dlayt) = { ot ) ¥ ©)
dist(z, ['(t)), r € RY\D(t).

Here dist(z, T(t)) is the distance from z to the hypersurface I'(t) in R"Y. Since I'(t) is
a smooth hypersurface that depends smoothly on ¢, d(z,t) is a smooth function of (z,t)
near ['(t). In what follows we fix a constant d* > 0 such that d(z,t) is smooth in the N-



dimensional tubular neighborhood {(z,t) € R" x [0,T]; dist(z,I'(t)) < d*}. Note that
|[Vd| = 1 in this neighborhood. We seek for upper and lower solutions in the following
form:

€

Uh(z,t) = U(d(”” =t o) + et (M—n<t),a,t)+e3q<t),

Vib(z,t) = (d —n(t),o | + €2V, d(i 1) -n(t),o, t) — e34(t),
e = (%2 5 000.0) 4 0y (228 1 nt), ) - gt
V(.t) = (‘”6 )+ezv2 (d(ﬁ’t) +n(t>,o—,t) + (1)

Here !
n(t) = <log ;)7 exp(Mt)
q(t) = oexp(Mt), 4(t) = G exp(Mt),

where v,0,6 and M are positive constants to be determined appropriately, and (Uy, V1)
satisfies (6) and (Us, V) satisfies

( _U2££ + C(U1V2 + Uzvl) = —Ulg(dt — Ad) —00 < p < +00,

—dVaee + b(Ui1Va + UaVy) = =Vig(d, — dAd) —o00 < p < +00,
¢ (10)
(UQ(t7p1 0)7 ‘/2(2(:, P, O')) = (O, 0) as p — —0Q,

| (Ua(t, p,0), Valt,p,0)) = (0, 0) as p — +00.

(10) is obtained by the formal argument based on the matched asymptotic expansion.
The following lemma assures the existence of the first and second term of upper and
lower solutions, whose proofs are omitted.

Lemma 1 (i) There exists a unique positive solution of (6).
(it) There exists a solution of (10).

Since the first two terms of (UZ, V;Z) are determined, we choose appropriate ¢ and § so
that (UZ, V) are an upper and lower solutions.

5.2 TUpper and lower solutions away from the interface

In this subsection we will construct upper and lower solutions away from the interface
modifying the first term of outer expansion.

Let g be a smooth function satisfying

g(s)=01if s<0, g(s)=11if s>1
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g0)=¢'(1)=0, ¢g'(s) >0 for 0<s<1
and set s - s -
M(s) = 9(; + Rllogel), Ma(s) = 9(—2 — R|loge|).
Moreover let § satisfy 0 < § < d* and define

{

N 52
—Be|loge|(s +6)2 + B6Re?| loge|® + %dlog el,
B, S - < s<-R
0(s) = 4 5 — Re|loge] < s < —Re|loge|,
) 362 5
BORe?| log e|* + —7{_6' log €l s < —6 — Relloge|.

Now we will define upper and lower solutions in the following form:

U+

out

{ u*(z,t) + €| log el exp(Lt) — 0(d(z,t)), d(z,t) < —Re|loge]
(z,t) =
(1 = M(d(z, £))UF + M(d(z,1))e?, d(z,t) > Re|loge|
0, d(z,t) < —Re|loge|,
Vott(zvt) = {
v*(z,t) — €| log e|a exp(Lt) + 0(—d(z,t)), d(z,t) > Re|loge|
{ u*(x,t) — €| log e|avexp(Lt) + 0(d(z,t)), d(z,t) < —Re|loge|
Ugut(z,t) =

0, d(z,t) > Re|loge]
{ (1= Ao(d(z,t) )W + Aa(d(z, t))e€?, d(z,t) < —Re|loge|
Vo?zt(xvt) =
v*(z,t) + €| log | exp(Lt) — 8(—d(z, ), d(z,t) > Re|loge|.

Here «, 8, R are positive constants to be specified appropriately.

(UZ,, VE) are chosen so as to satisfy the following condition.
o (UL, V) is an upper and a lower solution for |d(z,t)| > Re|loge|.

e The entire upper and lower solution given by (11) below is not smooth for |d(z, t)| =
Rejloge|. (We need to care about the derivative of (UL, V) and (UZ,, VL) at
|d(z,t)| = Re|loge|.) (U, VL) are determined so that (U*,V*) given below
become an upper and a lower solutions.

o (UL, VZ,) has the following estimate.

(Uo:Zt’ Vo:;t) = (’U,*,’U*) + O(EMOQED'
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5.3 Entire solution for the motion of interface

The entire solution is given by

Uz Viz)  ld(z,t)] < Re|loge],
(U, VE) = ) (11)
(Uitavozzt) ]d(l"tﬂ > Re loge|.

Now we give the following theorem:

Theorem 3 (lida-Karali-Mimura-Nakashima-Yanagida {7} ) There ezists C > 0 such
that for sufficiently small € > 0, and any t € [¢2,T), (U*(z,t),V*(x,t)) and

(U (z,t),V~(z,t)) are pair of an upper and a lower solutions for (4) and satisfy the
following estimate;

|U%(t, z;€) — u*(t, )] < Ce|loge],

[VE(t,z;€) — v*(t,2)| < Ce|loge| for (t,z) € [, T] x RV,

6 Proof of Theorem 1

Cowbining the estimate in Theorem 2 and expressions of (U%, V), we have
U™ (z,€%) <u(z,€%) <ut(z, ) < UT(z,€?),

Vo(w,6") 2 v (z,€%) 2 v* (z,€%) 2 V¥ (z,€?).

This and Theorems 2 and 3 implies that for arbitrarily chosen initial data satisfying
Assumption 1, the solution of (4) stays between (v, v~) and (u*,v") for t € (0,€%], and
stays between (U~,V~) and (U, V) for t € [¢2, T]. Using the estimate in Theorem 3,
the proof is completed.
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