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1. Introduction

This note is a summary of [20]. Throughout this paper ail spaces are assumed
to be T} topological spaces and the symbol v denotes an infinite cardinal.

The notions of relative normality and relative paracompactness are central in
the study of relative topological properties which has been posed by Arhangel’skil
and Genedi [4], and also in the subsequent articles [2] and (3] by Arhangel’skil.

Let X be a space and Y a subspace of X. A subspace Y is said to be normal
(respectively, strongly normal) in X if for each disjoint closed subsets Fp, F of
X (respectively, of Y), there exist disjoint open subsets Gy, Gy of X such that
F,NY C G; for each i = 0,1. A subspace Y is said to be 1- (respectively, 2-)
paracompact in X if for every open cover U of X, there exists a collection V of
open subsets of X with X = |JV (respectively, Y C |JV) such that V is a partial
refinement of i and V is locally finite at each point of Y. Here, V is said to be
a partial refinement of U if for each V € V), there exists a U € U containing V.
The term “2-paracompact” is often simply said “paracompact”. In the definition
of 2-paracompactness of Y in X above, when we replace “open cover of X” by
“collection of open subsets of X with Y C JU”, Y is said to be Aull-paracompact
in X ([3], [5]). Each of 1-paracompactness and Aull-paracompactness of ¥ in
X clearly implies 2-paracompactness of ¥ in X. Note that 1-paracompactness
coincides with a-paracompactness defined by Aull [6] for a closed subset of a
regular space [23]. See also Theorem 3.11.

On the other hand, it is natural to define the following two relative notions;
a subspace Y of a space X is said to be 7-collectionwise normal (respectively,
strongly -collectionwise normal) in X if for every discrete collection {Eq | a < v}
of closed subsets of X (respectively, of Y), there is a pairwise disjoint collection
{U, | o < 7} of open subsets of X such that E,NY C U, (respectively, Eq C Ud)
for every o < v ([18]). Clearly, Y being w-collectionwise normal (respectively,
strongly w-collectionwise normal) in X is equivalent to that Y is normal (respec-



tively, strongly normal) in X. When Y is 7-collectionwise normal (respectively,
strongly ~y-collectionwise normal) in X for every 7, we say Y is collectionwise
normal (respectively, strongly collectionwise normal) in X; we see that collec-
tionwise normality (respectively, strongly collectionwise normality) of ¥ in X is
equal to being o — CN (respectively, v — CN) of Y in the sense of Aull [7].

2. Preliminaries and 1- or 2- (collectionwise) normality of
a subspace in a space

At first, we recall some preliminary notions and facts.

Let Y be a subspace of a space X. As is known, Y is said to be C*- (respec-
tively, C-) embedded in X if every bounded real-valued (respectively, real-valued)
continuous function on Y is continuously extended over X. A subspace Y is said
to be P- (respectively, P-) embedded in X if every continuous y-separable (re-
spectively, continuous) pseudo-metric on Y is continuously extended over X ([1});
a pseudo-metric d on Y is y-separable if the pseudo-metric space (Y, d) has weight
< ~. It is known that P“-embedding is equal to C-embedding ([1]).

By [2], Y is said to be weakly C-embedded in X if for every real-valued con-
tinuous function f on Y there exists a real-valued function on X which is an
extension of f and continuous at each point of Y. By [18], Y is said to be weakly
P7- (respectively, weakly P-) embedded in X if every continuous y-separable (re-
spectively, continuous) pseudo-metric on Y is extended to a pseudo-metric on X
which is continuous at each point of Y x Y. Weak P*-embedding is equal to weak
C-embedding ([18]). A space X is vy-collectionwise normal if for every discrete
collection {E, | a < 4} of closed subsets there exists a pairwise disjoint collection
{G4|a < 74} of open subsets such that E, C G, for each a < 7. Clearly, X is
collectionwise normal if X is ~y-collectionwise normal for every -.

A subspace Y is said to be Hausdorff in X if for every two distinct points
y1,y2 of Y, there are disjoint open subsets Uy, Uz of X such that y; € U; for each
i =0,1. A subspace Y is said to be strongly regular in X if for each z € X and
each closed subset F' of X with z ¢ F, there exist disjoint open subsets U,V of
X such that €U and FNY C V.

Let Xy denote the space obtained from the space X, with the topology gener-
ated by a subbase {U | U is open in X or U C X \Y'}. Hence, points in X \ Y are
isolated and Y is closed in Xy . Moreover, X and Xy generate the same topology
on Y ([12]). As is seen in [2], the space Xy is often useful in discussing several
relative topological properties. It is easy to see that Y is Hausdorff in X if and
only if Xy is Hausdorff. The following results given in [2], [18] are fundamental
in the present paper.
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Lemma 2.1 ([2],[18]). For a subspace Y of a space X the following statements
are equivalent.

(a) Y is strongly normal in X.

(b) Y is normal in G for every open subset G of X withY C G.
(¢) Xy 1is normal.

(d) Y is normal in Xy.

(e) Y is normal itself and weakly C-embedded in X.

Lemma 2.2 ([18]). For a subspace Y of a space X the following statements are
equivalent.

(a) Y is strongly y-collectionwise normal in X.

(b) Y is y-collectionwise normal in G for every open subset G of X withY C G.
(¢) Xy is y-collectionwise normal.

(d) Y is y-collectionwise normal in Xy .

() Y is y-collectionwise normal stself and weakly P7-embedded in X.

Corresponding to Lemmas 2.1 and 2.2 we have the following lemma; (a) < (c)
was recently obtained in [30], and (c) <> (e) for Y being Hausdorff in X was proved
in [18, Lemma 4.6]. Other equivalences are easily proved.

Lemma 2.3. For a subspace Y of a space X, the following statements from (a)
to (d) are equivalent. If Y is Hausdorff in X, these are equivalent to (e).

(a) Y is Aull-paracompact in X.
(b) Y is 2-paracompact in G for every open subset G of X withY C G.
()

(d) Y is 2-paracompact in Xy .

(e) Y is paracompact itself and weakly P-embedded in X .

Xy 1s paracompact.

We now introduce notions of 1- or 2- (collectionwise) normality of ¥ in X.
We say that a subspace Y of a space X is 1- (respectively, 2-) normal in X if for
each disjoint closed subsets Fy, Fi of X there exist open subsets Go, G1 of X such
that F;NY C G, for each i = 0, 1 and {Go, G:} is discrete in X (ie. GoNGy = 0)
(respectively, discrete at each point of Y in X (i.e. GoNG NY =0)).

A subspace Y of a space X is 1-y- (respectively, 2-v-) collectionwise normal
in X if for each discrete collection {Fy, | & < v} of closed subsets of X there exists
a collection {G4 | < 7} of open subsets of X such that F, NY C G, for each
a < v and {G4| o < 7} is discrete in X (respectively, discrete at each point of



Y in X). If Y is 1- (respectively, 2-) y-collectionwise normal in X for every v, Y’
is said to be 1- (respectively, 2-) collectionwise normal in X1.

In the above definitions of 2-normality and 2-y-collectionwise normality of Y’
in X, it is easy to see that both {G1,G2} and {G,|a < 7} can be taken to be
disjoint. Therefore, 2- (collectionwise) normality of Y in X implies (collectionwise)
normality of Y in X.

These definitions above admit the following result; for brevity “cw-normal”
means collectionwise normal. Moreover, the symbols “H” and “SR” mean the
assumptions that “Y is Hausdorff in X” and “Y is strongly regular in X, re-
spectively.

Proposition 2.4. For a subspace Y of a space X the following implications hold.

X 1is paracompact X is cw-normal X is 1normal
Y is S Y is Y is
1-paracompact 1-cw-normal ————— 1-normal
WI X 27[ X z'an
Y is R Y is Y is
2-paracompact 2-cw-normal 2-normal
n X in X \ in X \
Y is Y s
cw-normal normal
in X in X
Y is H Y is Y is
Aull-paracompact —— strongly cw-normal — strongly normal
2710 X "f X m X
Xy 1s paracompact Xy is cw-normal Xy 18 normal
Y is paracompact Y is cw-normal Y is normal

t2-collectionwise normality of Y in X is called collectionwise normality of Y in X in a recent
paper of E. Grabner, G. Grabner, Miyazaki and Tartir, “Relative collectionwise normality” to
appear in Appl. Gen. Top. Moreover, they also independently proved the implication “Y is

2-paracompact in X SR, Y is 2-cw-normal in X" in Proposition 2.4 assuming further that X
is Hausdorff.
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Bella and Yaschenko [8] proved the following theorem. A space X is said to
be almost compact if for every pair of disjoint zero-sets Zo, Z1 in X, either Zg or
7, is compact. Note that a Tychonoff space X is almost compact if and only if
|BX \ X| <1, where X is the Stone-Cech compactification of X.

Theorem 2.5 ([8]). For a Tychonoff spaceY, the following statemants are equiv-
alent.

(a) Y is weakly C-embedded in every larger Tychonoff (or equivalently, regular)
space.

(b) Y is either Lindeldf or almost compact.
Theorem 2.5 was improved to the following.

Theorem 2.6 ([18]). For a Tychonoff space Y, the following statemants are
equivalent.

(a) Y is weakly PY-embedded in every larger Tychonoff (or equivalently, regular)
space.

(b) Y is either Lindeldf or almost compact.

With Theorem 2.5, Bella and Yaschenko [8] further proved the following the-
orem, which was independently proved by Matveev et al. [25].

Theorem 2.7 ([8],[25]). For a Tychonoff (respectively, regular) space Y, the

following statemants are equivalent.

(a) Y is strongly normal in every larger Tychonoff (respectively, regular) space.
(b) Y is normal in every larger Tychonoff (respectively, reqular) space.
(¢c) Y is either Lindeldf or normal and almost compact.

Similarly, Theorem 2.6 and Lemma 2.2 provide the following theorem.

Theorem 2.8 ([18]). For a Tychonoff (respectively, regular) space Y, the fol-
lowing statemants are equivalent.
(a) Y is strongly collectionwise normal in every larger Tychonoff (respectively,
regular) space.
(b) Y is collectionwise normal in every larger Tychonoff (respectively, regular)
space.
(¢) Y is either Lindeldf or normal and almost compact.

Remark 2.9. Combining Proposition 2.4 and Theorems 2.7, 2.8, we have that
“strongly normal” (respectively, “strongly collectionwise normal”) can be replaced
by “2-normal” (respectively, “2-collectionwise normal”) in Theorem 2.7 (respec-
tively, Theorem 2.8).



Moreover, the following theorem follows from Theorem 2.6 and Lemma 2.3.
Theorem 2.10 ([4], [15], [30]). For a Tychonoff space Y, the following state-
mants are equivalent.

(a) Y is Aull-paracompact in every larger Tychonoff (or equivalently, regular)
space.

(b) Y is2-paracompact in every larger Tychonoff (or equivalently, regular) space.

(¢) Y is Lindeldf.

Remark 2.11. In Theorems 2.5, 2.6, 2.7, 2.8 and 2.10, all “larger Tychonoff
(respectively, regular) space” can be replaced by “larger Tychonoff (respectively,
regular) space containing Y as a closed subspace”.

Remark 2.12. Yamazaki [29] showed that the following are equivalent for a
Hausdoff space Y:

(a) Y is weakly C-embedded (or equivalently, weakly P-embedded) in every
larger Hausdorff space.

(b) Y is either compact or every continuous real-valued function on Y is con-
stant.

In the condition (a), “larger Hausdorff space” can be replaced by “larger Hausdorff
space containing Y as a closed subspace”.

Hence, if we replace all “Tychonoff” in Theorems 2.7, 2.8 and 2.10 by “Haus-
dorff”, the conditions (c) of each theorems are replaced by “Y is compact” (see
also [29], [30]).

Remark 2.13. Yamazaki [31] constructed a T3-space X and a subspace Y such
that Y is normal in X, but not 2-normal in X. We do not know similar ex-
amples under higher separation axioms. Furthermore, it is unknown whether if
2-normality implies 2-w-collectionwise normality, or collectionwise normality im-
plies 2-collectionwise normality.

3. Quasi-C*-, quasi-C- and quasi-P7-embeddings

7 In this section, we introduce new extension properties called quasi-C*-, quasi-
C- and quasi- P-embeddings, which will play basic roles on the study of 1- (col-
lectionwise) normality.
Let X be a space and £ = {E,|a € Q} a collection of subsets of X. Then
£ is said to be uniformly discrete in X if there exist a collection {Z,|a € Q}
of zero-sets of X and a discrete collection {Gq|a € 2} of cozero-sets of X such
that E, C Z, C G, for each a € Q ([9]).
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Let us now define that a subspace Y of a space X is quasi-C*-embedded in X
if for each pair Zg, Z; of disjoint zero-sets of Y, there exist open subsets Go, G1
of X such that {G,, Gy} is discrete in X and Z; C G; for each i = 0, 1.

A subspace Y of a space X is said to be quasi-P?- embedded in X if for each
uniformly discrete collection {Z, | @ < v} of zero-sets of V', there exists a discrete
collection {G, | @ < 7} of open subsets of X such that Z, C Gq foreacha <. A
subspace Y is quasi-P-embedded in X if Y is quasi- P?-embedded in X for every
~. Furthermore, quasi-P“-embedding is called quasi-C-embedding.

Definitions of quasi-C*-embedding and quasi-P7-embedding should be com-
pared with the following results in (9], [18] and [19].

Lemma 3.1 ([9]). A subspace Y of a space X is PY-embedded in X if and only
if if for every uniformly discrete collection of subsets of Y of cardinality < -y s
also uniformly discrete in X.

Lemma 3.2 ([18]). A subspace Y of a space X is weakly C-embedded in X if
and only if if for each pair Zy, Z, of disjoint zero-sets of Y, there exist disjoint
open subsets Go, G1 of X such that Z; C G; for eachi=0,1.

Lemma 3.3 ([19]). A subspace Y of a space X is weakly P7-embedded in X if
and only if for each uniformly discrete collection {E, | < v} of zero-sets of Y
there exists a pairwise disjoint collection {Go|a <7} of open subsets of X such
that E, C G, for each o < 7y.

By Lemmas 3.1, 3.2 and 3.3, we have the following implications.

P C c*

l |

quasi- P —— quasi-C—— quasi-C*

weak P weak C

We note that none of reverse implications above is true.

Proposition 3.4. For a subspace Y of a space X, the following statements hold.
(a) IfY is itself y-collectionwise normal and quasi-P7 -embedded in X, then Y
is 1-y-collectionwise normal in X.

(b) If Y is itself normal and quasi-C*-embedded in X, then Y is 1-normal in
X.

Moreover, if Y is closed in X, each of (a) and (b) reverses.



In [6], Aull defined that a subspace Y of a space X is a-paracompact in X
if for every collection U of open subsets of X with Y C [JU, there exists a
collection V of open subsets of X such that Y C [JV, V is a partial refinement of
U and V is locally finite in X. Note that a-paracompactness of ¥ in X implies
Aull-paracompactness of Y in X ([3], [4]).

Related to a-paracompactness, let us recall the following results in [22] and
[23, Theorem 1.3].

Theorem 3.5 ([22]). A Hausdorff (respectively, regular, Tychonoff) space Y is
a-paracompact in every Hausdorff (respectively, regular, Tychonoff) space con-
taining Y as a closed subspace if and only if Y is compact.

Theorem 3.6 ([23]). For a closed subspace Y of a reqular space X, Y is 1-
paracompact in X if and only if Y is a-paracompact in X.

Theorems 3.5 and 3.6 immediately induce a characterization of absolute 1-
paracompactness as follows.

Corollary 3.7. For a Tychonoff (respectively, regular) space Y, the following
statemants are equivalent.

(a) Y is 1-paracompact in every larger Tychonoff (respectively, reqular) space.
(b) Y is a-paracompact in every larger Tychonoff (respectively, reqular) space.

(c) Y is compact.

The following is one of our main theorems characterizing absolute quasi-P-,
quasi-C- and quasi-C*-embeddings.
Theorem 3.8. For a Tychonoff space Y, the following statements are equivalent.
(a) Y is quasi-P-embedded in every larger Tychonoff space.
(b) Y is quasi-C-embedded in every larger Tychonoff space.
(€) Y is quasi-C*-embedded in every larger Tychonoff space.
(d) Y s almost compact.
In the conditions from (a) to (c), “Tychonoff” can be replaced by “regular”.

By Proposition 3.4 and Theorem 3.8, we have

Corollary 3.9. For a Tychonoff (respectively, regular) space Y, the following
statements are equivalent.

(a) Y is 1-collectionwise normal in every larger Tychonoff (respectively, regular)
space.

(b) Y is 1-normal in every larger Tychonoff (respectively, regular) space.
(c) Y is normal and almost compact.
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In Corollary 3.9, (b) < (c) also follows from [25, Theorem 2.6]. For the Haus-
dorft case, we have the following.

Theorem 3.10. For a Hausdorff space Y, the following statements are equivalent.

(a) Y is quasi-C*-embedded in every larger Hausdorff space.
(b) Every continuous real-valued function on Y is constant.

In (a), “quasi-C*-embedded” can be replaced by “quasi-P-embedded” or “quasi-
C-embedded” and “larger Hausdorff space” can be replaced by “larger Hausdorff
space containing Y as a closed subspace”.

By Theorem 3.10 and Proposition 3.4, we have the following; a Hausdorff
space Y is 1-collectionwise normal (or equivalently, 1-normal) in every larger
Hausdorff space if and only if |Y| < 1. Moreover, “larger Hausdorff space” can
be replaced by “larger Hausdorff space containing Y as a closed subspace”.

Finally we consider the condition under which 2-paracompactness implies 1-
paracompactness. We say a subspace Y of a space X is Ty- (respectively, Ts-)
emmbedded in X if for every closed subset F of X disjoint from Y (respectively,
2 € X \Y), F (respectively, z) and Y are separated by disjoint open subsets of
X. The idea of these notions already appeared in Aull [6]. It is easy to see that
if Y is T3-embedded in X, then Y is closed in X.

The following is a finer result of Theorem 3.6; to show “(b) = (c)”, the
implication “(b) = Y is Ty-embedded in X” is due to Aull [6, Theorem 6]. By
using this fact, Lupiafiez and Outerelo [23, Lemma 1.2 and Theorem1.3] proved
(@) = (¢) = (b) = (c) = (a).

Theorem 3.11 ([23]). For a closed subspace Y of a regular space X the following
statements are equivalent.

(a) Y is 1-paracompact in X .

(b) Y is a-paracompact in X.

(¢) Y is 2-paracompact in X and Ty-embedded in X.

The proof of Theorem 3.11 essentially shows the following.

Theorem 3.12. For a subspace Y of a space X the following statements are
equivalent.
(a) Y is 1-paracompact in X and T3-embedded in X

(b) Y is a-paracompact in X and for every y € Y and every closed subset
F of X with FNY = 0, there exists an open subset U of X such that

yeUcCT cX\F.
(c) Y is 2-paracompact in X and Ty-embedded in X.



Proposition 3.13. For a Tychonoff space Y the following statements are equiv-
alent.

(a) Y is Ty-embedded in every larger Tychonoff space.
(b) Y is compact.

Remark 3.14. In Theorem 3.8, Corollaries 3.7 and 3.9, Proposition 3.13, all
“Jarger Tychonoff (respectively, regular) space” can be replaced by “larger Ty-
chonoff (respectively, regular) space containing Y as a closed subspace”.

Theorem 2.10, Theorem 3.11 and Proposition 3.13 give an alternative proof
to Corollary 3.7.

In case Y is Hausdorff, we have the following;, a Hausdoff space Y is Ty-
embedded in every larger Hausdorff space if and only if Y = (. The similar proof
provides the following; a Hausdorff space Y is 1-paracompact in every larger
Hausdorff space if and only if Y = (0. Moreover, in both statements, “larger
Hausdorff space” can be replaced by “larger Hausdorff space containing Y as a
closed subspace”. This should be compared with Theorem 3.5 and Corollary 3.7.

4. On l-metacompactness of a subspace in a space

In this section, we describe absolute case of 1-metacompactness. A subspace
Y of a space X is said to be 1-metacompact in X if for every open cover U of X,
there exists an open refinement V of U such that V' is point-finite at every y € ¥
([21]). In [16], 1-metacompactness of Y in X is called strongly metacompactness
of Y in X.

A space X satisfies the discrete finite chain condition (DFCC, for short) if
every discrete collection of non-empty open subsets of X is finite (see [24], for
example). Recall that a Tychonoff space X is pseudocompact if and only if X
satisfies the DFCC. It is also known that a Tychonoff space X is compact if and
only if X is pseudocompact and metacompact ([27], [28]). Furthermore, a regular
space X is compact if and only if X satisfies the DFCC and is metacompact

(27D)-

According to [2], in [4], Arhangel’skil and Genedi remarked the following fact;
let Y be a countable dense subset of a regular space X. ThenY is 1-metacompact
(or equivalently, 1-paracompact) in X if and only if X is Lindeldf. The proof of
this fact is applied to show the following lemma.

Lemma 4.1. Take a separable space Z and a non-DFCC space Y, arbitrarily.
Let {d,|n € N} be a countable dense subset of Z, {Un|n € N} a countable
discrete collection of non-empty open subsets of Y and {y,|n € N} a countable
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closed discrete subset of Y such that y, € U, for each n € N. Let X be the
quotient space obtained from'Y @ Z by identifying y» with d, for eachn € N.
IfY is 1-metacompact in X, then Z is Lindeldf.
Moreover, if Y and Z are Tychonoff (respectively, regular), then X is also
Tychonoff (respectively, reqular).

Theorem 4.2. A Tychonoff (respectively, regular, Hausdorff) space Y is 1-meta-
compact in every larger Tychonoff (respectively, regular, Hausdorff) space if and
only if Y is compact.

Theorem 4.2 extends the following result due to E. Grabner et al. [16]; a
normal space Y is 1-metacompact in every larger regular space if and only if Y
18 compact.

5. On l-subparacompactness of a subspace in a space

It was defined in [26] that a subspace Y of a space X is 1-subparacompact in
X if for every open cover U of X, there exists a o-discrete collection P of closed
subsets of X with Y C {J7P such that P is a partial refinement of U.

In [26], Qu and Yasui asked a question as follows; let X be a regular space
and Y a subspace of X. Is it true that if Y is 1-paracompact in X, then Y is
1-subparacompact in X ¢ The following theorem gives a negative answer to this
question.

Theorem 5.1. There ezists a Tychonoff space X and a subspace Y of X such
that Y is 1-paracompact but not 1-subparacompact in X.

Construction. Let X be the set (wg 4+ 1) x (w; + 1) \ {{wz,w1)}. For a € wi and
B € wy, define G, = (w2 +1) x {@} and Hg = {8} x (w; + 1), respectively. Define
a topology on X as follows. For o € wy, a neighborhood base at (wp, @) is the
family of all sets of the form G, \ E, where E is a finite subset of wp X {a}. For
B € wy, a neighborhood base at (3, w) is the family of all sets of the form Hy \ F,
where F' is a finite subset of {8} x w;. All other points of X are isolated in X.
The construction of X is based on a example in [11]. Let Y = X \ (w2 x {w1})U
({ws2} x wy)). Then Y is 1-paracompact but not 1-subparacompact in X.
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