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1, The Henon map and its quantum propagator
The Henon map is a polynomial diffeomorphism given by:

$f_{a}$ : $(\begin{array}{l}xy\end{array})\mapsto(y^{2}-x+ay)$ . (1)

We have a classification theorm claiming that non-trivial polynomial diffeomorphisms
from $\mathbb{C}^{2}$ to $\mathbb{C}^{2}$ is written as a composition of the Henon map, and the others, which are
either elementary or affine map, are the mappings easily anaiyzed [1]. For this reason,
the Henon map can be regarded as a simplest possible polynomial diffeom orphism
creating non-trivial dynamics.

An alternative familiar form is obtained by making an affine change of variables as
$(p, q)=$ ($y-x$ , x–l) together with a parameter $c=1-a$,

$F_{c}$ : $(\begin{array}{l}qp\end{array})\mapsto(\begin{array}{l}q+pp-V,(q+p)\end{array})$ . (2)

Here the potential function $V(q\rangle$ is given as

$V(q)=- \frac{q^{3}}{3}-cq$ . (3)

The Henon map (1) has a nonlinear paremeter $a$ (or $c$) controling the dynamics
qualitatively. When $a\gg 1$ , the so-called horseshoe condition is satisfied and the
mapping is conjugate to the symbolic dynamics with the binary full shift. All the stable
and unstable manifotds for periodic orbits intersect transversally when the horsehoe is
realized, and the system keeps hyperbolicity. Non-wondering set forms fractal repeller
on the real plane.

A standard recipe to formulate quantum mechanics of the symplectic mapping is
first to construct the unitary operator generating the time evolution of quantum states
[2]. This is achieved by introducing discrete analog of the Feynman-type path integral:

$<q_{n}|U^{n}|q_{0}>= \int_{-\infty}^{\infty}\cdot$ . . $\int_{-\infty}^{\infty}dq_{1}dq_{2}\cdots dq_{n-1}\exp[\frac{\mathrm{i}}{\hslash}S(q_{0}, q_{1}, \cdot. . , q_{n})]$ . (4)

Here we take the coordinate representation. The function $S(q_{0}, q_{1}, \cdots, q_{n})$ represents
the discretized Lagrangian or the action functionai given by

$S(q0, q_{1}, \cdot. . , q_{n})=\sum_{j=0}^{n-1}\frac{1}{2}(q_{j+1}-q_{j})-\mathrm{I}V(q_{j})$ . (5)
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The action functional is derived so that applying the variational principle to $S(q_{0}, q_{1}, \cdots, q_{n})$

generates the symplectic map (2). In fact, we can easily see that the condition

$\frac{\partial S(q_{0},q_{1},\cdots,q_{n})}{\partial q_{j}}=0$ , $(1\leq j\leq n-1)$ , (6)

yields the classical map in the Lagrangian form,

$(q_{\dot{\mathrm{z}}+1}-q_{\mathrm{i}})-(q_{i}-q_{i-1})=q_{i}^{2}+c$ . (7)

A usual (complex) semicalssical scheme is just to take the leading order contribution
in evaluating the multiple integral $<q_{n}|U^{n}|q_{0}>\mathrm{b}\mathrm{y}$ stationary phase(or saddle point)
method. The resulting semiclassical formula is expressed as a sum over contributions
of classical trajectories connecting the initial and final states:

$<q_{n}|U^{n}|q0> \approx\sum_{\gamma}A_{\gamma}(q_{n}, q_{0})\exp\{\frac{\mathrm{i}}{\hslash}S_{\gamma}(q_{n}, q_{0})-\mathrm{i}\mu_{\gamma}\frac{\pi}{2}\}$ , $(\mathrm{S}\rangle$

where $A_{\gamma}(q_{n}, q_{0})$ stands for the amplitude factor associated with quantum fluctuation
around each classical path 7. $S_{\gamma}(q_{n}, q_{0})$ is given by putting the data of the correspond-
ing ctassical path $\gamma$ into the action functional $S(q_{0}, q_{1}, \cdots, q_{n})$ , and $\mu_{\gamma}$ represents the
Maslov index. The summation is taken over such classical orbits that are located ini-
tially on the manifold $q\mathit{0}=\alpha$ , and finally on $q_{n}=\beta$ , where both $\alpha$ and $\beta$ should take
reat values since they are observables in the representation under consideration.

We remark that even if there exist no real orbits connecting the initial and final
manifolds $q_{0}=$ a and $q_{n}=\beta$ , we always have comptex orbits, which appear as saddle
point solutions of (6) with the conditions $\alpha,$ $\beta\in \mathrm{R}$ . Physically, such complex orbits
can be and should be regarded as turvneling orbits since the transition between initial
and final manifolds is forbidden within real classical orbits. This type of tunneling
transition is often called dynamical tunneling in the literature [3, 4, 5].

2. Stokes geometry
Our motivation to investigate the quantized Henon map is to ciarify how chaos in

the complex space controls quantum tunneling, and to establish the theory of chaotic
trvnneling $[6, 7]$ . A special advantage to employ the Henon map is that the theory of
complex dynamical systems has well been developed for polynomial diffeomorphisms
$[8, 9]$ . This is important because the saddle point solutions of the quantum propagator

are just the classical trajectories in the complex plane, especially tunneling transitions
are in question. It is thus crucial to know the nature of complex classical dynamics,

and also in this respect, the He’non map is most suitable. In particular, recent series of

works by Bedford and Smillie, based on the pluriharmonic theory in several complex
variables, establishecl various fundamental fram eworks for higher dimensional diffeo-
morphism complex He’non map [8]. In fact, as a direct outcome of their works, it has

rigrously been proved that the most relevant family of complex orbits to describe dy-

namical tunneling is closely related with the Julia set [10]. Moreover, in the present
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context, we should say more about the results by Bedford and Smillie since their fun-
dam etal statement on the convergency of invariant sets is applicable to the system with
mixed phase space [8], in which dynamical tunneling most naturally appears.

On the other hand, as is well known, in applying the saddle point method, one
must take into account Stokes phenomena, that is, not all the saddle point solu-
tions( $=\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}\mathrm{l}\mathrm{e}\mathrm{x}$ classical orbits) do not contribute to the final semiclassical superposi-
tion (8), but only the solutions controlled by the connection through Stokes phenomena
do so. The aim of this report is to present a recipe to introduce proper Stokes geometry
to the quantum propagator (4) of the Henon map and how it should be treated.

In what follows, we shall fix the initial coordinate $q0=\alpha$ and regard the quantum
propagator (4) as a function of the final coordinate $q_{n}$ . We therefore use the notation
$I(q_{n})\equiv<q_{n}|U^{n}|q_{0}>$ to represent the multiple integral defined in eq. (4). As will
be seen below, except for the argument on the Stokes geometry depending on several
param eters in the Henon map, we put aside $q_{0}$ dependence for the moment.

The Stokes phenomenon for the 1-step quantum propagator is almost trivial, since
the single integral $I(q_{2})$ can be transformed into a canonical form of the Airy integral by
an appropriate change of variables. For $n\geq 3$ , the object we have to analyze is multiple
integrals. As easily anticipated, difficulties to understand Stokes phenomena in multiple
integrals much escalate. Recent progresses in exact WKB analysis, however, provide
us promising approach to such issues [11]. In particular, the work by Howls on the
development of hyperasymptotic expansions in multiple integrals is directly connected
with the present problem [12].

We shall actually study Stokes phenomena in our integrals using hyperasymptotic
expansion in the following section. Before doing this, we here connect our problem to
the treatment of Stokes phenomena in higher-order differential equations. This looks
somewhat a redundant way, since in usual cases integral representations carry much
more information than differential equations. However, in multiple integrals, even if
they certainly take integral form $\mathrm{s}$ it is not trivial at all to see how the saddle point
method should be applied or in which $\mathrm{c}\mathrm{o}$-dimensional space Stokes phenomena occurs.
In particular, although what we need is to know how the connection occurs in $I(q_{n})$ as
a function of $q_{n_{\grave{d}}}$ little is known about how the Stokes geometry should be constructed
in such a situation.

To this end, we here follow the work by Aoki, Kawai and Takei [13], in which they
have provided a prescription to analyze Stokes phenomena in higher-order differential
equations, say $P(x, \eta^{-1}d/dx)\psi(x)$ $=0$ , within the exact WKB framework [13]. Their
work contains not only a mathematical justification of the preceding work [14] in which
new Stokes curves should be introduced in order to recover the univaluedness around
crossing points of ordinary Stokes curves in an ad-hoc way, but also claims that viriial
turning points (they are originally called new turning points in [13]) should first be
taken into account to construct complete Stokes geometry. They also clarified that
new Stokes curves play essentially the sam $\mathrm{e}$ part in the Stokes geometry.

The argument of [13] starts vith defining virtual turning points as self-intersection
points of bicharacteristic curves for the Borel transformed differential equation. Here
self-intersection points are obtained by projecting full bicharacteristic strip onto $(x, y)$
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plane, where the variables $y$ denotes the variable dual to a large parameter $\eta$ . Then
new Stokes curves are defined as the ones emanating from virtuai turning points.

In order to apply the same recipe to our integral $I(q_{n})$ , we here show; (i) the
principal symbol, which gives the bicharacteristic equation of the Borel transform of
differential operator, and (ii) a set of differential operator acting on our integral $I(q_{n})$ .
Detailed derivations are given elsewhere [15]. We just present the final expression. For
the principal symbol we have,

$\sigma(\hat{\mathcal{H}})(q_{n}, S,\xi, \eta)\equiv-\eta\hat{H}(q_{1}, q_{2})|\begin{array}{ll}q_{1}=q_{1}(q_{n-\mathrm{l}} q_{n})( )\end{array}|q_{n-1}=q_{n}-\xi\eta^{-1}$
(9)

where

$\hat{H}(q_{1}, q_{2})\equiv\frac{\partial}{\partial q_{1}}S(q_{0}, q_{1}, \cdot\cdot . , q_{n})|_{q0=0}=2q_{1}+q_{1}^{2}-q_{2}+c_{\rho}$ (10)

and $\xi\equiv\eta p_{n}=\eta(q_{n}-q_{n-1})$ . We note that $q_{1}$ , which is a canonical conjugate variable
to $q_{0}$ , plays the role of time in the bicharacteristic curve.

Explicit form $\mathrm{s}$ of principal symbols $\sigma(\hat{H})(q_{n}, S, \xi, \eta)$ are given respectively as

$\sigma(\hat{H})=\eta^{-1}\xi^{2}-2(q_{2}+1)\xi+(q_{2}^{2}+q_{2}-q_{0}+c)\eta$ (11)

for $n=2$ , and

$\sigma(\hat{H})$ $=$ $\eta^{-3}\xi^{4}-4(q_{3}+1)\eta^{-2}\xi^{3}+(6q_{3}^{2}+10q_{3}+2c+6)\eta^{-1}\xi^{2}$

$(4q_{3}^{3}+8q_{3}^{2}+4cq_{3}+\mathrm{S}q_{3}+4c+3)\xi$

$+$ $(q_{3}^{4}+2q_{3}^{3}+2cq_{3}^{2}+3q_{3}^{2}+3cq_{3}+q_{3}+c^{2}+3c-q_{0})\eta$ (12)

for $n=3$ .
We also have explicit form $\mathrm{s}$ of differential equations for $n=2$ ,

$[ \frac{d^{2}}{dq_{2}^{2}}-2\eta(q_{2}+1)\frac{d}{dq_{2}}+\eta^{2}(q_{2}^{2}+q_{2}-q_{0}+c)+\eta)]I(q_{2})=0$ . (13)

Similarly, we obtain for $n=3[16]$ ,

$\ovalbox{\tt\small REJECT}\frac{d^{4}}{dq_{3}^{4}}-4\eta(q_{3}+1)\frac{d^{3}}{dq_{3}^{3}}+\{(6q_{3}^{2}+10q_{3}+2c+6)\eta^{2}-6\eta\}\frac{d^{2}}{dq_{3}^{2}}$

$+ \{(-4q_{3}^{3}-8q_{3}^{2}-4cq_{3}-8q_{3}-4c-3)\eta^{3}+(12q\mathrm{s}+10)\eta^{2}\}\frac{d}{dq_{3}}$

$+\{(q_{3}^{4}+2q_{3}^{3}+2cq_{3}^{2}+3q_{3}^{2}+2cq_{3}+q_{3}+c^{2}+3c-q_{0})\eta^{4}$

$+(-6q_{3}^{2}-8q_{3}-2\mathrm{c}-4)\eta^{3}+3\eta^{2}\}]I(q_{3})=0$. (14)

Since we now have differential equations for our multiple integral (4), we apply a
prescription for higher-order differential equations. Concerning turning points, we say
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the point $q_{n}^{T}$ is a turning point in the ordinary sense if the equation $\sigma(\tilde{H})=0$ for $\xi$ has
a double root. In this case, we have,

$\frac{dq_{n}^{T}(q_{0},q_{1})}{dq_{1}}=0$ ,

$\frac{dS(q_{0},q_{1},\cdots,q_{n}^{T}(q_{0},q_{1})\}}{dq_{1}}=0$.

Also we follow the definition of virtual turning points, that is, for $q_{1}^{(\iota)}\neq q_{1}^{(j)},$ $q_{n}^{T}$ is a
virutal turning point if

$q_{n}^{T}(q_{0}, q_{1}^{\langle \mathrm{i})})=q_{n}^{T}(q_{0}, q_{1}^{(j)})$

$S(q_{0}, q_{1}^{(i)}, \cdot . . , q_{n}^{T}(q_{0}, q_{1}^{(i)})),$ $=S(q_{0}, q_{1}^{(j)}, \cdots, q_{n}^{T}(q_{0}, q_{1}^{(j)}))$ .

In the same way, we can apply the definition of Stokes curves. Recalling the gener-
ating relation, $\partial S(q_{1}$ : $\ldots$ , $q_{n})/\partial q_{n}=p_{n}$ , we say the curves emanating from the turning
points $q_{n}^{T}$ and satisfying the following relation;

${\rm Im} S(q_{0}, q_{1}^{(i)}, \cdot. . , q_{n-1}^{(i)}, q_{n}^{T})={\rm Im} S(q_{0}, q_{1}^{(j)}, \cdots, q_{n-1}^{(j)}, q_{n}^{T})$ . (i5)

Stokes curves emanating from ordinary turning points give the ordinary Stokes curves,
and th ose from virtual turning points give new Stokes curves.

3. Stokes graphs and Stokes geometry for $2\sim$ and 3-step propagators
In this section, we shall present several concrete examples of Stokes graphs for the
quantum propagator (4) and how one can complete the Stokes geometry. The first
non-trivial Stokes graphs appear when we consider the quantum propagator for $n=3$ ,
in which four saddles appear as a solution of the saddle point condition, each of which
is denoted by $u_{1},$ $u_{2},$ $u_{3},$ $u_{4}$ hereafter.

An example shown in Fig. 1 is the case with a certain generic $a$ , meaning that
ideal situations such as the horseshoe condition or hyperbolicity are not realized in
the corresponding classical dynamics. The Lagrangian manifoid on the real plane is
depicted in Fig. 2. We can see that there exists one folding point, although stretching
and folding processs is repreated twice. This is because another two folding points
falJ into the complex domain, and cannot appear in the real plane. In Fig. 1, we
have drawn ordinary Stokes curves together with new Stokes curves. There are three
ordinary turning points, two of which are situated on the comptex domain, reflecting
the aspect just mentioned. From each ordinary turning point, three ordinary Stokes
curves emanate. We notice that not only simple crossing points denoted as $a,$ $a’$ , $b,$ $b’$

in Fig. 1, but also a degenerated crossing point, on which three ordinary Stokes curves
cross each other at a single point. This is not generic event since only two Stokes curves
are naturally expected to intersect. Obviously, this is due to the symmetry with respect
to the real axis.

We note that the situation is slightly complicated as compared with the case studied
by Berks et al. Around simple crossing points in our Stokes graphs, for example the
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$\mathrm{g}\sigma^{\mathrm{r}}$

${\rm Re} \mathrm{q}_{3}$

Figure 1: Complete Stokes geometry for the Henon map propagator with $n=3,$ $c=$

$1$ , $andq_{0}=0$ . The solid and open circles denote the ordinary and virtual turning points
respectively. Ordinary Stokes curves are drawn as thick lines and new ones as thin
lines. The broken segm ents represent the parts of Stokes curves on which where no
connections occur. The dominance relation on Stokes curves are indicated as $(i>j)$

meaning that the saddle $\mathrm{i}$ is dominant to that of $j$ . One of ordinary Stokes lines
emanating from the turning point $(2=3)$ and the new Stokes curve for the saddles 1
and 4 degenerate on the ${\rm Re} q_{3}$ axis. They are slightiy shifted for clarity.

points denotecl by $a$ and $a’$ , which appear as a symmetric pair with respect to ${\rm Re} q\mathrm{a}$

axis, we know that the connection should occur on the segments on which ordinary and
virtual turning points are located, but the rest of segements cannot be determined only
after determining the connections around these crossing points. In order to know the
characters of the remaining parts, we need to solve the connection problem around the
degenerated crossing point. Similarly, the connection problem around simple crossing
points $b$ and $b’$ remains unknown until the connetion around the degenereted crossing
point will be decided.

Accordingly, we have first to solve the connection problem around the degenerated
crossing point on the ${\rm Re} q_{3}$ axis. As expected, in addition to three ordinary Stokes
curves, three new Stokes curves pass through the degenerated crossing point. The
principle we have to impose is the same as employed in the case of simple crossing

points, namely univaluedness condition around a given crossing point. As shown in

Fig. 3, the characters on the segments that are directly connected to ordinary or
virtual turning points are known in advance.

Once the connection around the double crossing point is fixed, the connection prob-
lems around the rest of single crossing points are automatically solved. In fact, as for
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$ae\sigma^{\sigma\}}\infty$

Figure 2: Lagrangian manifold for $n=3$ , The nonlinear parameter for the He’non map
is taken as $c=0$ . The initial manifold is given as $q_{0}=0,$ $-\infty<q_{1}<\infty$ . There appears
one caustic on the real plane but the others fall into the imaginary plane.

Figure 3: Magnification of complete Stokes geometry around the degenerated crossing
point located on the He $q_{3}$ axis. The degenerated Stokes curves on the ${\rm Re} q_{3}$ axis are
slightly shifted each other.
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the crossing points $a$ and $a’$ , characters of Stokes curves on one side is known, which
allows one to determine characters beyond crossing points. The same is true for the
crossing points $b$ and $b’$ . As a result, as shown in Fig. 1, all the characters of Stokes
curves are uniquely determined only by requiring the univaludness condition. Remerk-
ably, to preserve univaluedness on the whole plane, it can happen that even ordinary
Stokes curves become broken ones, meaning that the connection does not occur on this
segment even though they are ordinary Stokes curves. So, we learn from this exam ple
that broken segm ents are not limited to the new Stokes curve, and that the resulting
Stokes geometry totally bears global topology of the Stokes graph. It is not enough to
focus on a certain limited part.

Next we present the Stokes geometry for the $n=4$ case. The algorithm to draw
ordinary and new Stokes curves together with ordinary and virtual turning points are
the same as $n=3$ case. The number of saddle point solutions is 8. The numbers
of ordinary and new Stokes curves are 42 and 21, respectively. In Fig. 4, we show
the Stakes graphs for $c=1,$ $q_{0}=0$ . It is hard to distinguish in the figure, but we
should note that two ordinary and two new Stokes curves are quadruply degenerated
on the ${\rm Re}$ q4 axis. As the case of degenerated Stokes lines observed in the graph for
$n=3$, these degenerated Stokes lines do not cause any complexity in the final Stokes
geometry because all the Stokes lines are those between different saddles, i.e., they are
all independent each other.

$\triangleleft$

$\sigma$

$\underline{\Xi}$

${\rm Re} \mathrm{q}_{4}$

Figure 4: A Stokes graph for 3-step He’non map propagator with $c=1,$ $q0=0$ . Ordinary

and new Stokes curves are drawn as thick and thin lines, respectively. Ordinary and

virtual turning points together with Information on the connection are not shown here.

As in the case of $n=3$ , considering simple crossing points is not enough to complete
the Stokes geometry. On the ${\rm Re} q_{4}$ axis, there are severai degenerate crossing points.
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In Fig. 5, we present Stokes geometry around such degenerated crossing points on
the ${\rm Re} q_{4}$ axis. These four crossing points are those appearing in the magnified graph
given as Fig. 4. Similarly to single crossings, it is easy to verify that all the characters
of the Stokes curves around degenerated crossings are uniquely determined as long
as characters of the half of the segments, i.e., six segiments, are already known. For
example, in case Fig 5(a), three ordinary curves, $(1 \cdot 7),$ $(4\cdot 6),$ $(6\cdot 7)$ , and three new
Stokes curves, $(1 \cdot 4),$ $(4\cdot 7),$ $(1\cdot 6)$ , are involved in the connection. For each Stokes
curve, character of each segment in either side is already known because of the rule
around ordinary or virtual turning points. Using these data, it is easy to check that
the extension beyond the crossing point is unique. The sam $\mathrm{e}$ is true in other crossings
shown in Fig. 5. All the degenerated crossing points appearing in Fig. 4 can be treated
in the same manner.

(d)
$(2=8)\mathrm{r}_{4}\backslash \backslash$

$/’//’\langle,3>,5,\rangle\prime\prime\prime(2>5)$

$(3=8)_{\mathrm{R}}$

$\backslash \backslash$

$|_{\triangleright-\gamma}^{1^{<3}} \triangleleft\neq 8-\triangleleft;.\frac{\backslash \prime\backslash \backslash /\backslash }{\alpha,-----\prime--^{J\backslash }-/\wedge<-\backslash \backslash \backslash arrow-\backslash \backslash ------.\Leftrightarrow\ovalbox{\tt\small REJECT},r’\backslash \backslash \prime’/\backslash \backslash \prime//’\backslash /\backslash \backslash \backslash }‘\xi_{*}^{2=}16>\ovalbox{\tt\small REJECT}(2=5)(3\succ 8)<$

$(3\Rightarrow 5)d’$

$\backslash \backslash (2<8)\backslash$

Figure 5: Connection around degenerated crossing points in the case with $n=4,$ $c=$
$1,$ $q0=0$ . $(\mathrm{a}),$ $(\mathrm{b}),$ $(\mathrm{c})$ and (d) respectively correspond to the crossing points $a,$ $b,$ $c$ and
$d$ shown in Fig. 6. Thick and thin lines stand for the ordinary and new Stakes curves.
Gray ones represent Stokes lines that are not involved in the connection around the
crossing point under consideration.

4. Validity of Stokes geometry
As mentioned, univaluedness is a necessary condition for the connection problem to be
consistent. If this consistency is violated, there should exist some unknown ingredients
other than virtual turning points and new Stokes curves, etc., but at least all the
Stokes graphs examined so far do not only violate this condition but also the resulting
geometries are unique.
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$\triangleleft$
.

$\underline{\sigma\in}$

${\rm Re} \mathrm{q}_{4}$

Figure 6: Magnification of a part of Stokes geometry for $c=1,$ $q_{0}=0$ . The solid
and open circles denote the ordinary and virtual turning points respectively. Ordinary
Stakes curves are drawn as thick lines and new ones as thin lines. The broken segments
represent the parts of Stokes curves on which where no connections occur.

In this section, we shall see the validity of a concrete example of Stokes geometry
obtained in the previous section by using hyperasymptotic expansions for multiple
integrals $[18, 12]$ . Hyperasymptotic expansions are a systematic $\mathrm{r}\mathrm{e}$-expansion of the
remainder terms around the solutions not involved in the original expansions, and they
essentialty improve the Poincar\‘e-type asymptotics. This would be closely related to
the exact WKB analysis previously discussed, and aiso recent development of the exact
steepest descent method [17].

Hyperasymptotic expansions generate exponentially improved numerical accuracy;
this is because expansions incorporate non-locai natures of asymptotic expansions, and
exactly this fact will be used to analyse the Stokes geometry. The idea behind this is

that the reason for divergence of asymptotic expansions of integrals around a certain
sadde is due to the existence of other saddles, and just for this reason the saddles should
be related to each other in a consistent manner.

Here we only give a brief sketch of how hyperasypmotic expansions can be utilized
to check the validity of Stokes geometry [12]. Consider the Laplace-type integral

$I^{(n)}( \eta)=\int_{C_{n}}dzg(z)\exp\{-\eta f(z)\}$ , (16)

where we assume that the function $f(z)$ has simple saddle points denoted by $\{z_{n}\}$ , and
that the contour line here represented by $C_{n}$ expresses a steepest descent path which



I94

connects vallays ${\rm Re}\{\eta[f(z)-f_{n}]\}$ and passes through a saddle $z_{n}$ . Then we write the
asym ptotic expansion of the integral $I^{\langle n)}(\eta)$ with repsect to a large parameter $\eta$ as

$I^{(n)}( \eta)=\frac{\exp\{-\eta f(z_{n})\}}{\sqrt{\eta}}\sum_{r=0}^{N-1}\frac{T_{r}^{(n)}}{\eta^{r}}+R^{\acute{(}n)}(\eta, N)$ . (17)

Here $T_{r}^{(n)}\mathrm{s}$ denote coefficients of the asymptotic expansion around the saddle $z_{n}$ , and
$R^{(n)}(\eta, N)$ the remainder of the expansion up to the degree $N$ .

A crucial step to see this is to $\mathrm{r}\mathrm{e}$-express the remainder term $R^{(n)}(\eta, N)$ in terms
of $T_{r}^{(m)}$ that are the asymptotic coefficients of saddles $m$ not involved in the initial
expansion. This leads to a sequence of the so-called hyperseries

$T^{(n)}( \eta)=\sum_{r=0}^{N_{n}-1}T_{r}^{(n)}K_{r}^{(n)}+\sum_{m_{1}}C_{nm_{1}}\sum_{r=1}^{N_{nm_{1}}-1}T_{r}^{\langle m_{1})}K_{r}^{(nm_{1}\}}$

$+ \sum_{m_{1}}\sum_{m_{2}}C_{nm_{1}}C_{mm\circ,A}+1\sum_{r=0}^{N_{m_{1^{m}2}}-1}T_{r}^{\langle m_{2})}K_{r}^{(m_{1}m_{2})}+\cdot$ . .

$+ \sum_{m_{1}}$

$\sum_{m_{M}}Cnn\mathrm{z}_{1}Cm_{1}m_{2}\ldots Cm_{\mathrm{J}\nu \mathrm{f}-1}m_{M}(\sum_{r=0}^{m_{M}}T_{r}^{(m_{M}\}}K_{r}^{(nm_{1}\cdots m_{M})}+R^{(nm_{1}\cdots m_{M})})N_{n}-1$ .

(18)

Here $K_{r}^{(nm_{1}\cdots m_{p})}\mathrm{s}$ are called $hyperterrn\mathrm{i}r_{l}ants$ which are universal multiple integrals not
depending on the original integral [18]. The coefficients $C_{nm}$ inserted in front of each
contribution carry information regarding the Riemann sheet structure of the Borel plane
on which the singularities corresponding to the saddles $n$ and $m$ are located. Hence,
the coefficients $C_{nm}$ have key information as to Stokes phenomena, and one can assign
the foilowing possible vaiues,

$|C_{nm}|=\{$
1 $z_{r\iota}$ is adjacent to $z_{m}$

0 $z_{n}$ is not adjacent to $z_{m}$

where adjacency is introduced to represent that there exists a common steepest descent
contour between the saddles $z_{n}$ and $z_{m}$ as one rotates the argument of 7 from 0 to $2\pi$

[18]. Information on Stokes geometry in this context is thus reduced to determining
the coeffienet $C_{nm}$ . The idea developed by Olde Daalhuis for differential equations,
and later applied by Howls for multiple integrals concernes how one derives a set of
algebraic equations to determine $C_{nm}[19,12]$ .

The idea using hyperasymptotic expansions to determine the Riemann sheet struc-
ture is available in our quantum propagator for the He’non map. What we have to
prepare is asymptotic coefficients for each ctassical solutions and a set of hypertemi-
nants. We have used an efficient algorithm to compute hypertaminants developed in
[20]. As for the asymptotic coefficients $T_{r}^{(n)}$ , we here explicitly express them in case of
2-step quantum propagator;

$I(q0, q_{3})= \int_{-\infty}^{\infty}\int_{-\infty}^{\infty}dq_{1}dq_{2}\exp[\eta S\langle q_{0},$
$q_{1},$ $q_{2},$ $q\mathrm{s}$ ) $]$ , (19)
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where the action functional is given as,

$S(q_{0}, q_{1}, q_{2}, q_{3})= \frac{1}{2}(q_{3}-q_{2})^{2}+\frac{1}{2}(q_{2}-q_{1})^{2}+\frac{1}{2}(q_{1}-q_{0})^{2}+cq_{2}+\frac{q_{2}^{3}}{3}+cq_{1}+\frac{q_{1}^{3}}{3}$ . (20)

This admits asymptotic expansion as

$I(q_{0}, q_{3})= \frac{\exp\{-2\eta(\alpha+\beta)/3\}}{\eta}T^{(n)}(\eta)$ (21)

with coefficients,

$T_{r}^{\langle k)}= \sum_{l_{1}+l_{2}+l_{3}+l_{4}=2r}\mathrm{i}^{r+1}\frac{\prod_{i_{-}^{-}1}^{4}R_{i}^{l_{i}}}{\prod_{i=1}^{4}\Gamma(l_{i}+1)}\frac{\Gamma((p+1)/2))\Gamma((q+1)/2)}{\lambda_{1}^{(p+1)/2}\lambda_{1}^{\langle q+1)/2}}$, (22)

where

$p=3l_{1}+l_{2}+2l_{3}$ ,
$q=2l_{2}+I3$ $+3l_{4}$ .

$\lambda_{i}\mathrm{s}$
’ are eigenvalues of the matrix;

$A^{(l_{\vec{\mathrm{L}}})}=(1+_{1}- \frac{q1}{2}(k)$ $1+_{2}- \frac{1}{q2}(k))$

and $R_{\mathrm{i}}s’\mathrm{a}\mathrm{r}\mathrm{e}$ quantities expressed using the eigenvector of $A$ .
An example we now examine has a set of the same parameter values taken in Fig.

1. In particular, we analyze the connection around a degenerated crossing point on
the ${\rm Re} q_{3}$ axis. As argued previously, it plays a key role in completing the Stokes
geometry, since the connection around the rest of crossing points cannot be fixed until
this degenerated crossing point is solved.

We have evaluated the coefficients $C_{nm}$ just on the Stokes curves between the saddles
$n$ and $m$ , and checked whether these saddles are on the sam $\mathrm{e}$ Riemann sheet or not.
The number of terms in each branch of the tree-tpye expansion (18) is given by the
following recursive rule $[19, 12]$ :

$N_{n}= \min_{m\neq n}\{2\eta|S^{(n)}-S^{(m)}|\}$

$N_{nm_{1}}= \max\{0,$ $N_{n}-\eta|S^{(n)}-S^{(m_{1})}|$

$N_{nm_{1}m_{2}}= \max\{0,$ $N_{nm_{1}}-\eta|S^{(m1})-S^{(m_{2})}|$

(23)

From this rule, we notice that if $|S^{(n)}-S^{(m)}|$ for a certain pair of saddles $n,$ $m$ is
sufficiently small as compared to those for a13 other pairs, only this $(n, m)$ pair actually

appears in the expansion (18), and the other branches contain null terms. In this case,
we easily evaluate the coefficient $C_{nm}$ by solving the algebraic equation in which only
$C_{nm}$ is an unknown variable. In order to see the adjacency relation between the saddle
$n$ and $m$ , we can use this fact: $|S^{(n)}-S^{(m\}}|$ can be adjusted as small as we wish by
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taking $q\mathrm{a}$ close to the turning point since $|S^{(n)}-S^{(m)}|=0$ just on the turning point
between the saddle $n$ and $m$ .

Indeed, as shown in Fig. 7, we could compute the coefficients $C_{nm}$ around the
degenerated crossing for the points close to the turning points. $C_{12}$ and $C_{23}$ concern
the Stokes curves emanating from ordinary turning points. According to the accuracy
estimation $[21, 19]$ , we can set $C_{12}=C_{23}=1$ unambiguougly. This result is consistent
with the fact that the corresponding Stokes curves emanating from ordinary turning
points are solid. Also, from the numerical calculated values for $C_{14}$ and $C_{13}$ , we can
assign $C_{14}$ and $C_{13}=0$ . These are consitent with the broken Stokes curves emanating
from virual turning points.

Even beyond the degenerated crossing point, if we limit ourselves to the ${\rm Re} q_{3}$ axis, it
is possible to evaluate the coefiicients. The results for $C_{14}$ and $C_{23}$ are again consistent
with predicted characters of ordinary and new Stokes curves. The Stokes curve between
2 and 3 does not change its character, but the new Stokes curve emanating from the
turning point $(1=4)$ changes from broken to solid as predicted.

Figure 7: The coefficients determining the Riemann sheet structure around the de-
generated turning point. The range of magnification and the parameter values are the
same as Fig. 3. In each box, we denote the coefficient between the saddle $\mathrm{i}$ and $j$ by $C_{ij}$

and it is evaluated at a subsequent point $q_{3}$ with ny specified in each box. Note that the
positions shown by arrows are not necessarilly correct points at which the coefficients
are evaluated.

Unfortunately. it is a highly laborious task to determine adjacency on the rest of
Stokes curves beyond the degenerated crossing point because we need to enter into
a very deep hierarchical level in the hyperseries (18). For example, let us consider a
certain point on the new Stokes curve $(1<3)$ , which is located on the opposite side
to the turning point $(1=3)$ with respect to the degenerated crossing point. As shown
in the diagram (8), in order to make $C_{13}$ appear in the truncated hyperseries, we have
to start the expansion either from the saddle $n=1$ or $n=4$ otherwise the truncation
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terminates without picking uP $C_{13}$ . However, if we choose $n=4$ as a base saddie,
$N_{4}=40$ results from the rule (23), then the expansion is truncated before appearing
$C_{13}$ . On the other hand, if $n=1$ is chosen as a base saddle, $N_{1}=110$ and the desired
$C_{13}$ certainly appears as the first level of hierarchy. However, the expansion in this
case continues uP to very deep levels since the paths reflecting between 2 and 3 many
times do not gain so many terms and therefore require very higher order hyperseries,
that necessarily invoives very higher order hyperterminants. The situation at the other
points on the same Stokes curves and also those on the ordinary Stokes curve $(1<2)$

is similar.

Figure 8: Action difference $|S^{(i)}-S^{(j)}|$ between the saddle $\mathrm{i}$ and $j$ . The values shown in
the diagram are the ones multiplied by $\eta=20$ . The number inside the circle represents
the number of saddle.

5. Concluding remarks
In the present note, we have studied Stokes geometry of quantized Henon map by follow-
ing recently proposed prescriptions based on the exact WKB analysis. As mentioned,

a primary motivation of our work originates from a recent success of complex semiclas-
sical description of quantum tunneling especially in the presence of chaos $[6, 10]$ . In
such a program, the understanding of Stokes phenomena is a crucial step to make our
analysis self-containd. The strategy we took first was to select out the simplest possible
chaotic system suitable for our purpose. The Henon map would be the best possible
candidate that meets such a requirem $\mathrm{e}\mathrm{n}\mathrm{t}$ .

The first task we presented here was to establish the definition of turning points

and Stokes curves, which are the most relevant ingredients to construct the Stokes
geometry. Fortunately, recent progresses of the exact WKB analysis are quite helpful

and has provided concrete procedures to do so and established several relevant facts.

We couid define Stokes graphs on the same line as the case of higher order differential
equations by deriving the differential operators acting on our multiple integrals. We
can show, though not explicitly presented here, that deriving differential equaitons is

equivalent to solving an initial value problem of the Henon map [15]. Virtual turning

points as well as new Stokes curves were then introduced.
With these settings, Stokes graphs for 2 and 3 step Henon map propagators were

drawn, and the corresponding Stokes geometry was discussed under the priciple of the



I38

univaluedness condition on given Stokes graphs. Several concrete exam ples studied in
the present paper provide unique geometry althouth, in principle, arbitrary combina-
tions of turning points and Stokes lines do not necessarily fix Stokes geometry uniquely.

In order to verify that resulting Stokes geometry is correct, hyperasymptotic expan-
sions were considered. A set of algebraic equations with controllable errors was used to
explore the Riemann sheet structure of the Borel transform or equivalently adjacency
relation of saddles of our multiple integrals. The results were entirely consistent with
those determined through the univaluedness condition.

We should mention that the present analysis is still afirst step towards our final
goal, and a Jot of significant but unsolved problems remain The most urgent issue
would be to make clear the relation between classical dynamics generating chaos and
the corresponding Stokes geometry In the classical side, stretching and folding is a
key mechanism generating chaos, and the number of folding points of the Lagrangian
manifold increases exponentially as afunction of time. The fblding points of the La-
grangian manifold manifest themselves as the turning points in Stokes geometry. Three
Stokes curves emanate from a simple turning point, and local Stokes geometry in the
vicinity of fblding points can be well understood within conventional arguments. How-
ever, because of the crossing of Stokes curves and resulting complicated Stokes graphs,
we cannot avoid taking into account global aspects of geometry, and it is difficult to
give an intuitive mapping relation connecting the structure of Lagrangian man垣 olds

and the corresponding Stokes geometry.
In order to go beyond it, analyzing Stokes geomety in the anti-integrable Iim it would

be the first target to be investigated. If the situation for the anti-integrable limit is
understood, one way to step forward is to $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ Stokes geom etry as a function of the
system parameter, and focus on bifurcation phenom ena $[22, 15]$ . In the horseshoe case,
all the turning points are located on the real plane, but as the nonlinear paremeter $c$

decreases, some of them fall into purely imaginary plane. Such an event occurs as a
result of coalescence of turning points. If we know how the Stokes graph changes when
such a bifurcation phenomenon occurs, the Stokes geometry in a generic parameter
value can be traced from the anti-integrable limit in principle. This is exactly the same
strategy to study the pruning of the horseshoe structure [23].
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