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Large-time behavior of spherically symmetric flow
for viscous heat-conductive gas
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Department of Mathematical and Computing Sciences
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1 Introduction

We consider the asymptotic behavior of a spherically symmetric solution to a polytropic
ideal model of a compressible viscous gas over an unbounded exterior domain 2 := {£ €
R™; €] > 1}, where n (> 3) is a space dimension. The motion of the polytropic ideal
gas is governed by the system of equations

pe+V - {pu) =0, (1.1a)

plue + (w- Viu} = pAu+ (u + p2)V(V - u) = VP(p,6) + pf, (1.1b)

evp{bs + (u-V)8} = kA — P(0,0)V - u + p2(V - u)? + 2u, D - D (1.1c)

in the Eulerian coordinate, where the mass density p, the velocity v = (ui, ..., u,) and

the absolute temperature 6 are unknown functions. In addition, P(p,8) = Rpf (R > 0)
is the pressure; f = f(£) is the external force; u; and p, are constants called the
viscosity coefficients satisfying pu; > 0 and 2u; + nus > 0; k and cy are positive
constants called the thermal conductivity and the specific heat at constant volume,
respectively; D = D(u) is the deformation tensor,

D=3 p? Lo L (0w Oy
D-D:=) Dj and Dy=: 5 T )

4,j=1

Our concern is the problem of which initial data (p,u,8){&,0) = (oo, s, 60)(£) is
given by the spherically symmetric function:

pol€) = fulr), (€)= Siolr), Oo(€) = o), (12)

where r = |¢] and each py, 1y and fip is a scaler function. We assume that the external
~ force f is also given by the spherically symmetric potential force,

fim -V = -gm(r). (13)

Under the assumptions (1.2) and (1.3), the solution (p, u, §) to {1.1) becomes spherically

symmetric since (1.1) is rotationally invariant (see [6]). Namely, a solution to (1.1) is
in the form of

p(’fat) = ﬁ(?", t)? u(§,t) = %ﬁ(r: t)’ 9(§1t) = é(?", t)‘ (1'4)



For simplicity, hereafter, we abbreviate the symbol “*” to express spherically symmetric
functions. Therefore, the equations for the spherically symmetric solution (p,u, 0) is

7,,n,——l r
pe + %ﬁ_@u =0, (1.5a)
n—1
p(ut + ’U»’ll,.r) = H (%@) - P(P, 6‘)? - PUm (15b)
r=16.), =1y, n=ly). 2
cy plbs + ub,) = 5(7:1—)- — P(p, 9)(2“,_1) + p2 (%) + 2pyul

'LL2
+ 2(71 — 1)],&1;‘—2, (15(3)

where p := 24, + iz is a positive constant. The initial and the boundary conditions are
prescribed as

p(r,0) = po(r), u{r,0) = uo(r), 6(r,0) = 65(r), (1.6)
u(1,t) =0, 6,(1,t)=0. (1.1

It is also assumed that the initial data satisfies

Teullfw po(r) > 0, Tel[Tll,Eo) bo(r) >0, (1.8)
}E&(PO(T),HO(TL Oo(r)) = (psrus,04), P+ >0, 04>0, (1.9)

where py,uy and 6, are constants. Moreover, the initial data (po,uo, o) is supposed
to be compatible with the boundary data (1.7):

uo(1) =0, 86, (1) =0, (1.10a)

The aim of the present paper is to show that the solution to the problem (1.5), (1.6)
and (1.7) converges to the corresponding stationary solution as time goes to infinity for
an arbitrary initial disturbance belonging to H! Sobolev space. The stationary solution
((r), @(r), 6{r)) is a solution to the equations (1.5) independent of time ¢ and satisfles
the same boundary and spatial asymptotic conditions (1.7) and (1.9). Therefore, the
stationary solution verifies

= 0. (1.10b)
r=1

(Tn_lf}&)r
| s 0, (1.11a)
—— o~ (Tn—iﬂl)r - ~
plile = | —omp— ) P(p,6)r — pUr, (1.11b)
= ,r.n—lé‘r , - rn——l,& , ,rn—l,a , 2 _ ,a2
ey pull, = ﬁ‘(“';;v,__l‘l' - P(P,H)———( 7,,]_1) + p2 (*—”‘”( r*"~1) ) + 2% + 2(n — 1)M1T—2=

(L.11c)
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w(1)=0, 6,(1)=0, lim (5(r), a(r), 0(r)) = (ps, us,04). (1.12)
Solving the problem (1.11) with (1.12), we obtain the stationary solution explicitly as
1 .
5(7") = P4 €XP ———-U(?") ’ ’fb(?") =0, 6(7"> = 5-}—7 (113)
RO,
where we have assumed that

lim U(r) = lim/ Us(n)dn + U(1) = 0 (1.14)

T=—00 T—00 1

without loss of generality. Here, let us note that the stationary solution is a constant
(p4,0,8.) if the external force is equal to zero, that is, U,(r) = 0.

The main result in the present paper is stated in the next theorem, which means
that the stationary solution (1.13) is time asymptotically stable. This stability theorem
does not need any smallness assumptions on the initial data. Moreover, due to the
condition (1.16), if the external force U, is attractive, i.e., U.{r) > 0, it can be arbitrary
large. The typical example allowing this assumption is the case that the external force
is given by a gravitational force of the sphere.

Theorem 1.1. Suppose that the initial data (po,ug, Bo) satisfies

rT (0o — B)y 7T ug, 77 (60— 04), 7% (po = P)ey 7T gy, 777 B € LA(1, 00),
(1.15a)

po € BY[1, 00), (up, By) € B*+[1, 00) (1.15b)

for a certain constant o € (0,1). Then there erists a constant § > 0 such that if the
external force U, € C[1,00) N B?[1, 00) satisfies

—§ < U(r) (1.16)
for an arbitrary r > 1, then the initial boundary value problem (1.5), (1.6) and (1.7)

has a unique solution (p,u,8) satisfying

Ti=-1 nu—1 n—1

Tﬁ%l(p - ,5)7 T%}-u’ TT(G - 9—{-)’ TT(}O— f))'ra TTU")‘) T‘%er S O([O» T];Lz(l,OO)),
(1.17a)

p € BH112(1,00) x [0,T]), (u,6) € B ([L,00) x [0,T))  (L17b)

for an arbitrary T > 0. Moreover, the solution (p,u,8) converges to the corresponding
stationary solution (1.13) as time tends to infinity:

tlim sup {(p(r,t) — p(r),u(r,t),8(r,t) — 6.)| = 0. (1.18)
' refl,00)
Remark 1.2. The same result as in Theorem 1.1 is proved for the case P(p,0) =
Rp*0 (o > 1) in place of P(p,6) = Rpf. It is slightly more general than the ideal
polytropic gas. If o > 1, the stationary solution (3, @, 8) is given by

a—1
OZR9+

/(1) .
ﬁ(r):(pi‘f“r U(r)) LA =0, () =0,



which is proved similarly as the derivation of {1.13). The difference of the proofs of the
stabilities for the cases @ = 1 and a > 1 appears in the derivation of the upper bound
of the specific volume.

Remark 1.3. For the Dirichlet boundary condition on the temperature, the same result
as in Theorem 1.1 holds if §(1,¢) = 8, is posed in place of 6,(1,¢) = 0 in (1.7).

Related results. The asymptotic behavior of a solution to the compressible Navier-
Stokes equation (1.1) is first considered by Matsumura and Nishida in [12], where they
prove the solution, which is not necessarily spherically symmetric, converges to the
corresponding stationary solution as time tends to infinity in the exterior domain of
R® under the smallness assumptions on the initial data and the external force. For a
large initial data, Itaya in [6] shows a time global existence of the spherically symmetric
solution to (1.1) on a bounded annulus domain. After this research, many results are
obtained for the spherically symmetric solution to (1.1) on a bounded annulus domain
with large initial data. For example, Matsumura in [11] considers isothermal flow
and proves that the stationary solution is time asymptotically stable for an arbitrary
external force. Here, he also obtains a exponential decay rate.

For the spherically symmetric problem in an unbounded exterior domain, Jiang in
[7] shows the time global existence of the solution to (1.1) without the external forces,
i.e., f = 0. In the paper {7], the asymptotic state is not obtained completely. Precisely,
it shows that, for n = 3, |[u(t)||z» — 0 as t — oo, where j is an arbitrarily fixed
integer greater than or equal to 2. Thus, the asymptotic behavior for this problem is
remained open. This open problem is solved by Nakamura, Nishibata and Yanagi in
[16] for the isentropic flow. In the present paper, we consider the same problem for the
ideal polytropic gas to solve this problem.

Notation. For a non-negative integer [ > 0, H '(Q) denotes the I-th order Sobolev
space over () in the L? sense with the norm |} - . Wenote H® = L2 and || - || =1 - [lo-
For a € (0,1), B*(Q) denotes the space of bounded functions over  which have the
uniform Holder contimuity with exponent . For an integer k, BF2(Q)) denotes the
space of the functions satisfying diu € B(Q) for an arbitrary integer ¢ € [0, k]. For
a domain Qr C [0,00) X [0,T], B*#(Qy) denotes the space of the uniform Holder
continuous functions with the Holder exponents « and B with respect to z and {,
respectively. For integers k and [, BE+e+8((Qr) denotes the space of the functions

satisfying dLu, &u € Bo#(Qr) for arbitrary integers ¢ € [0, k] and j € [0,1].

2 TLocal existence in the Lagrangian coordinate

2.1 The System in the Lagrangian coordinate

To prove Theorem 1.1, we derive the a priori estimate of the solution by employing
the energy method. To this end, it is convenient to transform the equation (1.5) in
the Eulerian coordinate into that in the Lagrangian coordinate. The transformation
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from the Eulerian coordinate (r,%) to the Lagrangian coordinate (z,?) is executed by
the transformation

, ;
z :/ " p(s,t)ds, T, = e Ty = U, (2.1)
1

where v := 1/p is the specific volume. Using (2.1), we deduce the system (1.5) to
v = (r" g, (2.2a)
n—1
up = pr ((L——TL—)%) — " lp(v,6), — Uy, (2.2b)

v
()

7"271—292 n—1 n—2,,2 B
cvl =k ” —p(v, ) (r" " u) + —2(n — D (" *u®)s, (2.2¢)

where p(v,0) := Rv~'6. The initial and the boundary conditions are

(U,u,@)(ﬂ’,‘,O) = (U01u0160)(x)7 Up = 1/1007 (23)
w(0,£) =0, 0,(0,) =0. (2.4)

Owing to (1.8) and (1.9), the initial data (vo, %o, 6o) satisfies

j inf 0 2.5
. )vo(fﬂ) >0,  inf Oo(z) > 0, (2.5)
f}iﬂ;.o(vo,’lm,eg)(x) = <U+:0’9+)> Uy 1= 1//)-1‘- (26)

Since the variable r = r(z, t) is a function of (z, ), the stationary solution (r) := 1/p{r)
depends on (z,t) in the Lagrangian coordinate. Thus, let

To(x) := 1/p(ro(z)), 7ro(z) :=r(z,0).

It is also assumed that the initial data is compatible with the boundary data (2.4),
that is, (1.10) holds. The stability theorem of the stationary solution {(@,%,6) in the
Lagrangian coordinate is stated in the next theorem.

Theorem 2.1. Suppose that the initial data {vo, ug, bo) satisfies
vo — T, g, Oo — B4, T8 (Vo — To)ay 7B "uoe, 74 Boa € L(0,00). (2.7)

Then there exists a constant & > 0 such that if the external force U, satisfies Uy €
C'1,c0) and (1.16), then the initial boundary value problem (2.2), (2.3) and (2.4) has
a unique global solution (v,u,8) satisfying

V=0, u, B —0p, ™ v —D)g, v ug, v, € C([0, 00); L*(0, 00)). (2.8)

Moreover the solution (v,u,0) converges to the stationary solution (9,0,6.) as time t
tends to infinity:

lim sup |(v(z,t) —d(r(z,t), u(z,t),0(z,t) — 6.)] = 0. (2.9)

t—oo z€{0,00}
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The initial condition (2.7) holds owing to (1.15a). Because several coefficients in
(2.2) are unbounded over the domain (0, o), we first consider the approximate problem
restricted in the bounded interval (0,m) for a positive integer m. Following ideas in
[2, 7], we define the “cut-off-function” ¢m € C3[0, 00) by

m
1, for 0Lz < —
dm(T) = ’ -7 =2 2.10

(@) 0, for m<uz, ( )

0< du(m) <1, 10idm(@)] < ;c;- (i=1,2,3), for T<z<m,

where m is an arbitrary positive integer. We consider the equations for an unknown
function (Vym, Um, 0m) in the bounded domain (0,m):

Umt = (T?nflum)m; (211&)
n—1
Ut = P (M) — " (U, Om)e — Unr, (2.11b)
m z
2n—29mx n-—1 m 2
S (@.__) Bl B e T 9 D)
(2.11c)
" with the initial and the boundary conditions
('Uma Ums Q'm)(fcs 0) = (U'mOa Um0 9m0)(-’l3>, (212)
um(0,2) = U (M, 1) =0,  G1nz(0,1) = Oma(m, t) = 0, (2.13)
where the initial data (Vmo, mo, Omo) is defined by using ¢, as
Umo(@) = (v0(z) — To(2))Pm(z) + To(2),
Umo(2) = uo(2)Pm(T),
9m0($) = (90(93) - 9+)¢m($) + 04
In the equations (2.11), the functions 7, and Tmo are given by
i/n

rm(z, T) = {1 + n/om U (¥, 1) dy}l/ﬂ, rmo(®) = {1 +n /: Umo(Y) dy}

In order to state the local existence theorem precisely, we define the function space:
XS’@’E,&?’Q(O, T) =
{(v,u,0) | (v—70,u,0— 6.) € C°([0, T}, H'(0,m)), s, 02 € L0, T; H*(0,m)),
(v~ 3,u,8 = 0)D)]lipm S D for € [0, 77,
v <vlx,t) <0, 8 <6(z,t) < g for (x,t) € [0,m] x [0,T]}
for constants D > 0,5 >2>0,0 >8> 0and T > 0. The norm - l|1,0m is given by
(v —0,u,60 = 03 1nm = (v =10, u, 8~ 04, o = D)as g, v 02| L2 0m)-

- A time local solution to the initial boundary value problem (2.11), (2.12) and (2.13) is
established by employing the standard iteration method.
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Proposition 2.2. For arbitrary constants D > 0, 7 > v > 0 and §>6>0, there
exists a positive constant T = T(D, 7, v, 8, 8) such that if the initial data (’Umg,umo, Bimo)

satisfies [|(Umo = 0, Umo, Ormo 9+)l|1,m < D, v < vmolz) <0 and § < Omolz) <
0, then the problem (2.11) (2.12) and (2.13) has a unigue solution (Vm,Um,0m) €
X3bao/229.0200 T)-

2.2 A priori estimate

In this subsection, we discuss the a priori estimate, uniformly in m, in H 1.Sobolev
space for the solution (Vm,m,0m) € XP 5, (0, 7). This estimate gives the exis-
tence of & solution to the problem (2.2}, (2. 3} and (2.4) over the unbounded domain
(0, 00). Hereafter in this subsection, for simplicity, we omit the subscript m and denote
(Vi U Oy ) DY (v, ,0,7).

We define the energy form £ as

1 g 6
£ = §u2 + (v, D) + cvby (@: —~1—log [9:) , (2.14)
U (v, D) 1= p(D, 04 ) (v — ) — (v, 1), (2.15)
o(0,5) = / p(€,0,) d€ = Rd, log 2. (2.16)

The following lemmas are proved by using the standard energy method. For details,
see [15].

Lemma 2.3. For a solution (v,u,0) € XT, 5,(0,T) to (2.11), (2.12) and (2.13),

0 22 2 ,,.211-262 ,
—_ < 2.
/0 (t) x+c]/ Grzu + U T dz dr / E(0 (2.17)

where ¢ is a positive constant depending only on the initial data.

(0,T) to (2.11), (2.12) and (2.13),

Lemma 2.4. For a solution (v,u,0) € X 4,

m o, .4 _ 6 2 t pm
/ Wk 0-6.) dr + // wul + 02 dr dr < Cpy, (2.18)
a 0J0

7,-211,—2

where Cs, 18 a positive constant depending only on U, v and the initial data.

Lemma 2.5. For a solution (v,u,0) € XT'. 5,(0,T) to (2.11), (2.12) and (2.13),

m i pm
/ 02 dx + /f (1 + 0)p2 dz dr < Cyy, (2.19)
0 0J0
m t pm
/ ul dz + // rin=2y2 dydr < Cyl(0+1), (2.20)
0 0J0
T t pm
/ 62 dz + / / r2n=202_dzdr < Cs,(0 + 1)% (2.21)
0 a0J0



Using the estimates (2.20) and (2.21), we show the uniform positive bound of u and

0 in the next lemma. Thus, we see that the estimates (2.20) and (2.21) are independent
of 6.

Lemma 2.8. For a solution (v,u,0) € X7, 5,(0,T) to (2.11), (2.12) and (2.13),
lu(z, )| < Cos (2.22)
0 < ce” @2+ < 9(z,1) < Cyy (2.23)
for (z,t) € [0,m} x [0,T].
Lemma 2.7. For a solution (v,u,0) € Xg,ﬁ,g,g,Q<O’T> to (2.11), (2.12) and (2.13),

/ r=22 4?22 4 202 dy < Coy. (2.24)
0

Utilizing the estimates obtained in the above lemmas and letting m — oo, we have
the local solution (v, u, 8) to the problem (2.2), (2.3) and (2.4) satisfying

v=, u, 0—0s, 7V = D)g T g, 70 € C([0,T; LA(0, 00)),
Oay T gy N, " WU, r-2g,, € L*(0,T; L*(0, c0)).

Moreover, we have the energy estimates over an unbounded domain (0, o) as

oogd 4 opoo g pin—2 , anwzezd 4 o ]
L < 95,

/0 :1:+/0/0 97’2u+ o Uz T gz teOTAT S (2.25a)

[ s 0 g

0

t poo
- // Soi + T2n_2u§:x + T4n‘~492m dzdr < C?”'—‘-i' (225b)
0J90

3 Asymptotic stability of the stationary solution in
Lagrangian coordinate

3.1 Positive bound of the specific volume

In this subsection, we derive the pointwise positive bound of the specific volume v(z, t)
uniformly in t. We prove this bound by using the basic estimate (2.25a) and the
representation formula of v(z,1).

Proposition 3.1. Let (v,u,6) € X3, 5,0, T) be a solution to the problem (2.2), (2.3)

)v)y’
and (2.4). Then there exist positive constants ¢ and C depending only on the initial data

such that if the external force U, satisfies

[ ad

~bp <UL, b=

(\/§D +v+e?ﬁff—+)‘l , (3.1)

o
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where M is a positive constant satisfying sup,, U(r) < M, then the specific volume
v(z,t) satisfies
c<v(z,t) <C for (z,t) €[0,00) x [0,T7]. (3.2)
To prove (3.2), we derive the representation formula of the specific volume v(z, t).
To this end, we define the “cut-off-function” n{z):

1, for 0 < z < ke,
nz) =< k+1-— z, for ke <z < (k+ 1)e, (3.3)
0, for (k+ e <z

fore>0and k=1,2,....

Lemma 3.2. Suppose that the same assumptions as in Proposition 3.1 hold. Then the
specific volume v(z,t) is ezvpressed by the fomula

4 £ fo o(z, 7)8(z, T)dT
vt = A (m) ( )
forz € [(k— 1)e, ke) and t € [0,T), where
As(z,t) = A1) Az, 1) Az, 1),

(k+1)e n—1 t oo 2
AS(t) —exp( // —dmdr) Al(z,t) = exp(————// —;ndxdr),
ke u 0Jz T
t poo
A2(z,t) := exp (lf/ g:lndmdf),
klodz T
B 1 ) ” ug 1/(k+1)5 E
B.(z,t) == exp(;/z (an - F)n dx : ), log ~ dz ). (3.5)

0 GE

(3.4)

Owing to the estimate (2.25a) with the aid of the Jensen inequality, we have the
estimates

a+e a-+te
c < f vz, t)dz < C., ¢ < / 8(z,t)dz < C; (3.6)

for an arbitrary constant a > 0. Substituting (3.6) in (3.4), we obtain the desired
estimate (3.2). For details, readers are referred to [15}.

Substituting the pointwise estimate (3.2) in (2.25b), we obtain a uniform a priori
estimate:

/o (V=02 42+ (0 —0,.)2+ 72y = 5)2 L r¥22 4 r? 292 da

it '11;2 e n— 2n— n—
+/0/0 3 @2 iy g o2 g 22 AR dedr <O (37)

The estimate (3.7) yields the existence of the solution to the problem (2.2), (2.3} and
(2.4) globally in time by the standard continuation argument. Moreover, we see the
convergence (2.9) holds. Finally, by employing the Schauder theory for the parabolic
equations, we have the estimate of the solution in the Hoélder space. By virtue of the
Hélder continuity of the solution, we translate Theorem 2.1 into that in the Eulerian
coordinate. These procedures show the convergence (1.18).
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