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Stability of 1-dimensional stationary solution
to the compressible Navier-Stokes equations
on the half space

BRJE BT (Yoshiyuki KAGEI)
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1. Introduction

This article is concerned with the compressible Navier-Stokes equation
on the half space R, (n > 2) :

Oip + div (pu) = 0,

(1.1) O(pu) + div (pu ® u) + Vp(p) = pAu + (p + ¢/ )Vdivy,

p(p) = Kp".
Here R} = {z = (21,2'); ¢’ = (23, ,za) € R*" L, 3y, > 0}; p = p(z,t)
and v = (ul(z,t), -+ ,u™(z,t)) denote the unknown density and velocity,

respectively; u, ¢/, K and +y are constants satisfying p > 0, %;H—,u’ >0, K>0
and v > 1. We consider (1.1) under the initial and boundary conditions

ulfﬂlzﬂ = (ug707' ot 70)3

(1.2) p=py, u—(ud,0,---,0) (21— o00),
(P, 1)) e=0 = (po, uo),

where p,, u} and u} are given constants satisfying p, > 0 and u} < 0.
Kawashima, Nishibata and Zhu [4] investigated the conditions for p,,
v} and ui under which planar stationary motions occur. Namely, they
showed that under suitable conditions for p;, u} and u} there exists a
stationary solution (£,%) of problem (1.1)-(1.2) in the form p = p(x1),
% = (u'(21),0,-- - ,0). Furthermore, it was shown in [4] that (5, %) is asymp-
totically stable with respect to small one-dimensional perturbations, i.e.,



perturbations in the form p — 7 = p(z1,t) — p(z1), v — % = (u'{z1,t) -
#(2,),0,--- ,0), provided that |u} — u;| is sufficiently small.

In this article we will give a summary of the results in [3], where (7, %) is
shown to be asymptotically stable with respect to multi-dimensional pertur-
bations small in H*(R"), provided that {u} — 3] is sufficiently small. Here
s is an integer satisfying s > [n/2] + 1.

2. Stability Result

We first consider the one-dimensional stationary problem whose solu-
tions represent planar stationary motions in R}. We look for a smooth
stationary solution (7,%) of (1.1)~(1.2) of the form § = p(z1) > 0 and
%= (#(z1),0, - ,0). Then the problem for (7, %") is written as

(Pu)e; =0 (z1 > 0),
(FE))ey + P(P)ay = Qu+ W)L, (21 >0),

ﬂiwlio - ullﬂ

(2.1

P P+ ot — ui (1 — 00),

where subscript z; stands for differentiation in ;.

Kawashima, Nishibata and Zhu [4] investigated problem (2.1) and gave
a necessary and sufficient condition for the existence of solutions. Following
[4], we introduce the Mach number at infinity defined by

|u |

VP (ps)

M, =

We also set
§ = )uiL - ),

which measures the strength of the stationary solution.

Proposition 2.1.([4]) Letul < 0. Then problem (2.1) has a smooth solution
(5,4 if and only if My > 1 and weuy > up, where W, is a certain positive
number. The solution (p,u') is monotonic, in particular, u*(z4) is monoton-
ically increasing when M, = 1. Furthermore, (p,u') has the following decay
properties as £1 — 00.

() If My > 1, then for any nonnegative integer k there egisis a constant
C > 0 such that

O (5 = i, B — k)] < CBe™™

for some positive constant o.
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(ii) If M, =1, then for any nonnegative integer k there exists a constant
C > 0 such that

5k+1

k [~ e
106, = pro ¥ =) < O e

Our interest is the stability properties of (p,u), @ = (¥*,0,---,0), with
respect to multi-dimensional perturbations. To state our stability result we
introduce function spaces. For 0 < T < o0 and o € Z, 0 > 0, we define the
Banach space

Z°(T) = X*(T) x Y°(I)",

where -
X°(T)=()C([o,T); H™*)
F=0
and
= _
Y(T) = X°(T)n () H(0,T; HoH=%).
7=0

Here H™ = H™N H} when m > 1 and H™ = L? when m = 0. The norm of
Z°(T) is defined by |Ul|zery = |$llxo(r) + |¥]ly=(r) for U = (¢,%), where

T 1/2
ol = s, 600, ey = (Il + [ T2 )

with

k

1/2
(@) = (Z llf?fcb(t)lﬁzo-zj) , @) = lle®)]lg)-

=0
We simply denote by Z%, X7 and Y° when T = oco.

Theorem 2.2. Let s be an integer satisfying s > [n/2] + 1 and let (p, %)
be the solution of (2.1). Then there exists a positive number & such that
if Juy — ul| < &, then (p,%) is stable with respect to perturbations small
in H*(R") in the following sense: there ezist &g > 0 and C > 0 such that
if the initial perturbation (p(0) — p,u(0) — @) € H® and satisfies a suitable
compatibility condition, then perturbation (p(t) — p,u(t) — U) ezists in Z°,
and it satisfies

1(p(t) = B, u(t) — @)

ae < CJ(p(0) - 5,u(0) — 4}

Hs



for allt > 0 and

lim [8,(p(t) = 7y u(t) = )+ =0,

t—=co

provided that ||(p(0) — p,w(0) — T) | < €o. In particular,

lim [j(p(t) = 7, u(t) = @)lleo = 0.

Remarks. (i) The stability of (7,d) was firstly investigated in [4] and they
proved Theorem 2.1 for n = 1, i.e., (p,u) is stable with respect to small
perturbations in the form p — p = p(x1,t) — p(z1), u — U = (w1, ) —
ut(z1),0,- -+ ,0).

(ii) We here consider large time behavior of solutions of (1.1)-(1.2) only
under the conditions for py, ui and u} given in Proposition 2.1. As is easily
imagined, if one of these conditions would be disturbed, then complicated
phenomena might occur. In fact, Matsumura [5] proposed a classification
of all possible time asymptotic states in terms of boundary data for one-
dimensional problem. Some parts of this classification were already proved
rigorously. See [5].

3. Outline of the Proof

Let us rewrite the problem into the one for perturbations. We set (¢, 0) =
(p — p,u — ). Then problem (1.1)~(1.2) is transformed into

Oy +u -V + pdivey = F,
p(Op +u- Vi) + Iy + p'(p)Ve = G,
, Ploso = 0; (¢,9) = (0,0) (81— 00),

(#,%9)]e=0 = (do,0)

(3.1)

where

Ly = —plp — (p+ p)Vdive,
F=—y.Vp— ¢divi,
G = —(py + 1) - Vii — (¢'(p) — P'(P)) VP

The proof of Theorem 2.1 is thus reduced to showing the global existence
of solution (¢,%) of (3.1) in the class Z°, where s is an integer satisfying
8> [n/2]+ 1.
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Let us firstly consider the local existence of solutions. The local existence
can be proved by applying the result in [2]. In fact, problem (3.1) is a
hyperbolic-parabolic system satisfying the assumptions in [2] that guarantees
the local solvability in H® for s satisfying s > [n/2] 4 1. Therefore, we obtain
the following

Proposition 3.1. Let s be an integer satisfying s > sy = [3] + 1. Assume
that the initial value (¢, o) satisfies the following conditions.

(a) (¢o,%0) € H® and (¢o,y0) satisfies the S-th order compatibility condi-

tion, where § = [#52].

(b) infs po(z) > —7 infs, plz1).

Then there exists a positive number Ty depending on ||(¢o, o)l g= and
inf,, p{w1) such that problem (3.1) has a unique solution (¢,9) € Z*(Tp)
satisfying ¢(x,t) > —1 inf,, p(z1) for all (z,t) € R x [0,Tp]. Furthermore,
there exist constants C > 0 and v > 0 depending on s, |[(¢o,%0)| z- and
inf,, p(z1) such that

“(¢7 ")D)HZ"’ (To)y = C{l + H(¢0:"/)O ”HS} “ ¢0>'¢’0 ”Hﬂ

We next derive a priori estimates to show the global existence of solution.
We define E,(t) and D,(¢) b

B, = (o (I 10 + (20N )

0<r<

and

( ¢ 1/2
(] 10018 + Wlrcolia-nyar) ™ tox =0,

t
Dolt) = (| 10utle + ol

H0ed| byo-r + |[Br ] E_y + |[Br20]]2_ d‘r) 2 for ¢ > 1.

\

In what follows we will denote the solution (¢,%) and the initial value
(¢0,%0) by
U= ((b:@b)ﬁ Up = (¢0)¢0)‘

Theorem 2.2 follows from Proposition 3.1 and the following a priori esti-
mate.



Proposition 3.2. Let U = (¢,¢) be a solution of (3.1) on [0,T]. Assume
that E,(t) < 1 for allt € [0,T]. Then there ewist constants go >0 and C' > 0,
which are independent of T > 0, such that

B, (1) + Dy(t)* < Cl U %
for all t € [0, T, provided that ||Upligs < €o-

Outline of the proof of Proposition 3.2

As in the one-dimensional problem studied in [4], the point in the proof
of Proposition 3.2 is to derive a suitable bound for the L? norm of (¢,7).
Due to the fact that the stationary solution has no shear components, one
can obtain the L? bound in the same way as in the one-dimensional case in

[4].
Proposition 3.3. There ezists a constant M > 0 such that if
(3.2) E(t) s M
for allt € {0, T, then
Eo(t)? + Do(t)* < C{|| Vo3 + Ro(t)’},

uniformly in t € [0,T), where C > 0 is independent of T and

Ro(t)? = - / (- Vi, ) + (p(e) — () — P/ ()8, divd) + (%qz»w, )} dr.

Proof. As in [4], we introduce an energy functional based on the energy
function defined by

ot = ot + 30, 20 = [ B

Note that ®(p) is a strictly convex function of %. We then define

pE = p{%li/fl2 +%(p, 0},
where
¥ — 906) -2~ 020 (5 - 3)
_ /‘” p(Q) = P() 4.

— e

7 ¢?
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As shown in [4], p¥(p,7) is equivalent to |p — p|? for suitably small [p — 7},
and hence, there are positive constants cp and c¢; such that

(3.3) cg'|U] < pE < eolU],

where U = (¢,4), ¢ = p— p with |$] < 1.

Since H® < L* we can find a number M > 0 such that if E,(t) < M
then [|¢(t) ||l < c1 and inf, ¢(z,t) > —1inf,, 5la;) for all ¢ € [0, T7].

A direct calculation shows

H

:pE) + div (puE + (p(p) — p(AWY) = pdiv (5] VYP) + (s + )div (Yeliv )

—u| VP — (p+ p)(dive)? + Ra,
where Ry = Ro(x,t) is the function defined by

Ro = =p(s - V2) - = (ol0) = p(7) ~ 7 (O) T = < - L

Proposition 3.3 now follows from this identity and (3.3). This completes the
proof. '

To estimate higher order derivatives, we rewrite (3.1) as
Op+u-Vo+ pydivy = f,
O+ I+ HEAVh = g,
(3.4) Y]z=0 =0,
(4,¢) = (0,0) (31 = o0),
(¢,%)]t=0 = (B0, %0)

where [t) = —plAgp— (u+p"YVdivy, f = F+fand g=—u Vi+5+g. Here
f=—gdivy, f = —(F—py)dive— - Vp— gdivii, and § = g0 +§® +3,
7=0W +3® +3§® with

99 =Plo,p)¢Ve, 3% = 1oLy, 39 =~y Vy,

Po+

30 = Plp, p)(F — p+)Vo + Plp, )6V,
1 1

7@~ (1% 0

g = — Lu ¢ + — - L H
7 (L) o (F—ps) L)

/v(g e ——-ip V'U,

Plp1, p2) = fo 0"(ps + 0(p1 — p2)) d6, Plpy, po) = 22 — Elevea)

p1P2 1]




Before proceeding further, we introduce some notations. We define N, >

0 by
N = [P+ IG1E + [- VolR o

+ > /;afa,g,afa;s’wndr

1L2j+a!|<o

_ / (divep, 1624 P)| dr

1<2j +ej<o 0

+ D / iz, - Vigli.ar,

2j+al<Lo
where [C, D] denotes the commutator of C' and D

IC,D]=CD — DC.
We also define R, > 0 (¢ > 1) by

Rotf = Roalf+ [ IFVE+ ]G + |- VAR

+ > f (89027, D202 ¢)| dr

125+ |<o

+ 0y /]dwu 169024[%)| dr

125+ |aj<o

. j lpiosei, - Vig|3, dr,

2j+la|+i<o—1

Proposition 3.4. Let 1 < ¢ < s. Assume that (3.2) holds.

exists a constant C > 0 such that

E, ()% + D,(t)? < C{||Uo|} + Ro(t)* + N, (t)?}.

To prove Proposition 3.4 we introduce a notation

1/2
ol = (}j nasvn%) .
fal=k

304/12—8]6;1]

We also define T} o by

Then there



Proposition 3.4 follows from the following inequalities.

Proposition 3.5. Let o be a nonnegative integer satisfying o < s.

(i) Let j and o satisfy 2§ + |&/| = 0. Then
¢
150 U ()13 +[ﬂ LY 2T 0ply dr < C{I Vol + Ro(8)® + No(t*)},

where | LY*pl[3 = p| Vil + (u+ p) | divo]|3.
(i) Let j and o satisfy 2j + |&/| =0 — 1. Then

¢
PPl + [ ITosablfdr < nDo0? + O (0

for any n > 0. Here and in what follows N, (t)? denotes
No () = |Uo)l4e + Eoo1(£)? + Dye1(t)? + Ro(t)% + N,(t2).

(iif) Let j and o satisfy 2j + |o/| + £ =0 — 1. Then
t
15D SO + ] T30 )2 dr

< WDU(t)2 + Cn{Na(t)2 + /0 ”ﬂ'—!—l,a’aﬁl?ﬁ“g + Hawaw'Tj,a'@ﬁﬂbll% dT}

for any n > 0.

(iv) Let j and o satisfy 2j + |o/| + € =0~ 1 and set % =0p+u-Vo.
Then

/ [Ta Dt ]£+1 dr < ’I'ID (t +C7J{N / ”71.?-{“1 af 1",[7”%‘}‘”8;1;61! j,a’aﬁ;l'ﬂb“g dT}

for any n > 0.
(v) Let j and o satisfy 2j + |o/| + £ =0 — 1. Then

/ IT; ,Q’WHZ + IT,a’qﬁlHl dr < C/ {|T+1,00 “ablz + | Tj e f!£+1 + !T:fx' gf §+1

Ty o (@ - V)2 + 1T 00512 + (T30 513} dr

(vi) Let j and o satisfy 27 +1 < o. Then

187 ()13 + /0 16912912 dr < D, (t)? + CN(t)?



for anyn > 0.

Proof. Proposition 3.5 can be proved by the energy method as in [1, 6]. The
details can be found in [3].

It remains to estimate R, and N,. To estimate Ry we will use a special
case of Hardy’s inequality

1 1
— viy) d
- /O (y) dy

In a similar manner as in [1, 4], applying (3.5) and the decay estimates
in Proposition 2.1 together with the Gagliardo-Nirenberg inequality, one can
show that

(3.5)

< Cllvllz2(0,00)-
L2(0,00)

Ro(t)? < C{6Do(t)* + Es(t)Ds(t)"}-

Here we note that we also use the monotonicity of @*(z1) when My = 1.
For ¢ > 1, one can show, as in [1], that

Ry (t)? + Ny ()2 < C{Dy-r(t)* + 5D (t)? + Bo(t)Ds(t)*},

provided that E,(t) < min{M,1}. Therefore, it follows that if J is sufficiently
small and E,(t) < min{M, 1} then

Ea(t)? + Da(t)* < C{|| Vol + E«() Ds(£)°},
and hence, we conclude that
Eq(t)* + Ds(t)* < C|Usllz,

provided that ||Up|| g is sufficiently small. This completes the proof of Propo-
sition 3.2.
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