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Summary— We say that an encryption scheme or a signature scheme provides anonymity
when it is infeasible to determine which user generated a ciphertext or a signature. To con-
struct the schemes with anonymity, it is necessary that the space of ciphertexts or signatures
is common to each user. In this paper, we focus on the techniques which can be used to
obtain this anonymity property, and propose a new technique for obtaining the anonymity
property on RSA-based cryptosystem, which we call “sampling twice.” It generates the uni-
form distribution over [0, 2%) by sampling the two elements from Zy where |N | = k. Then, by
applying the sampling twice technique, we construct the schemes for encryption, undeniable
and confirmer signature, and ring signature, which have some advantages to the previous
schemes.

Keywords: RSA, anonymity, encryption, undeniable and confirmer signature, ring signa-

ture.

1 Introduction
1.1 Background

We say that an encryption scheme or a signature
scheme provides anonymity when it is infeasible to
determine which user generated a ciphertext or a
signature. A simple observation that seems to be
folklore is that standard RSA encryption, namely,
a ciphertext is z® mod N where z is a plaintext
and {N,e) is a public key, does not provide ano-
nymity, even when all moduli in the system have
the same length. Suppose an adversary knows that
the ciphertext y is created under one of two keys
(No,e0) or (N1, e1), and suppose Ny < Ny. If
y > Ny then the adversary bets it was created un-
der (N, ey), else the adversary bets it was created
under {Ng,eg). It is not hard to see that this at-
tack has non-negligible advantage. To construct
the schemes with anonymity, it is necessary that
the space of ciphertexts is common to each user.
‘We can say the same thing about RSA-based sig-
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nature schemes.

Bellare, Boldyreva, Desai, and Pointcheval {1]
proposed & new security requirement of the en-
cryption schemes called “key-privacy” or “anonym-
ity.” It asks that the encryption provide (in addi-
tion to privacy of the data being encrypted) pri-
vacy of the key under which the encryption was
performed. In [1], they provided the key-privacy
encryption scheme, RSA-RAEP, which is a variant
of RSA-OAEP, and made the space of ciphertexts
common to each user by repeating the evaluation
of the RSA-OAEP permutation f(z,r) with plain-
text z and random 7, each time using different r
until the value is in the safe range. For deriving a
value in the safe range, the number of the repeti-
tion would be very large (the value of the security
parameter). In fact, their algorithm can fail to give
a desired output with some (small} probability.

Chaum and Antwerpen provided undeniable sig-
nature which cannot be verified without the signer’s
cooperation. The validity or invalidity of an unde-
niable signature can be ascertained by conducting
a protocol with the signer, assuming the signer
participates. Chaum provided confirmer signature
which is undeniable signature where signatures may
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[ | Sampling Twice | Repeating | Expanding RSACD |
Encryption this paper Bellare et al. - Hayashi et al.
Undeniable and Confirmer Signature this paper Galbraith et al. -
Ring Signature this paper - Rivest et al. Hayashi et al.

Figure 1: The previous and our proposed schemes

also be verified by interacting with an entity called
the confirmer who has been designated by the signer.
Galbraith and Mao proposed a new security no-
tion for undeniable and confirmer signature named
“anonymity” in [5]. We say that an undeniable
or confirmer signature scheme provides anonymity
when it is infeasible to determine which user gener-
ated the message-signature pair. In [5], Galbraith
and Mao provided the undeniable and confirmer
signature scheme with anonymity. They made the
space of signatures common to each user by apply-
ing a standard RSA permutation to the signature
and expanding it to the common domain [0, 2%*)
where N is a public key for each user and |N| = k.
This technique was proposed by Desmedt [3].

Rivest, Shamir, and Tauman [8] proposed the
notion of ring signature, which allows a member
of an ad hoe collection of users S to prove that a
message is authenticated by a member of S with-
out revealing which member actually produced the
signature. Unlike group signature, ring signature
has no group managers, no setup procedures, no
revocation procedures, and no coordination. The
signer does not need the knowledge, consent, or as-
sistance of the other ring members to put them in
the ring. All the signer needs is knowledge of their
regular public keys. They also proposed the effi-
cient schemes based on RSA and Rabin. In their
RSA-based scheme, the trap-door RSA permuta-
tions of the various ring members will have ranges
of different sizes. This makes it awkward to com-
bine the individual signatures, so one should con-
struct some trap-door one-way permutation which
has a common range for each user. Intuitively,
in the ring signature scheme, Rivest, Shamir, and
Tauman solved this problem by encoding the mes-
sage to an N;-ary representation and applying a
standard RSA permutation f to the low-order dig-
its where N; is a public key for each user. This
technique is considered to be essentially the same
as that by Desmedt. As mentioned in [8], for deriv-
ing a secure permutation g with a common range,
the range of g would be 160 bits larger than that
of f. .

Hayashi, Okamoto, and Tanaka [6] recently pro-
posed the RSA family of trap-door permutations
with a common domain denoted by RSACD. They
showed that the 6-partial one-wayness of RSACD

is equivalent to the one-wayness of RSACD for ¢ >

0.5, and that the one-wayness of RSACD is equiv-

alent to the one-wayness of RSA which is the stan-

dard RSA family of trap-door permutations. They

also proposed the applications of RSACD to en-

cryption and ring signature schemes. Their schemes
have some advantages to the previous schemes.

1.2 OQur Contribution

In this paper, we focus on the techniques which
can be used to obtain the anonymity property.

From the previous results mentioned above, we
can find three techniques, repeating, expanding,
and using RSACD, for anonymity of cryptosys-
tems based on RSA.

Repeating Repeating the evaluation of the en-
cryption (respectively the signing) with plain-
text z (resp. message m), random r, and the
RSA function, each time using different r un-
til the value is smaller than any public key
N of each user.

Bellare, Boldyreva, Desai, and Pointcheval
used this technique for encryption scheme [1].

Expanding Doing the evaluation of the encryp-
tion (respectively the signing) with plaintext
z {resp. message m), random 7, and the RSA
function, and expanding it to the common
domain.
This technique was proposed by Desmedt [3].
In |5], Galbraith and Mao used this tech-
nique for the undeniable signature scheme.
In [8], Rivest, Shamir, and Tauman also used
this technique for the ring signature scheme.

RSACD Doing the evaluation of the encryption
(respectively the signing) with plaintext z
(resp. message ), random r, and the RSACD
function.

In [6], Hayashi, Okamoto, and Tanaka pro-
posed the RSACD function and applications
of this function.

In this paper, we propose a new technique for
obtaining the anonymity property of RSA-based
cryptosystems. We call this technique “sampling
twice.” In our technique, we employ an algorithm
ChooseAndShift. It takes two numbers 1,22 €
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Zy as input and returns a value y € [0,2%) where
[N} =k, and if 21 and 2z, are independently and
uniformly chosen from Zy then y is uniformly dis-
tributed over [0, 2%).

Sampling Twice Doing the evaluation of the en-
cryption (respectively the signing) twice with
plaintext = (resp. message m), random 7y
and 5, and the RSA function, and applying
our proposed algorithm ChooseAndShift for
the two resulting values.

Then, by applying the sampling twice technique,
we construct the schemes for encryption, undeni-
able and confirmer signature, and ring signature
(See Figure 1.).

We summarize the (dis)advantage of our pro-
posed schemes.

Our proposed encryption scheme with sampling
twice is efficient with respect to the size of cipher-
texts and the decryption cost. It is also efficient
with respect to the encryption cost in the worst
case. On the other hand, that in the average case
is larger than those of the previous schemes. More
precisely, in our encryption scheme, the number of
modular exponentiations to encrypt in the average
case is 2, while those in the previous schemes are
1 or 1.5.

Our proposed undeniable and confirmer signa-
ture scheme with sampling twice is efficient with
respect to the size of signatures. On the other
hand, the number of modular exponentiations for
signing and that of computation of square roots
are always 2, while those of the other schemes are
1 or 1.5 in the average case.

Our proposed ring signature scheme with sam-
pling twice is efficient with respect to the size of
signatures.and the verification cost. On the other
hand, the signing cost of our scheme is larger than
those of the previous schemes in the average case.

If we use the RSACD function, the resulting
value is calculated by applying the RSA function
either once or twice. Fortunately, since applying
the RSA function twice does not reduce security,
we can prove that the RSACD function is one-way
if the RSA function is one-way. Generally speak-
ing, a one-way function does not always have this
property, and we cannot construcst a one-way func-
tion with & common domain.

On the other hand, in the sampling twice, re-
peating, and expanding techniques, the resulting
value is calculated by applying the RSA function
once. Therefore, it might be possible to apply
these techniques to other one-way functions and
prove the security of the resulting schemes.

The organization of this paper is as follows. In
Section 2, we review the definitions concerning

families of functions and the standard RSA family.
We construct the algorithm ChooseAndShift and
propose the sampling twice technique in Section 3.
In Section 4, we propose the encryption schemes
with anonymity. We conclude in Section 5.

Due to lack of space, details have been omitted
from this paper. See the full version [7].

2 Preliminaries

We describe the definitions of families of func-
tions, families of trap-door permutations, and #-
partial one-way.

Definition 1 (families of functions, families of
trap-door permutations). A family of functions F =
(K, S, E) s specified by lhree algorithms. The ran-
domized key-generation algorithm K takes as input
a security parameter k and returns a pair (pk, sk)
where pk is a public key and sk is an associated
secret key (In cases where the family is not irap-
door, the secret key is simply the empty string.).
The randomuzed sampling algorithm S takes pk
and returns a random point in o set that we call the
domain of the function and denote by Domp(pk).
The deterministic evaluation algorithm E takes pk
and « € Domp(pk) and returns an output we de-
note by Eyi(z). We let Rugr(pk) = {Epk(2) |z €
Domg(pk)} denote the range of the function.

We say that F is a family of trap-door permutu-
tions if Domp(pk) = Rogp(pk), Epx is a bijection
on this set, and there exists a deterministic inver-
ston algorithm I that iakes sk and y € Rogp(pk)
and returns © € Domp(pk) such that Fp(z) = y.

Definition 2 (f-partial one-way). Let F = (K, S, F)
be a family of functions. Letb e {0,1} andk € N.
Let 0 < 0 <1 be a constant. Let A be an adver-
sary. We consider the following experiments:

Experiment ExpyF ™ (k)

(pk,sk) — K(k); Fid Domp(pk); y — Fpu(z)
z1 — A(pk,y) where |z:] = [0 |z]]

if (Epk(:cl[lmg) =y for some :172) return 1
else return 0

We say ihal the Jamily F is 8-pariial one-way if
Pr{ExppR™ (k) = 1]

1s negligible for any adversary A whose time com-
plexity is polynomial in k.

The “time-complexity” is the worst case execution
time of the experiment plus the size of the code of
the adversary, in some fixed RAM meodel of com-
putation.

Note that when # = 1 the notion of #-partial
one-wayness coincides with the standard notion of



one-wayness. We say that the family F is one-way
when F is 1-partial one-way.

We describe the standard RSA family of trap-
door permutations denoted by RSA.

Definition 3 (the standard RSA family of trap—
door permutations). The standard RSA family of
trap-door permutations RSA = (K, S, E) is as fol-
lows. The key generation algorithm takes as tnput
a security parameter k and picks random, distinct
primes p,q in the range 21%/21-1 < p ¢ < 2%/
and 281 < pg < 2%, It sets N = pg and picks
e,d € Zj, y such thated =1 (mod $(N)) where
H(N) = (p—1){(qg—1). The public keyis N, e,k and
the secret key is N,d, k. The sets Domgsa{N, ¢, k)
and Rogrsa(N,e k) are both equal to Zy,. The
evoluation algorithm Ener{z) = z° mod N and
the inversion algorithm In 4,(y) = ¥ mod N. The
sampling algorithm returns a random point in Z}y .

In [4], Fujisaki, Okamoto, Pointcheval, and Stern
showed that the f-partial one-wayness of RSA is
equivalent to the one-wayness of RSA for 6 > 0.5.

3 The Sampling Twice Technique

In this section, we propose a new technique for
obtaining the anonymity property of RSA-based
cryptosystems. We call this technique “sampling
twice.” In our technique, we employ the algorithm
ChooseAndShift. It takes two numbers zi,z5 €
Zy as input and returns a value y € [0, 2’“) where
IN| = k.

Algorithm ChooseAndShifty ,(z1,22)
1 (0 <zy,20 <2 = N)
1 with prob.
1+ N with prob.
elseif (2 — N < 71,23 < N)
return
else
y1 « min{zy,za}; y2 — max{zi,za}

return

[N

return

U3 with prob. (% + 2&%) X %
y1 + N with prob. (§ + 2—,fv+—1) x %
Y2 with prob. % — 58t

Note that 21 < N < 2% ensures 2 — N < N,
0<i-58r <1,and0< 1+58r < 1. Inorder to
run this algorithm, it is sufficient to prepare only
k + 3 random bits.

We prove the following theorem on the property
of ChooseAndShift.

Theorem 1. If z; and x2 are independently and
uniformly chosen from Zn then the ouiput of the

above algorithm, is uniformly distributed over [0,2%).

67

Proof. To prove this theorem, we show that if 2,
and zo are independently and uniformly chosen
from Zpy then Pr{ChooseAndShifty x(z1,722) =
2] = 1/2* for any z € [0,2%). For any z € [0, 2% —
N), we have

Pr[ChooseAndShifty k{21, z2) = 2|
=Priz; =2z A 0§3:2<2’“—N}><%
+Prf(z1=2 A 2 - N <z < N) Vv
(z2=2z A 28 =N <z < N)]

k
=2 x L4 2

2N

':%IH

It is clear that Pr[ChooseAndShifty x{z1,z2) =
#'} = Pr[ChooseAndShifty x(z1,22) = 2’ + N] for
any z' € [0,2%—N). Therefore, for any z € [N, 2%),
we have Pr[ChooseAndShifty z{(z:,72) = 2] =
1/2%.

Furthermore, for any 2 € [2’“ — N, N), we have

Pr[ChooseAndShifty x{z1,29) = 2]
=Prfz; =2 A 2’“—N§x2<N]
+Prf(z1 =2 A 0Lz <2V = N) v
1
2

("Iz—:~/\0<$1<2k )]X( z,ﬁl)
O

By using the algorithm ChooseAndShift, we pro-
pose a new technique for obtaining the anonymity
property. We call this technique “sampling twice.”

Sampling Twice Doing the evaluation of the en-
cryption (respectively the signing) twice with
plaintext z (resp. message m), random r
and ro, and the RSA function, and applying
our proposed algorithm ChooseAndShift for
the two resulting values.

4 Encryption

4.1 Definitions

Bellare, Boldyreva, Desai, and Pointcheval [1]
proposed a new security requirement of encryp-
tion schemes called “key-privacy” or “anonymity.”
It asks that the encryption provide (in addition
to privacy of the data being encrypted) privacy
of the key under which the encryption was per-
formed. In [1], a public-key encryption scheme
with common-key generation is described as fol-
lows.

Definition 4. A public-key encryption scheme with
common-key generation PE = (G,K,E, D) consists
of four algorithms. The common-key generation
algorithm G takes as input a security parameter k
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and returns some common key I. The key gener-
alion algorithm K is o randomized clgorithm that
takes as input a common key I and returns a pair
(pk, sk) of keys, a public key and o matching secret
key. The encryption algorithm & is a randomized
algorithm that takes the public key pk and a plain-
text = to return a ciphertext y. The decryption al-
gorithin D is a determinsstic algorithm that takes
the secret key sk and a ciphertext y to return the
corresponding plaintext z or a special symbol L to
indicate that the ciphertext was invalid.

In [1], they formalized the property of “key-
privacy.” This can be considered under either the
chosen-plaintext attack or the chosen-ciphertext
attack, yielding two notions of security, IK-CPA
and IK-CCA. (IK means “indistinguishability of
keys.”)

Definition 5 (IK-CPA, IK-CCA [1]). Let PE = (G,
K,E,D) be an encryption scheme. Let b € {0,1}
and k € N. Let Appa = (Aipa,Afpa), Acea =
(AL.., AZ.) be adversaries that run in two stages
and where Acca has access to the oracles Dk, (-)
and Dy, (). Note that si is the stote information.
It contains pko,pk1, and so on. For atk € {cpa,
cca}, we consider the following experiments:
Experiment Expijl,‘?,i‘;f’k (k)

I — G(k); (pko, sko) — K(I); (pk1,sk1) — K(I)

(@, i) + Ay (pko, pk1);

Y < Epk, (2);

d A Aitk(y)Si}

return d

Above it is mandated that A2, never gueries the
challenge ciphertert y to either Dy, (-} or Du, ().
For atk € {cpa, cca}, we define the advantages via

Advisgsk | (k) =
|PriExpiSetcl (k) = 1] - Pr{Explicd (k) = 1]

The scheme PE 1s said to be IK—_OPA secure {re-
spectively IK-CCA secure) if AdVyg®e (-} (resp,
Adv%‘:{‘fua(') ) is neghgible for any adversery A
whose time complexity is polynomial in k.

4.2 Encryption with Sampling Twice

In this section, we propose the encryption scheme
with the sampling twice technigue.

Definition 6. The common-key generation algo-
rithm G takes a security parameter k and refurns
porameters k, ko, and ky such that ko(k)+k1(k) <
k for allk > 1. This defines an associated plaintext-
length function n(k) = k — ko(k) — ki(k). The
key generation algorithm K takes k, kg, k1, runs the

key-generation algorithm of RSA, and gets N,e, d.
The public key pk is (N, e), k, ko, k1 and ihe secrel
key sk is (N, d), k, ko, k1. The other algorithms are
depicted below. Let G : {0,1}% — {0,1}7"+* and
H : {0,1}% — {0,1}%0 be hash functions. Note
that {z]™ denotes the n most significant bits of x
and |z]m denotes the m least significant bits of .
Note that the valid ciphertest y satisfies y € [0, 2%)
and (y mod N) € Z},.

Algorithm éﬁ’H(m)
71,72 & {O’ l}kn
51— (z]j0P)Y @ G(ry); t —r1® H(sy)
vy« {s1]|t1)® mod N
g+ (2l[0%) & G(ry); ta 712 ® H(sy)
v — (s2]lt2)® mod NV
y <~ ChooseAndShifty ;(vy,v2)
return y

Algorithm DSCH(y)
v+ ymod N
s+ [v? mod N|***1; ¢ « [v? mod N,
T« t @ H(s)
7~ [5® G p— [s© G}k,
if (p=0%) 2« z else z L
return 2

4.3 Analysis

We compare the four schemes with sampling
twice, repeating, RSACD, and expanding.

4.3.1 Security

Bellare, Boldyreva, Desai, and Pointcheval [1]
proved that the scheme with repeating (RSA-RAEP)
is secure in the sense of IND-CCA2 and IK-CCA
in the random oracle model assuming RSA is 8-
partial one-way for § > 0.5. Hayashi, Okamoto,
and Tanaka [6] proved that the encryption scheme
with RSACD is also secure in the sense of IND-
CCA2 and IK-CCA in the random oracle model
assuming RSACD is #-partial one-way for 8 > 0.5.

In order to prove that the scheme with sampling
twice is secure in the sense of IK-CCA, we need the
restriction as follows.

Since if ¢ is a ciphertext of m for pk = (N, e, k)
and ¢ < 2% — N then ¢ + N is also a ciphertext
of m, the adversary can ask ¢+ Ny to decryption
oracle D,y where ¢ is a challenge ciphertext such
that ¢ < 2% — Ny and pkg = (Ng, eq, k), and if the
answer of Dsy, is m, then the adversary can know
that ¢ was encrypted with pky.

To prevent this attack, we add some natural re-
striction to the adversaries in the definitions of
IK-CCA. That is, it is mandated that the adver-
sary never queries either ¢ € [0,2%) such that
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Sampling Twice Repeating [1] | RSACD [6] Expanding
# of mod. exp. to encrypt
(average / worst) 2/2 15/ 15/2 L/1
# of mod. exp. to decrypt
{average / worst) L/ 1/1 1572 1/1
size of ciphertexts k k k k+ 160
# of random bits to encrypt ko + k43 / 2%+ k+3 | 1.5k / bk 5k L .
(average / worst) / 2k + E+ Sko / kiko | 1.5k / 1.5kg | ko + 160 / ko + 160

Figure 2: The comparison of the encryption schemes

¢ = c {mod Np) to Dg, or ¢’ € [0,2") such that
¢’ = ¢ (mod Ny} to Dgy,.

Similarly, in order to prove that the scheme with
sampling twice is secure in the sense of IND-CCAZ2,
we need the same restriction. That is, in the def-
inition of IND-CCAZ2, it is mandated that the ad-
versary never queries ¢’ € [0,2%) such that ¢ =
¢ (mod N) to Dy.

We think these restrictions are natural and rea-
sonable. Actually, in the case of undeniable and
confirmer signature schemes, Galbraith and Mao [5]
defined the anonymity on undeniable and confirmer
signature schemes with the above restriction.

If we add these restrictions then we can prove
that the scheme with sampling twice is secure in
the sense of IK-CCA in the random oracle model
assuming RSA is f-partial one-way for 6§ > 0.5.
More precisely, we can prove the following theo-
rem.

Theorem 2. For any adversary A attacking the
anonymity of our scheme Il under the adaptive
chosen-ciphertext attack, and making al most Qaec
decryption oracle queries, ¢gen G-oracle querics,
and gnasn H-oracle queries, there ezists a §-partial
inverting adversary B for the RSA family, such
that for any k, ko(k), ki(k), and 8 = ﬂﬁ"ik—),

Tk~ SQ 1agh - -f) [
Adv (k) € geyie o= 'AdVRsp:,‘% (k)
+ggen * Ghash (1 - 53)71 L QmkE2

1 2 29 2
where €1 = 3, €2 = sEEaaTy, €3 = S T s +

%23‘”‘—‘““‘5, and the running time of B is
that of A plus Ggen - Ghash * O(K®).

Noticing that the range of valid ciphertexts changes,
the proof is similar to that for RSA-RAEP and
available in the full version [7].

We can also prove that the scheme with sam-
pling twice is secure in the sense of IND-CCA2
in the random oracle model assuming RSA is 6-
partial one-way for ¢ > 0.5. More precisely, we
can prove that if there exists a CCA2-adversary
A = (A1, A3) attacking indistinguishability of our

scheme with advantage ¢, then there exists a CCA2-
adversary B = (B, B2} attacking indistinguisha-
bility of RSA-OAEP with advantage ¢/2. We con-
struct B as follows.

1. B; gets pk and passes it to A;. B gets
(mg,my,si) which is an output of A4;, and
B; outputs it.

2. By gets a challenge ciphertext y and sefs
3y« y + tN where ¢ & {o,1}. Iy > 2*
then Bs outputs Fail and halts; otherwise B,
passes (i, si) to Ag. By gets d € {0,1} which
is an output of Ay, and Bs outputs it.

If B does not output Fail, A outputs correctly with
advantage €. Since Pr[B outputs Fail] < 1/2, the
advantage of B is greater than ¢/2.

4.3.2 Efficiency

‘We show the number of modular exponentia-
tions to encrypt, the number of modular exponen-
tiations to decrypt, the size of ciphertexts, and the
number of random bits to encrypt in Figure 2. We
assume that N is uniformly distributed in (2871, 2%).

5 Concluding Remarks

In this paper, we have proposed a new technique
for obtaining the anonymity property of RSA-based
cryptosystems, which we call “sampling twice.”
By applying the sampling twice technique, we have
constructed the schemes for encryption, undeni-
able and confirmer signature, and ring signature.

For the comparison of the undeniable and con-
firmer signature schemes, in this paper, we only
present the number of modular exponentiations to
sign, the number of computation of square root,
the size of signatures, and the number of random
bits to sign in Figure 3. We assume that NV is
uniformly distributed in (2877, 2%).

For ring signature, we present the number of
modular exponentiations to sign, the number of
modular exponentiations to verify, the size of sig-
natures, and the number of random bits to sign in
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Sampling Twice Expanding [5] Repeating
# of mod. exp. to sign 1 L
(average / worst) 2/2 / b5/ R
# of computation of square roots 5 171 .
{average / worst) 2/2 /1 5/ ke
size of signatures k+ ko 2k + ko (k—1)+ ko
#oi;vaeriizz:/bx;i:)sxgn ko+k+5/ko+k+5|ko+hk+2/kot+k+2 | 15k +2) / kilko +2)

Figure 3: The comparison of the undeniable and confirmer signature schemes

Sampling Twice Expa:nding 18] RSACD [6] Repeating
# of mod. exp. to sign 1 1.5r / k
(sverage / worst) 2r [ 2r r/r Br [ 2r 5r [ kr
# of mod. exp. to verify
(average / worst) r/r r/r 157 / 2r r/r
size of signatuves Br+Dk+r Br+Dk+160(r+1) | (Br+ 1k (3r+ 1)k -1
# of random bits to sign G+ (r-1)+% (k + 160)r b/ b 18k(r—-1)+k—1
(average / worst) [ 3+ D(r -1+ k / (k+160)r /K- +k—1

Figure 4: The comparison of the ring signature schemes (|N;| = k)

Figure 4. We assume that each N; is uniformly

distributed in (2%, 2%).

Due to lack of space, details have been omitted
from this paper. See the full version [7].

In our analysis, we have observed that the scheme
with sampling twice is efficient with respect to the
sizes of ciphertexts and signatures, the computa- 5
tional costs to decrypt ciphertexts and to verify
signatures in the average and worst cases, and the
corputational costs to encrypt messages and to

sign messages in the worst case.
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