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Abstract

Simplification orderings, like the recursive path ordering and the improved recursive decomposition
ordering, are widely used for proving the termination property of term rewriting systems. The
improved recursive decomposition ordering is known as the most powerful simplification ordering.

In this paper, we investigate the improved recursive decomposition ordering for proving termi-
nation of term rewriting systems. We completely show that the improved recursive decomposition

ordering is closed under substitutions.
Keywords: Term rewriting system, Termination, Improved recursive decomposition ordering, Simpli-
fication ordering

1 Introduction

Term rewriting systems (TRSs, for short) are regarded as a computation model that reduces terms by
applying directed equations, called rewrite rules. TRSs are widely used as a model of functional and logic
programming languages and as a basis of automated theorem proving, symbolic computation, algebraic
specification and verification [1, 15, 23].

The terminating property is fundamental notion of TRSs as computation models [4]. Since the
terminating property of TRS is undecidable in general [5], several sufficient conditions for proving this
property have been successfully developed in particular cases. These techniques can be classified into two
approaches: semantic methods and syntactic methods.

Simplification orderings are representatives of syntactic methods [18, 21]. Many simplification order-
ings (for instance, the recursive path ordering (with status) (RPO(S), for short) [2, 10], the recursive
decomposition ordering (with status) (RDO(S), for short) [8, 13, 14}, the improved recursive decomposi-
tion ordering (with status) (IRD(S), for short) [17, 19] and so on) have been defined on TRSs. IRDS is
among the most powerful simplification orderings {19, 20}.

First, Jouannaud, Lescanne and Reinig defined the recursive decomposition ordering with multiset
status [8]. They said that the closure under substitutions of it is straightforward using definition of
decomposition. However they did not give the formal proof of is.

The recursive decomposition ordering with arbitrary status (RDOS) was first described by Lescanne
[13]. Complete proofs concerning the lexicographical status are given by Lescanne [14]. An implemen-
tation of recursive decomposition ordering with multiset status has been made in the first rewriting
environment with tools for proving termination called REVE as it was a convenient tools for proposing
extension of the precedence [12].

Rusinowitch [17] gave the definition of the improved recursive decomposition ordering (IRD) and
investigated the relationship between several simplification orderings : the path of subterm ordering
(PSO) [16], the recursive path ordering (RPO) and the recursive decomposition ordering (RDO). But
they did not discuss that IRD is closed under substitutions.

Steinbach [19] gave the definition of the improved recursive decomposition ordering with status (IRDS)
based on IRD defined by Rusinowitch [17] and compared of the power as well as the time behavior of
all orderings suggested [18, 20, 22]. They showed that IRDS is a simplification ordering and IRDS is
closed under substitutions [18, 19], however their proof was net complete. They used the proposition
that for any substitution 8, dec,(s) > gL dec,(t) implies decy (s8) > 1, decy (t6) as key idea in their
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proof without proving. But this proposition was not trivial. So, we need give the formal proof of it by
induction on | s | + | ¢ | in this paper.

We proposed IRDS for higher-order rewrite systems, called the higher-order improved recursive de-
composition ordering (HIRDS, for short) [6, 7]. Our method was inspired by Jouannaud and Rubio’s
idea for RPOS [9] and particular properties of IRDS. We showed that our ordering is a more powerful
ordering than their ordering. Furthermore we showed that HIRDS is closed under substitutions. However
our proof was very complicated and generalized, so we try to show that IRDS is closed under substitutions
in this paper. Furthermore we review that IRDS is a simplification ordering.

In section 2 we give the basic notations. Section 3 presents the definition of the improved recursive
decomposition ordering with status (IRDS) and we completely show that IRDS is closed under substitu-

tions. Also, we review that the IRDSis a simplification ordering.

2 Preliminaries

We mainly follow the basic notations of [11, 19]. An abstract reduction system (ARS for short) is a pair
(A, ) consisting of a set A and a binary relation - C A x A. We say that ARS (4, ) is terminating
if there is no infinite sequence ag — @1 — G2 —* ... of elements in A. A binary relation on a set A is
called a (strict) partial ordering over A if it is a irreflexive and transitive on A. The partial ordering is
usually denoted by >. A partial ordering > on a set A is well-founded if > has no infinite descending
sequences, i.e., there is no sequence of the form ag > a; > ag > ... of elements in A.

A signature is a set of function symbols. Associated with f € F is a natural number denoting its
arity. Function symbols of arity O are called constants. Let T(F,V) be the set of all terms built from
# and a countably infinite set V of variables, disjoint from F. The set of variables occurring in a term
¢ is denoted by V(t). The root symbol of a term t is defined as follows: root(t) =t if ¢ is a variable and
root(t) = fif t = f(ts,.- »tn)

A substitution is a map 8 from Y to T(F,V) with the property that the set {z € V | 6(z) # =} is
finite. If @ is a substitution and t a term then ¢ denotes the result of applying 8 to t. We call t6 an
instance of .

We introduce a fresh constant symbol O, named hole. A context C[] is a term in T(FU{O}V)
containing precisely one hole, If C[] is a context and ¢ a term then C[t] denotes the result of replacing
the hole in C{] by t.

A binary relation R on terms is closed under substitutions if s B ¢ implies s R t4, for any substitution
9. And a binary relation R on terms is closed under contexts if s R ¢ implies C[s] R C[t], for any context
C[]. || denotes the size of term ¢, L.e., the total number of function symbols and variables occurring in t.
Terms are identified with finite labeled trees. A position in a term can be viewed as a finite sequence of
natural numbers, pointing out a path from the root of this tree. P(£) denotes the set of all positions of a
term t. Pr(t) denotes the set of all terminal positions (positions of all leaves) of the term ¢. The letter €
denotes root positions. We write w = 7z if w is a prefix of z. The subterms of ¢ at position p is denoted
by t|p, and we write t & t|,. If 1 & t|, and t # t|, then t]p is called the proper subterm of t, denoted by ¢
> tlp:

A rewrite rule on T(F,V) is a pair of terms [ - r such that 1 ¢y and V(r) C V(). A term rewriting
system (TRS, for short) is a pair (F,R) where F is a set of function symbols and R is a set of rewrite
rules on T(F, V). {F, R) is often abbreviated as R and in that case F is defined to be the set of function
symbols that appear in R. We often present a TRS as a set of rewrite rules, without making explicit
its signature, assuming that the signature consists of the function symbols occurring in the rewrite rules.
The smallest rewrite relation on 7(F,V) that contains R is denoted by —. So s =gt if there exists
a rewrite rule [ —r in R, a substitution #, and a context C such that s = C[l6] and t = C[rf]. The
subterm 16 of s is called a redez and we say that s rewrites to ¢ by contracting redex 18. We call s 9zt
a rewrite or reduction step.

Given a binary relation >, the multiset extension >> is defined as the transitive closure of the following
relation = on multisets. M U {s} = M U {t1,...,tn} wheren > 0 and s > t; for any i € {1,...,n}.
Assume > is a well-founded ordering on a set A. Then > is a well-founded ordering on the multisets of
elements in A [3]. We say that a binary relation R on terms has the subterm property if C{t]Rt for any
context C[] # O and term ¢.
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3 Improved Recursive Decomposition Ordering Revisited

Throughout this section we are dealing with finite signatures only.

Definition 3.1 (/2, 4, 11]) A simplification ordering on T(F, V) is a partial ordering that is closed under
substitutions, contexts and has the subterm property.

Since we are dealing with finite signatures only, we obtain the following result.
Theorem 3.2 ([2, 4, 11]) Simplification orderings are well-founded.
We obtain the following theorem from the result of Dershowitz 21

Theorem 3.3 Let R be a. TRS and let > be a simplification ordering on T (F, V). Ifl > r for any
=71 € R then R is terminating.

Proof. Assume that s 5 t, where s and ¢ are terms. There exists a rewriterule [ —+7in R, a substitution
g and a context C[] such that s = C[if] and ¢ = C[r6]. By the assumption ! > r and definition 3.1, hence
s = C[i6} > C[r6] = t holds. Since > is well-founded on T(F,V) by theorem 3.2, R is terminating. a

The improved recursive decomposition ordering depends on a partial ordering > on the signature
F, the so-called precedence.

A status function T is assumed, mapping every f € F to either mul or lez, for some permutation 7
on n elements, where n is arity of f. For a partial ordering > on 7' (F,V) the partial ordering >7() is
defined on sequences of length n : 7(f) = mul describes multiset extension and 7(f) = lex, describes
lexicographic comparison according to the permutation 7. The results of an application of the function
args to a term t = f(t1,...,tn) depend on the status of f: If 7(f) = mul, then args(t) is the multiset
{t1,...,ts} and otherwise, args(t) is the tuple (t1,e -2 stn)-

For u € P7(t), a path-decomposition decy(t) = {t |»] u = v} is a set of subterms of t. Note that i.v €
Pr(f(t1, - - tn)) implies v € Pr(t;). We also define a decomposition dec ({t1,...,tn}) = {decu(t;) | 1 €
{1,...,n}, u € Pr(t;)}. A decomposition is a multiset of all path-decomposition of the terms ty,... ,%5.
For the path-decomposition decy(t), a set of subterms of decy(t), subldecy(t),s) = {s' € decy(t) | s > s'}.

We give the improved recursive decomposition ordering with status (IRDS) defined by Steinbach
[19, 20] as following.

Definition 3.4 (IRDS) Lets andt be terms. For a precedence > r and a status T the improved recursive
decomposition ordering with status (IRDS) on T(F,V) is defined as follows:

s >1rps t <= dec({s}) >> g1 dec({t}) where >>> gL is the multiset extension of >EL.
decy(u) 3 u' >pp v' € decy(v) is defined by the following (a), (b) and (c).

(@) root(u') ->F root(v'), or

(b) root(u') = root(v'), T(root(u')) = mul and either

o sub(decy(u),u’) >pr sub(dec,(v),v'), or
o sub(decy(u),u') = sub(dec,(v}),v") and
dec(args(u')) >>pr dec(args(v')), or

(c) root(u') = root(v'), T(root(v')) # mul, args(u') >;g§‘§("1)) args(v') and {u'} >rrps args(v').

Next, we give the example of comparison using IRDS.

Example 3.5 We consider the term s = =X D (Y D Z) andt =Y D (X V Z) where X,Y,Z € V,
F=1{~,2,V} and 7(f) = mul for any f € F. We give the precedence as follows: = >72>F V.

We have Pr(s) = {11,21,22} and P7(t) = {1,21,22}. See figure 1.

Then dec({s}) = {deci1(s),decy: (8), decaz(5)} where decyy (s) = {8,~X, X}, deca (s)={sY D ZY}
and decse(s) = {s,Y D Z,Z}.

Then dec({t}) = {deci(t),decs (t),decan(t)} where deci(t) = {2, Y}, decyi(t) = {t, XV Z,X} and
decos(t) = {t,X Vv Z, Z}

By the following cases (1), (2) and (3), dec({s}) >>pr dec({t}) holds. Then s >1rps t holds by
definition of IRDS.
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(1) decya(s) > gL decar(t) holds. s >py 1 and X > XVZ since sub(deci (s), s} >er sub(deca (t),1)
and =~ >F V.

(2) decar(s) DL deci(t) holds. s >pr t since sub(deca; (5),s) > gL sub(dec (t), ).

(3) decoa(s) >EL decys(t) holds. s >pr t and ¥ D Z >gr X V Z since sub(decaa(s),s) >EL
sub{decaa(t),t) and D3>F V.

D 2
- > >IRDS & v
1
X Y Z 2 X . Z
11 21 22 21 22
1 @ (3) (1) (3)

Figure 1: =X D (Y 5 Z)>mps Y D(XVZ).

We review that IRDS is a simplification ordering, i.e., IRDS is a partial ordering has the subterm
-property on 7(F,V) that is closed under substitutions and is closed under contexts. These properties
are essential for applying IRDS to termination proof of TRS.

Lemma 3.6 The IRDS is partial ordering on T (F, V).

Proof. Let s' € decp(s), t' € decy(t) and u' € dec,(u). We can show that decy(s) 3 §' >pz t' € decg(t)
and dec,(t) 3 t' >pr ¥ € dec,(u) imply decy(s) 3 §' >pL v € decy(u) by induction on |s| + |¢/] + |u/].
For any term s and s' in dec,(s), we can prove that decy(s) 3 8 #pL &' € decy(s) by induction on |s|. O

Lemma 3.7 The IRDS on T(F,V) has the subterm property.

Proof. Let s and t be terms such that s > £. It is shown by induction on |s| that s >rrps t. O
The following lemma is the key to prove the main result in this paper that IRDS is closed under
substitutions. -

Lemma 3.8 Let decy(s) > g1 decy(t) where s and t are terms and p € Pr(s) and g € Pr(t). Then for
any substitution 8, the following two claims hold.

(1) If sl = t|q €V then decy.i(58) > gL decg;(t8), for any i € N* such that p.i € Pr(s) and g1 €
Pr(8).

(2) If ), & V then decy.i(s6) >EL decy(t8), for any i € N* such that p.4 € Pr(sh).
Proof. See appendix A. O
Lemma 3.9 Let s and t be terms. Then dec({s}) > g1 dec({t}) implies dec({s}) N dec({t}) = 0.

The following lemma is the main result in this paper. We completely show that IRDS is closed under
substitutions.

Lemma 3.10 The IRDS is closed under substitutions, i.€., § >IRDS t implies 88 >iaps t6 for any
substitution §.
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Proof. Assume that s >jrps &, i€, dec({s}) >>EL dec({t}) where s and t are terms. We show that
dec({s6}) >> g1 dec({t8}), ie., 88 >1rps 16, holds for any substitution 6. Strictly speaking, we must
prove: (Vg € Pr{t),3p € Pr(s) such that decy(s) >EL decy(t)) implies (V¢' € Pr(t8),3p' € Pr(st)
such that decy (s8) > gL decy (t8)). Let ¢' € P (th), then Ji,q € N* such that ¢’ = g4 and g € Pr(t).
Since s >;pps t and by lemma 3.9, there exists p € ‘Pr(s) such that decy(s) > 5L dec,(t). To prove that
Ip' € P7(s6) such that decy (s8) > g1 decy (16), we have to distinguish two cases:

1. t|,€ V, ie. slp=1t]; (Otherwise decy(s) P uL decy(t)).

Since ¢ = g.i for some i € N*, decy(s) >rL decy(t), s8 |,= 10 |g= 6(t |;) and lemma 3.8,
Vi € Pr(8(t ), decp.i(s8) >E1 decy.i(t8). Hence, ¢ = pi withi € Pr(0(t ).

2.t €V, ie ¢ =q

(1) s|p¢ V. Since decy(s) > g1 decy(t) and lemma 3.8, decy(s0) >EL dec,(t8). Hence, p’ = p.

(2) s |p€ V. Since decy(s) > pr decy(t) and lemma 3.8, Vi € Pr{(6(s |p)), decp.i(s6) >rL dec,(t6).
Hence, p' = p.i with i € P7(8(s |p))- |

Lemma 3.11 The IRDS is closed under contests.

Proof. Let s and ¢ be terms. We have to show that s >rps t implies C[s] >rrps C[t] for any context
C[]. It can be proved by induction on context C[]. O

Lemma 3.12 The IRDS is a simplification ordering on T(F,V).

Proof. By lemmas 3.6, 3.7, 3.10 and 3.11, the IRDS is partial ordering on 7 (F,V) that is closed under
substitutions, contexts and has the subterm property. |

Example 3.13 ([18]) Given the following signature and TRS R: F = {=, 3, v},
R={-X>(¥>Z) —YD(XVI).

We give the following precedence and status: = >z 2 >z V and 7(f) = mul for any f € F. Since -
X > (Y D Z)>mps Y O (X V Z) by example 3.5 and theorem 3.3 and lemma 3.12, R is terminating.

4 Conclusion

We have investigated the improved recursive decomposition ordering to term rewriting systems for prov-
ing termination. We completely have shown that the improved recursive decomposition ordering is closed
under substitutions as main result in this paper. Also we have reviewed the improved recursive decom-
position ordering is a simplification ordering.
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A Proof of lemma 3.8

Definition A.1 Let 8 be a substitution. Let {s1,...,5n} be o subset of T(F,V). {s1;..-,8n}8 denotes
{819,. N ,Sne}.

Lemma A.2 (Lemma 3.8) Let decy(s) >zL dec,(t) where s and t be terms and p € Pr(s) and g €
Pr(t). Then for any substitution §, the following two claims hold.

(1) Ifslp = tlg €V then dec,.i(s0) >EL decg (1), for any i € N* such that p.i € Pr (s8) and q.i €
Pr (16).

(2) Iftly € V then decyi(s8) >EL dec,(t6), for any i € N* such that p4 € Pr(sd).

Proof. We show that the claim (1) A (2) by induction on |s| + Jt|. Assume that dec,(s) > 5L dec,(t).
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)

Consider the case sl = t|; € V.

By the assumption decy(s) >EL dec,(t) and definition of multiset extension, consider the cases
that decy(s) = M U {s1,--,8m}, decy(t) = M U {t1,...,tn}, and for any k € {1,...,n}, there exists
I € {1,...,m} such that decy(s) 2 8t >5L 1k € decy(t).

For any i € N* (gt € Pr(t)), we can show that dec, i(s8) = MO U {516, ..., 3mf} U L, decy ;(t6)
=MOU {t:0 ,...,t,0} U L where L = {v | v € sub(dec;(s|p0).5|,6)}. Hence we have to show that
dec,(s) 3 st >pL ti € decg(t) implies decy i(s0) 3 816 >pL tif € dec,.:(t). We distinguish the
cases with respect to the definition of >gr.

{a) If root(s;) >5 root(ty) then root(s;8) > root(t8) holds.

(b) If root(s;) = root(ty), T(root(si)) = mul and sub (decy(s),s1) >ErL sub (decy(t),tx) then we
can show sub(decy,.;(s6),5:0) >EL sub(decy ;(t8),tx8) by induction hypothesis.

(c) In the case that root(s;) = root(ty), r(root(s))) = mul, sub(decy(s),81) = sub(dec,y(t),tx) and
dec(args(s;)) >> L dec(args(ty)), it follows that dec(args(sif)) >>pr dec(args(t8)) from
induction hypothesis.

(d) Consider the case that root(s;) = root(ti), T(root(s;)) ?é m(ut), args(sy) >;gg§(s;)) args(ty)
T{root(s;

and {8;} >rrps args (). We can show args(si9) >1rps ) args(tx8) and {s;9} >1rDs
args(tx8) by induction hypothesis.

In case of t|, ¢ V, for any i € N* (pi € Pr{sh)), we can show that decp;(s0) = Mg U {s0....,
smf} U L where L = {v | v € sub(decy(s|p0) ,81,8)}, decy(t6) = M8 U {0 ,..., t,8}. Hence we
can show that decp(s) 3 s >EL t € decy (t) implies decy.;(s9) > 818 >EL t18 € decy(t), in similar
to the proof of (1). o



