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Chaitin’s halting probability () and quantum
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Abstract. This paper proposes an extension of Chaitin’s halting probability Q to
measurement operator in an infinite dimensional quantum system. Chaitin’s  is defined
as the probability that the universal self-delimiting Turing machine U halts, and plays
a central role in the development of algorithmic information theory. In the theory, there
are two equivalent ways to define the program-size complexity H(s) of a given finite
binary string s. In the standard way, H(s) is defined as the length of the shortest
input string for U to output s. In the other way, the so-called universal probability
m is introduced first, and then H(s) is defined as —log, m(s) without reference to the
concept of program-size,

Mathematically, the statistics of outcomes in a quantum measurement are described
by a positive operator-valued measure (POVM) in the most general setting. Based
on the theory of computability structures on a Banach space developed by Pour-El
and Richards, we extend the universal probability to an analogue of POVM in an
infinite dimensional quantum system, called universal semi-POVM. We also give another
characterization of Chaitin’s  numbers by universal probabilities. Then, based on this
characterization, we propose to define an extension of 2 as a sum of the POVM elements

of a universal semi-POVM. The validity of this definition is discussed.

1 Introduction

Algorithmic information theory is a framework to
apply information-theoretic and probabilistic ideas
to recursive function theory. One of the primary
concepts of algorithmic information theory is the
program-size complezity (or Kolmogorov comples-
ity) H(s) of a finite binary string s, which is de-
fined as the length of the shortest binary input
for the universal self-delimiting Turing machine to
output s. By the definition, H(s) can be thought
of as the information content of individual finite
binary string s. In fact, algorithmic information
theory has precisely the formal properties of clas-
sical information theory (see [2]). The concept
of program-size complexity plays a crucial role in
characterizing the randomness of a finite or infinite
binary string. In [2] Chaitin introduced the halt-
ing probability €2 as an example of random infinite
string. His {2 is defined as the probability that
the universal self-delimiting Turing machine halts,
and plays a central role in the development of algo-
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rithmic information theory. The first n bits of the
base-two expansion of  solves the halting problem
for a program of size not greater than n. By this
property, the base-two expansion of 2 is shown to
be an instance of a randoin infinite binary string.
In [3] Chaitin encoded this random property of {1
onto an exponential Diophantine equation in the
manner that a certain property of the set of the
solutions of the equation is indistinguishable from
coin tosses. Moreover, based on this random prop-
erty of the equation, Chaitin derived several quan-
titative versions of Gddel’s incompleteness theo-
rems.

In [7] we generalized Chaitin’s halting probabil-
ity Q to QP so that the degree of randomness of
QP can be controlled by a real number D with
0 < D < 1. As D becomes larger, the degree of
randomness of Q¥ increases. When D = 1, QP
becomes a random real number, i.e., Q! = Q. The
properties of P and its relations to self-similar
sets were studied in [7]. In the present paper, how-
ever, we generalize Chaitin’s {2 to a different direc-
tion from [7]. The aim of the present paper is to



extend Chaitin’s halting probabilify {2 to measure-
ment, operator in an infinite dimensional quantum
system (i.e., a2 quantum system whose state space
has infinite dimension).

The program-size complexity H(s) is originally
defined wusing the concept of program-size, as
stated above. However, it is possible to define H (s)
without referring to such a concept, i.e., we first in-
troduce a universal probability m, and then define
H(s) as — logz m(s). A universal probability is de-
fined through the following two definitions. We
denote by X* the set of finite binary strings, by
Nt the set of positive integers, and by Q the set of
rational numbers.

Definition 1.1. For any r: £* — [0,1], we say
that r is a lower-computable semi-measure if r
satisfies the two conditions: (i) 3 csu7(s) <1
and (i) there exzists o total recursive function
f: Nt x ¥* — Q such that, for each s € X%,
lim, o0 f(n,8) =7(s) andVn e N* 0 < f(n,s) <
fin+1,s).

Definition 1.2, Let m be a lower-computable
semi-measure. We say that m is o universal proba-
bility if for any lower-computable semi-measure 7,
there exists a real number ¢ > 0 such that, for all
s € &, cr(s) < m(s).

In quantum mechanics, a positive operator-
valued measure (POVM) is the mathematical tool
which describes the statistics of outcomes in a
quantum measurement in the most general setting.
In this paper we extend the universal probability to
an analogue of a POVM in an infinite dimensional
quantum system, called a universal semi-POVM.
Then, based on universal semi-POVM, we intro-
duce the extension { of Chaitin’s Q to measure-
ment operator in an infinite dimensional quantum
system.

In the previous work [8], we developed the the-
ory of universal semi-POVM for finite dimensional
quantum system. In this paper we try to extend
the work [8] over infinite dimensional setting.

1.1 Quantum measurements

Let X be a separable complex Hilbert space. We
assume that the inner product {u,v) of X is linear
in the first variable u and conjugate linear in the
second variable v, and it is related to the norm by
lul| = (u, u)llz. B(X) is the set of bounded oper-
ators in X. We denote the identity operator in X
by I. For each T € B(X), the adjoint operator of
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T is denoted as T* € B(X). We say T € B(X) is
Hermitian f T = T*. By(X) is the set of Hermi-
tian operators in X. We say T € B(X) is positive
if (Tz,z) > 0 for all z € X. B(X), is the set of
positive operators in X. For each 8,7 € B,(X),
we write § < T if T — S is positive.

With every quantum system there is associated
a separable complex Hilbert space X. The states of
the system are described by the nonzero elements
in X. In the present paper, we consider the case
where X is a Hilbert space of infinite dimension.
That is, we consider infinite dimensional quantum
systems.

Let us consider a quantum measurement per-
formed upon a quantum system. We first define
a POVM on a o-field as follows.

Definition 1.3. Let F be a o-field in a set . We
say M: F — B(X)4 is a POVM on o-field F if the
following holds for M: If {B;} is a countable par-
tition of ® into pairwise disjoint subsets in F, then
2. M(B;) = I where the series converges strongly.

In the most general setting, the statistics of out-
comes in a quantum measurement are described
by a POVM M on a o-field in a set . The $ is a
set of outcomes possible under the quantum mea-
surement. If the state of the quantur system is
described by an z € X with j|z|| = 1 immediately
before the measurement, then the probability dis-
tribution of the measurement outcomes is given by
(M{B)z,z). (See e.g. [5] for the treatment of the
mathematical foundation of quantum mechanics.)

In this paper, we relate an argument s of a
universal probability m(s) to an individual out-
come which may occur in a quantum measure-
ment. Thus, since m(s) is defined for all finite
binary strings s, we focus our thought on a POVM
measurement with countably infinite measurement
outcomes, such as the measurement of energy level
of a harmonic oscillator. Since ® is a countably
infinite set for our purpose, we particularly define
the notion of POVM on a countably infinite set as
follows.

Definition 1.4. Let S be a countably infinite set,
and let R: S — B(X),. We say R is a POVM on
countably infinite set S if R satisfies Y, g R(v) =
I where the series converges strongly.

Let S be a countably infinite set, and let F
be the set of all subsets of S. Assume that
R: S — B(X); is a POVM on countably infi-
nite set § in Definition 1.4. Then, by setting
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M(B) = Y. ,cp R(v) for every B € F, we can
show that M: F — B(X) is a POVM on o-field F
in Definition 1.3. Thus Definition 1.4 is sufficient
for our purpose. Each operator R(v) € B(X)4+ is
called a POVM element.

In a POVM measurement with countably infinite
measurement outcomes, we represent each mea-
surement outcome by just a finite binary string
in perfect register with an argument of universal
probability. Thus we consider the notion of POVM
on T* which is a special case of POVM on a count-
ably infinite set.

Definition 1.5 (POVM on X*). We say
R:3* — B(X); is a POVM on ¥ if R is a
POVM on countably infinite set T*.

In a quantum measurement described by a
POVM on T*, an experimenter gets a finite binary
string as a measurement outcome.

Any universal probability m  satisfies
Yscx-m(s) < 1. This relation is incompati-
ble with the relation ), .. R(s) = I satisfied by
a POVM R on X*. Hence we further introduce the
notion of semi-POVM on ¥*, which is appropriate
for an extension of universal probability.

Definition 1.6 (semi-POVM on T*). We say
R: X* - B(X)4 18 a semi-POVM on X* if R sat-
isfies 3 v R(8) < I where the series converges
strongly.

Obviously, any POVM on ¥* is a semi-POVM
on Z*. Let R be a semi-POVM on I*. It is easy to
convert R into a POVM on a countably infinite set
by appending an appropriate positive operator to
R as follows. We fix any one object w which is not
in X*. Let Qp = Y 4ex« R(s). Then0 < Qg < I
and ) v B{s) + (I - Qr) = I. Thus, by setting
R(s) = R(s) for every s € ©* and R(w) = I — Qg,
we see that R: &* U {w} — B(X)4 is a POVM
on countably infinite set ¥* U {w} in Definition
1.4. Therefore a semi-POVM on X* has a physical
meaning in the same way as a POVM on a count-
ably infinite set. Hence, hereafter, we say that a
POVM measurement M is described by a semi-
POVM R on X* if M is described by the POVM
R on countably infinite set X* U {w}. Let us con-
sider the quantum measurement described by the
R performed upon a quantum system. We then see
that if the state of the quantum system is described
by an z € X with ||z|| = 1 immediately before the
measurement then, for each s € X*, the probability
that the result s occurs is given by (R(s)z,z).

2 Preliminaries

2.1 Notation

We start with some notation about numbers and
matrices which will be used in this paper.

N={0,1,2,3,... } is the set of natural numbers,
and NT is the set of positive integers. Q is the set
of rational numbers. R is the set of real numbers,
and C is the set of complex numbers. Cg is the set
of the complex numbers in the form of ¢ + ib with
a,b € Q Let N € N*. Her(N) is the set of N x N
Hermitian matrices. For each A € Her(N), the
norm of A is denoted by ||4], i.e., || 4] = max{|v] |
v is an eigenvalue of A}. For each 4, B € Her(N),
we write 4 € B if B — A is positive semi-definite.
Herg(N) is the set of N x N Hermitian matrices
whose elements are in Cg.

2.2 Algorithmic information theory

In the following we concisely review some defini-
tions and results of algorithmic information theory
[2, 3]. We assume that the reader is familiar with
algorithmic information theory in addition to the
theory of computable analysis. {See e.g. Chapter
0 of [6] for the treatment of the computability of
complex numbers and complex functions on a dis-
crete set.)

»* = {A,0,1,00,01,10,11,000,001,010,... } is
the set of finite binary strings where A denotes the
empty string, and X is ordered as indicated. We
identify any string in X* with a positive integer in
this order. For any s € £*, |s] is the length of s. A
subset S of X* is called a prefiz-free set if no string
in § is a prefix of another string in S.

A computer is a partial recursive function
C: ¥%* — X* whose domain of definition is
a prefix-free set. For each computer C and
each s € X* Hg(s) is defined by Hep(s) =
min{|p| |p € Z*&C(p) =s}. A computer U is
said to be optimal if for each computer C there
exists a constant sim(C) with the following prop-
erty; if C(p) is defined, then there is a p’ for which
U(p') = C(p) and |p/| < |p| + sim(C). It is then
shown that there exists an optimal computer. We
choose any one optimal computer U as the stan-
dard one, and define H(s) = Hy(s), which is re-
ferred to as the program-size complezity of s, the
information content of s, or the Kolmogorov com-
plezity of s.

Let V be any optimal computer. Chaitin’s halt-



ing probability (v of V is defined by

Q= Y 2P (1)

V{p) is defined

For any o € (0,1], we say that o is random if
there exists ¢ € N such that, for any n € NT,
n — ¢ < H{ay) where oy, is the first n bits of the
base-two expansion of a.. Then [2] showed that, for
any optimal computer V, Qy is random.

The class of computers is equal to the class of
functions which are computed by self-delimiting
Turing machines. A self-delimiting Turing ma-
chine is a certain type of deterministic Turing ma-~
chine which has two tapes, a program (input) tape
and a work tape. A self-delimiting Turing machine
is called universal if it computes an optimal com-
puter. Let My be a universal self-delimiting Tur-
ing machine which computes an optimal computer
V. Then Qy is the probability that My halts (and
outputs some finite binary string) when My starts
on the program tape filled with an infinite binary
string generated by infinitely repeated tosses of a
fair coin.

[2] showed that, for any optimal computer V,
2-Hv(s) is a universal probability. Therefore we
see that, for any universal probability m, H(s) =
—logym(s) + O(1). Thus it is possible to define
H(s) as — logy m(s) with any one universal proba-
bility m instead of as Hy(s). We can give another
characterization of 0y also using a universal prob-
ability, as seen in the following theorem. In the
proof of the theorem, Theorem 6.6 of [1] is used.

Theorem 2.1. For anya € R, a = 3,5 m(5)
for some universal probability m if and only if a =
Qv for some optimal computer V.

In the present paper, we extend a universal prob-
ability to a semi-POVM on X*. Thus, Theorem 2.1
suggests that an extension of {ly to an operator
can be defined as the sum of the POVM eclements
of such a semi-POVM on Z*. Therefore the most
important thing is how to extend a universal prob-
ability to semi-POVM on I* on a Hilbert space of
infinite dimension. We do this first in what follows.

3 Extension of universal proba-
bility
In order to extend a universal probability to semi-

POVM on &* which operates on an infinite dimen-
sional Hilbert space, we have to develop a theory

215

of computability for points and operators of such
a space. We can construct the theory on any con-
crete Hilbert spaces such as {2 and L?(R%") with
n € N*, For the purpose of generality, however,
we here adopt an axiomatic approach which en-
compasses a variety of spaces. Thus we consider
the notion of computability structure on a Banach
space which was introduced by [6] in the late 1980s.

3.1 Computability structures on a Ba-
nach space

Let X be a complex Banach space with a norm
Il - I, and let ¢ be a nonempty set of sequences in
X. We say ¢ is a computability structure on X if
the following three axioms; Axiom 3.1, 3.2, and 3.3
hold. A sequence in ¢ is regarded as a computable
sequence in X.

Axiom 3.1 (Linear Forms). Let {z,} and {y,}
be in @, let {on,} and {Bnx} be computable double
sequences of complez numbers, and let d: NT —
Nt be g total recursive function. Then the sequence

d(n) .
8p = Z(O‘nkzk + ﬁnkyk)

k=1
8 tn .

For any double sequence {,m} in X, we say
{Zpm} is computable with respect to ¢ if it is
mapped to a sequence in ¢ by any one recursive
bijection from Nt to N* x N*. An element z € X
is called computable with respect to ¢ if the se-
quence {z,z,z,...} is in ¢.

Axiom 3.2 (Limits). Suppose that a double se-
quence {Znm} in X is computable with respect to
¢, {yn} is o sequence in X, and there exists a to-
tal recursive function e: N* x N* — Nt such that
Zne(ne) = Unll < 2% for all n,k € N*. Then {yn}
18 i1 @.

Axiom 3.3 (Norms). If {z,} is in ¢, then the
norms {||zy||} form a computable sequence of real
numbers.

We say a sequence {e,} in X is a generating set
for X or a basis for X if the set of all finite linear
combinations of the e, is dense in X.

Definition 3.4. Let X be a Banach space with «
computability structure ¢. We say the pair (X, )
is effectively separable if there exists a sequence
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{en} in ¢ which is a generating set for X. Such a
sequence {en} is called an effective generating set
for (X, ) or a computable basis for (X, ).

Throughout the rest of this paper, we assume
that X is an arbitrary complex Hilbert space of in-
finite dimension with a computability structure ¢
such that (X, ¢) is effectively separable. We choose
any one such a computability structure ¢ on X as
the standard one throughout the rest of this paper,
and we do not refer to ¢ hereafter. For example,
we will simply say a sequence {z,} is computable
instead of saying {z,} is in ¢.

We next define the notion of the computability
for a semi-POVM on T* as a natural extension of
effectively determined bounded operator which is
defined in [6].

Definition 3.5. Let R be a semi-POVM on E*.
We say R is computable if there ezists an effec-
tive generating set {ey} for X such that the map-
ping (s,n) +— (R(s))en is a computable double
sequence in X. '

3.2 Universal semi-POVM

We first introduce the notion of lower-computable
semi-POVM on X*, which is an extension of
the notion of lower-computable semi-measure over
semi-POVM on X*. The following Definition
3.6 is needed to introduce the notion of lower-
computable semi-POVM on ¥*. We say a basis
{en} for X is orthonormal if (em,en) = Omp for
any m,n € N*t. Ag shown in Chapter 4 of [6],
we can assume that there exists a computable or-
thonormal basis for X.

Definition 3.6. Let {¢;} be an orthonormal basis
for X. For any T € B(X) and m € N*, we say T
is an m-square operator on {e;} if for all k,1 € N*
ifk>morl>m then Teg,e) = 0. Further-
more, we say T is an m-square rational operator
on {e;} if T is an m-square operator on {e;} and
for all k,l € Nt, (Teg,e) € Cg

The following Lemma, 3.7 is suggestive to fix the
definition of lower-computable semi-POVM on T*.
By Lemma 3.7, we can effectively check whether
S < T holds or not, given S,7 € B,(X) and m &
N* such that § and T are m-square operators on
an orthonormal basis for X.

Lemma 3.7. Let T € By(X), and let {¢;} be an
orthonormal basis for X. Then, the following two
conditions (i) and (ii) are equivalent to each other.

(i) T is a positive operator.

(i) For all finite sequence vi,...,vm € Nt with
< e < U,
(Telq s ezq) <T5u1 s eym>
det : : 2 0.
(Tey,,,€,) (Teupns om)

We recall that, for any lower-computable semi-
measure r, there exists a total recursive function
f: Nt x ¥* = Q such that, for each s € ¥*,
limy, 00 f(m,8) = r(s) and Vn € N 0 < f(n,s) <
f(n+1,8) < r(s). We here consider how to ex-
tend this f to an operator in order to define a
lower-computable semi-POVM R on X*. Let {e;}
be an orthonormal basis for X. When we prove
the existence of universal semi-POVM (i.e., The-
orem 3.15), we have to be able to decide whether
f(n,8) < f(n+1,s) in the sequence {f(n, ) }nen+
of operators which converges to R(s). Thus, firstly,
it is necessary for each f(s,n) to be an m-square ra-
tional operator on {e;} for some m € N*. If so we
can use Lemma 3.7 to check f(n,s) < f(n+1,s).
On that basis, in order to complete the defini-
tion of a lower-computable semi-POVM, it seems
at first glance that we have only to require that
0< fln,s) < fin+1,s) < R(s) and f(n,s) con-
verges to R(s) in an appropriate sense. Note that
each operator f(n, s) in the sequence has to be pos-
itive in order to guarantee that the limit R(s) is
positive. However, this passing idea does not work
properly as shown by the following consideration.

For simplicity, we consider matrices in Her(N)
with N € NT instead of operators in X. We show
that for some computable matrix A > 0 there
does not exist a total recursive function F: Nt —
Herg(N) such that

lim F(n)=AandVneN" 0<F(n) <4 (2)
n—00
This follows from Example 3.9 below, which is
based on the following result of linear algebra.

Proposition 3.8. Let A,B € Her(N). Suppose
thatrankA =1 and 0 K B < A. Then B=74
Jor some T € [0, 1].
Example 3.9. We consider the mairic A €
Her(2) given by

H )

3

I

3
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Obuviously A is computable.  However, since
rank A = 1, by Proposition 3.8 there does not exist
any nonzero B € Herg(2) such that 0 < B < A.

Thus, even in non-effective manner, we cannot
get a sequence {F(n)} C Herg(/N) which satisfies
the condition (2). On the other hand, for any pos-
itive semi-definite A € Her(NV) and any n € N*,
there exists a B € Herg(N) such that 0 < B <
A+ 27"E, where F is the identity matrix. This is
because, since Herg(XV) is dense in Her(IV) with re-
spect to the norm || - ||, there exists a B € Herg(N)
such that ||A+2"""1/3E — Bj| < 27™/3. Thus we
have 0 < A+ 2 "/3E B £ A+ 2™"E. Fur-
thermore we can show that, for any positive semi-
definite A € Her(N), if A is computable, then there
exists a total recursive function F: Nt — Herg(N)
such that (i) limp—oo F(n) = A, (ii) 0 < F(n}, and
(iii) F(n)-2""E < F(n+1)—2"®+UE < A. Note
that a positive semi-definite matrix A with rank 1
as considered in Example 3.9 is not an atypical ex-
ample as a POVM elements, since such a POVM
element is common in a familiar projective mea-
surement.

The foregoing consideration suggests the follow-
ing definition of a lower-computable semi-POVM
on an infinite dimensional Hilbert space.

Definition 3.10. Let {e;} be a computable or-
thonormal basis for X, and let R be a semi-POVM
on £*. We say R is lower-computable with respect
to {e;} if there ezist an f: N* x ©* — B(X), and
a total recursive function g: Nt x £* = N* such
that

(i) for each s € *, f(n,s) converges strongly to
R(s) as n — oo,

(i) for alln and s, f(n,s)—2""I < f(n+1,s) —
2—(n+1)I’

(#3) for all n and s, f(n,s) is a g(n, s}-square ra-
tional operator on {e;}, and

(iv) the mapping N* x I* x Nt x N 3
(n,s,4,5) — (f(n,8)e;ej) is a total recur-
sive function.

Tn the above definition, we choose the sequence
{277} as the coefficients of I in the inequality of
the condition (ii). Note, however, that in the def-
inition we can equivalently replace {27 "} by any
recursive nonincreasing sequence of non-negative
rational numbers which converges to 0.
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We can show that the lower-computability of
semi-POVM on £* given in Definition 3.10 does
not depend on the choice of a computable or-
thonormal basis used in the definition. This fact
ig verified using the following Lemma 3.11, which
follows from Lemma 3.7.

Lemma 3.11. Let T € Bp{X) be an m-square op-
erator on an orthonormal basis {e;} for X. For
any real number a > 0, 0 < T + al if and only if
0 € T + al,, where I, is the operator in Bp(X)
such that Ie; = e; if it < m and Ie; = 0 other-
wise.

By Lemma 3.11, in order to check whether the
condition (ii) of Definition 3.10 holds, we can
equivalently check the condition that 0 < f(n +
1,8) = f(n,s) + 2" if f(n,5) and f(n+1,)
are m-square operators on an orthonormal basis
{e;} for X.

Thus, we define the notion of a lower-
computable semi-POVM on ¥* independently of
a choice of a computable orthonormal basis for X.

Definition 8.12. Lef R be ¢ semi-POVM on ¥*.
We say R is lower-computable if there exists a com-
putable orthonormal basis {e;} for X such that R
is lower-computable with respect to {e;}.

Any computable function r: X* — [0,1] with
Y sex+ r(s) < 1is shown to be a lower-computable
semi-measure. Corresponding to this fact we can
show Theorem 3.13 below. For each T € B(X), we
define HTH2 as (E:—il “Tei”2)l/2 € [Os 00]’ where
{en} is an arbitrary orthonormal basis for X.
Theorem 3.13. Suppose that (i) R: ¥ — B(X)
is o computable semi-POVM on T*, (i) R(s)
is Hilbert-Schmidt for every s € X*, and (iii)
{|B(s)llz}scx+ #5 a computable sequence of real
numbers. Then R is lower-computable.

As a natural generalization of universal probabil-
ity, the notion of universal semi-POVM is defined
as follows.

Definition 3.14 (universal semi-POVM).
Let M be o lower-computable semi-POVM on
¥*. We say that M is a universal semi-POVM if
for each lower-computable semi-POVM R on ¥,
there exists a real number ¢ > 0 such that, for all
s € X% cR(s) < M(s).

Most importantly we can prove the existence of
universal semi-POVM.

Theorem 3.15. There exists a universal semi-
POVM.
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4 Extension of Chaitin’s 2

Now, based on the intuition obtained from Tlleo-
rem 2.1, we propose to define an extension Q of
Chaitin’s Q as follows.

Definition 4.1 (extension of { to operator).

For each universal semi-POVM M, Qi is defined
by Qpr = sexs M(s).

Let M be a universal semi-POVM. Then, obvi-
ously, (U € B(X)4 and S < I. We can further
show that ¢I < s for some real number ¢ > 0.
We can show the following theorem, which sup-

ports the above proposal.

Theorem 4.2. Let M be a wuniversal semi-
POVM. If = is a computable point in X with
lizll = 1, then (i) there exzists an optimal computer

V such that <QM3:,:A:> = Qy, and (31) <f2Maz,m>
is a random real number.

Iet M be any universal semi-POVM, and let
z be any point in X with ||z]] = 1. Consider the
POVM measurement M described by the M. This
measurement produces one of countably many out-
comes; elements in L* and one more something
which corresponds to the POVM element 1 — £2).
If the measurement M is performed upon the state
described by the z immediately before the mea-
surement, then the probability that a result s € 3*
oceurs is given by (M (s)z, z). Therefore <fl MZT, :c>
is the probability of getting some finite binary
string as a measurement outcome in M.

Now, assume that z is computable. Recall that,
for any optimal computer V, Qy is the probabil-
ity that V halts and outputs some finite string,
which results from infinitely repeated tosses of a
fair coin. Thus, by Theorem 4.2, <QMz,w> has
a meaning of classical probability that a univer-
sal self-delimiting Turing machine generates some
finite string. Hence <QM:L',z> has a meaning of
probability of producing some finite string in the
contexts of both quantum mechanics and algorith-
mic information theory. Thus, in the case where
z is computable, algorithmic information theory
is consistent with quantum mechanics in a certain
sense.

5 Concluding remarks

Based on T:,he universal semi~-POVM, we have in-
troduced s which is an extension of Chaitin’s

Qy to a measurement operator in infinite dimen-
sional quantum system. In algorithmic infor-
mation theory, however, Qy is originally defined
through (1) as the halting probability of the uni-
versal self-delimiting Turing machine which com-
putes U. Thus Qy is directly related to a behavior
of a computing machine. Therefore, in order to de-
velop our operator version of algorithmic informa-
tion theory further, it is necessary to find more con-
crete definition of 5 which is immediately based
on a behavior of some sort of computing machine.
We leave the identification of such a machine to a
future study.
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