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ON POWERS OF MATRICES
PRESERVING A SELF-DUAL CONE
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1. INTRODUCTION

Let A be a Hilbert space with an inner product (, ). A convex cone H* in H
is said to be self-dual if Ht = {v € H|(v,w) > 0 Vw € HT}. Let A, B be bounded
linear operators on H. For a fixed self-dual cone H*, we denote

A> B

if (A— B)(Ht) € H*. The relation ‘>’ defines an ordered vector space on the
set of all bounded linear operators on H, since ™ is a total set in #. In fact, an
arbitrary element v of H can be written uniquely in the form

U=’l)1—‘02+?:(‘03—’04)

for vi,---,v4 € HT and (v1,v2) = (vs,vs) = 0. This order is compatible with
operator multiplication. In fact, since

AA' — BB' = A(A' - B') + (A— B)B/,

we obtain that if A> B> O and A’ > B’ > O, then AA’ > BB’ > O. This yields
immediately A™ > B™ > O for m = 1,2,---. On the contrary, this property does
not hold in the case of usual order ‘> ’ for operators. Namely, for two bounded
hermitian operators A, B on H, when A — B is a positive semi-definite operator,
we write A > B. It is well-known as the Léwner-Heinz inequality [1, bf 3] that if
A>B >0, then A* > B* > O for all z € [0, 1].



2. THE CASE OF GENERAL SELF-DUAL CONES IN A HILBERT SPACE

The set of all bounded linear operators on a Hilbert space H is denoted by
L(H).

Theorem 2.1. Let H be a selfdual cone in H, and A, B in L(H) with A >
O,B > O and A> B > O satisfying the following conditions:
(i) A and B are compact.
(ii) A(S) C (HT)° and (A— B)(S) C (H™")°, where S denotes the set of all
unit vectors in HT.
Then there exists a number s > 0 such that A* > B® > O for all z € [s,00).

Proof. We shall prove the second inequality. Since B is a compact operator, B(S )
is compact. By the condition (ii) there exists a number ¢ € (0,1) such that for
every v € § an e-neighborhood U(Bv;e) of Bu is contained in #*. Indeed, if such
a neighborhood is not contained in H¥, then for every natural number n there

. 1 . .
exists v, € & such that U(Buy; —nj) N (HT)° # 0. Since B is compact, there exists

a subsequence { Bu,,, } converging to some wo € B(S). This implies vg € (HT)<, a
contradiction.

Now, consider a map: z > A%,z € R. By the norm continuity of the mabp,
there exists a number u € (0,1) such that

| A— A% {l<e
holds for all z € (1 — u,1 + u), hence
| Bu — B0 ||<|| B~ B ||| v||=|| B - B® [|[<e.

This means B%y € H*, i.e.,, B® & O. Hence B™ > O for m = 1,2,--- . Setting
1
mo = g] + 1, we have B® > O for all z > mg(1 —¢).
The first inequality in the statement can be proved similarly by considering a
map: z — A® — B%.

Theorem 2.2. Let H' be a selfdual cone in H, and A in L(H) with A> O and
A > O satisfying the following conditions:

(1) Ais invertible.

(i) A(HT) C H™.
Then A= % O for all A > O.

Proof. Suppose that A=*° > O for some Ag > 0. In the case where \g is a rational
number, we choose m,n € N with m — nAg = —1. It follows by assumption that

A_]' = AmA—-nAG E O.

This means that A is an order isomorphism, i.e., A(H) = H™, a contradiction.
Tt is known that if Ao is an irrational number then the set {m — nXg|m,n € N}
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is dense in R. We choose a sequence {r,} from the dense set converging to —1.
Then
A"t = lim A™ > O.

TE—>0Q

Similarly, we get the contradiction.

Remark. (cf. [4]) For a facial homogeneous cone H*, A(HT) = H* implies A® >
Oforallz e R
3. THE CASE OF FINETELY GENERATED SELF-DUAL CONES

From the rest of this manuscript we deal with a finite dimensional Hilbert space.
In this section we consider the case of finitely generated self-dual cones. We first
prove the following lemma: :

Lemma 3.1. Let a;, be real numbers and X; be positive numbers with 1 <1 < n.
Put '
fl@) = A7 + -+ apAy

for x > 0. Suppose that there exists an unbounded increasing sequence {Tm} such
that
fzm) >0, m=1,2,---.

Then f(z) is identically 0, or there exists s > 0 such that
[z} >0, z € s, 00).

If, in particular,
f(mm) :O) m:1,2,--- P
then f(x) is identically 0.

Proof. Let f(zy,) > 0 for all m € N. Suppose that f(z) is not identically 0. We
may assume A; > .-+ > A, > 0 and a1 # 0. Since

flz) A2 \? A\’
)\% =qaj + a9 " -+ -+ an W ,

it follows that

Hence we have a; > 0, and so a; > 0 by the assumption. By the continuity of
the function, we obtain the desired results. It is now immediate that the latter
statement holds.



Theorem 3.2. Let Ht be a self-dual cone generated by a finite set in an n-
dimensional Euclidean space H. If A,B € L(H) satisfy A > O,B > O and
A > B D O, then there exists a number s > 0 such that A® > B® > O for all
x € [s,00). '

Proof. Suppose that H* is a self-dual cone and
H+ - {Clvl + "'+Cmvmlcla'“ sCm 2 O,U}_,"' yUm € H+}

where {v1,--- , U } is linearly independent. By the assumption we have A*—B¥ >
O for k=1,2,---. Then ((A* — B*)y;,v;) > 0 for all 4, j. Put

fij(z) = (A" = B®)vi, vj).

We write

AT =U UL,B*=V v,
O Olf:f,, O azzvn
for ov; > 0 and unitaries U, V. Let {f1,--- , Be} be the set of all distinct elements of
{a1,++ ,a2,}. Then we can write as fi;(x) = a1 +- -+ aef7. Since fij(m) >0
for all m = 1,2,---, it follows from Lemma 3.1 that there exists a number s’ > 0

satisfying fi;j(z) > 0 for all z € [s/,00). Hence there exists a number s > 0
satisfying f;;(z) > 0 for all z € [s,00) and all 4, j. Choose any elements v,v’ € HT,

which are expressed by
m m
v = ZC«;% v = Z civ;
7=1 =1
for some c;, c; > 0. It follows that

((A® — B®)v,v) = ((A® — B)cyvs, civj)

:Ms

1

2

NgE

= cic; fij(z) = 0
J=1

Il

e,

for all z € [s,00). This completes the proof.

4. THE CASE OF M,(C)™

let M, (R)(resp. M, (R),) denote the set of all real(resp. real symmetric) n x n-
matrices. The set of all real positive semi-definite matrices is denoted by My (R)T,
which is one of the most important self-dual cones in the operator theory or in the
theory of operator algebras. We know many operators preserving M, (R)™" such as

A X F—-)Z tAp X Ag

k=1

5T



58

for X, A1, -, Am € My(R), ie., A > O.
We first introduce a notation. We identify M,(C) with an n?-dimensional
Euclidean space cr’ by a bijective linear map
[ €1 \

f1n
EM,(C)— | = |eCr.
€

\ £/

Given a diagonal matrix A, we shall give a characterization for A > O with
respect to the cone M,(C)™.

€11 - Ein

§n1 e €nn

Lemma 4.1. Let A be ann?xn? diagonal matriz with entries A = {A1,, -+, A1,.,
S Angs Ay} with Ay, >0, 6,5 = 1,--- ,n. Then the following conditions
are equivalent:
(1) AW(Mn(C)1)) C v(Mn(C)F).
(2) v~ € M,(C)*.

Proof. Let Abea diagonal matrix in the assumption. Choose an arbitrary element
== (&_7) € Mn(C)+ Then

A1, O &11 A€
Av(E) = AL, | 5%2 _ /\12‘512
O An, €nn An, Enn
If Av(E) € v(M,,(C)T) for all = € M, (C)*, that is,
Anéin 0 Andin
v HAv(E)) = € M,(C)*,
)\n1 gnl "t )\nn énn

then n
w(E),A) = Z Ai;&ij > 0.
i,j=1

This yields A € ¥(M,,(C)*) from the self-duality of v(M,(C)™).

Conversely, let v=1(A) € M,(C)*. Then for £ € M,(C)* the Shur product
product
Anéin o A
v HA) o B = : ;
)\ménl oo )\nnénn
belongs to M,,(C)*. Hence v~ (Av(E)) € M,,(C)*. This completes the proof.



Theorem 4.2. Under the order with respect to the cone v(M,(C)*), let A, B be
n2 x n? matrices with A > O,B > O and A> B > O. Suppose that both A and
B are diagonalizable by a unitary U, and Uv(M,(C)T) = v(Mp(C)*. Then there
exists a number s > 0 such that A® > B* > O for all z € [s,00).

Proof. Let C, D be diagonal matrices with A = UCU™!, B = UDU~". Since for
any elements v, w € v¥(M,(C)*)

((A = B)v,w) = (U(C — D)U v, w) = ((C — D)v,w),

we may assume that A, B are diagonal matrices. Put

)\11 )‘l O 1, " 0

2

A= . , B= . 3
O | An,, O ' Y,

with A, > 0,4, 20,1 < 7,7 < n. Then

Louf, e Moo
V—l(A:z;_Bm>:
T A

By Lemma 4.1 we obtain that A* — B® I> O holds if and only if v~ (A® — B®) is
positive semi-definite. We shall here denote f(x) by an arbitrary principal minor of
v~1(A%—B®). Then f(z) is expressed by a finite linear combination of z-th powers
of positive numbers. By the assumption A > B > O, we have A™ > B™ > O for
m = 1,2,---. This implies that f(m) > 0. It follows from Lemma 3.1 that there
exists a number s' > 0 satisfying f(z) > 0 for all z € [¢/,00). Consequetly, all
principal minors of ¥~ 1(A® — B%) are non-negative for all z more that a sufficiently
large number. This completes the proof.

It is immediate in the above theorem that, when B = O, A > O implies A® > O
for all z > 0 in the case of M2(C)™. In the next remark we give the example that
for a diagonal matrix A> O A°P¥ Ofor0<z <1,and A > O forz > 1.

Remark. Put
0)

/1

=
Sk
s

s
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Then

v (A) =

This implies immediately that A” ¥ O for 1<z <1,and A > O forz > 1.

5. THE CASE OF My(R)*

Theorem 5.1. (cf. [2]) Let A and B be matricial representations of linear trans-
formations on v(M(R),) with a self-dual cone v(Ma(R)™). If A and B are posi-
tive semi-definite and A > B > O, then there exists a positive number s such that
A% > B2 > O for all z € [5,00).

Proof. We may use in the proof the notation ‘>’ as follows: For A, B € My(R),
A > B> O means (A — B)(v(Ma(R)")) C v(M2(R)™, though this relation in
My(R) does not satisfy the symmetric law of the axiom of an order. Suppose
A,B € My(R)* and A > B> O. Let {ay,--- ,as} be the eigenvalues of A and
{as, -+ ,as} the eigenvalues of B. We then have

AT =U . U ,B*=V v,

0 o 0 - of

for some real orthogonal matrices U,V and = > 0. Put C(z) = A* — B® for z > 0.
Any element of M2(R)™ can be expressed as a convex combination of elements of
the boundary of M3(R)™ in the subspace M2(R)™ — MaR) ™ of all real symmetric
matrices. Hence, in order to prove C(z)(v(M2(R)T)) C v(M2(R)™), it suffices to
show that C(z)¢ € v(My(R)*) and C(z)n € v(M2(R)*) for

with b € R.
Step (i): In this part, we shall show that v~ (C(z)€) is symmetric for all z > 0.
We choose distinct eigenvalues {f;} of A and B such that £y > -+ > G, > 0
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(1< £<8). Then

£

£
SudPwsE S ulPmss
v HC(z)e) = | ¥51 k=1

£ £
S udPese Yo P s
k=1 k=1

Since C(1) &> O, we have C(m) &> O for all m € N. Hence v~1(C(m)¢) is positive
semi-definite. Hence a (1, 2)-component and a (2, 1)-component of this matrix are
equal, i.e.,

WP OB+ P BB = uEVOBE + -+ ug BB

form =1,2,---. Since G are distinct, we have p,(cl’z) = ;Lf(f’l) for all k. This yields
immediately that the off-diagonal components of v~ (C(z)¢) are equal.

Step (ii): Let
C(z) = [fij (@)} j=1-

Here f;;(z) is expressed as a finite linear combination of 5. Then

v HC(2)E) =

_ (f11($) + (f12(2) + fa(@)b+ fra(@)?  far(z) + (foo(2) + fas(z))b+ f24($)b2)
Fa1(z) + (fa2(z) + fas(@))b + faa(@)0?  fur(z) + (faz(x) + fas(2))b+ faa(z)0® )

In this part we first show that all diagonal components of v~ }(C(z)£) are non-
negative for all real numbers b, and all z more than a sufficiently large number
(which is independent on b). Since by the assumption every diagonal component
of v~1(C(m)¢)),m =1,2,- -+, is non-negative for all b € R, we have

f'“l(m) 20’ m = 1727"' 73.:174.

Suppose that fi4(z) is not identically 0. We then obtain from Lemma that fia(z) >
0 for all z more than a sufficiently large number. Hence every diagonal component
of v~1{(C(z)f) is expressed by

f¢2($+fi3($)))2 IC)

fia(x) (b+ 2fia(z) 4fia(z)

Here

9i(2) = 4fia(z) fur(z) — (fia(z) + fia(m))?.

Similarly, since g;(m) > 0 for m = 1,2, - - -, we obtaine that gi(z) > 0 for all z more
than a sufficiently large number. The above inequality is valid in the case where
fia(z) is identically 0. Indeed, if fi4(z) is identically 0, then fia(m) + fiz(m) =0
holds for m € N. For, if fi,2(mo) + fi,a(mo) # 0 for some ip and my, then the
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infimum of a diagonal component of v~(C(mg)f) is —oo. This contradicts the
condition that C(m) > O holds for all m € N. By Lemma, fia(z) + fiz(z) is
identically 0. In this case, it suffices to consider the function fi1(z) in the same
way.

Next, we examine the determinant of v~ *(C(z)£). Put

G = det v~ 1(C(x)¢).
Then G is expressed as
G = G, z) = ap(z)b* + a1 (z)b° + - -+ + as(z).

Here a;(r) is a finite linear combination of z-th powers of some positive numbers.
By the assumption we have

Gb,m)>0,—co<b<oo,m=1,2,---.

Suppose that ag(z) is not identically 0. Then ao(z) > 0 for all z for a sufficiently
large number, since ag(z) satisfies the hypothesis in Lemma. Put

L(z) = ggng G(b,x).

Then L(z) is given by the following formula:

L(z) = min, L;(z),

where L;(z) = G(Re b;(z), ) and b;(z) are all roots of the cubic equation G (b, z) =
0 of b. Note that b,(z) are algebraically expressed by a;(x), and are continuous for
all z more than a sufficiently large number. We must show the existence of a num-
ber s > 0 satisfying L(z) > 0 for all z € [s,00). Assume that there does not exist
such a number s. Then for every natural number m there exists y,, with y, > m
such that L, (ym) < 0 for some jo. Since L, (m) > 0 for all m € N, there exists by
the intermediate value theorem a positive sequence {z,} with limy, ,o00 Tm = 0
such that
Li(zm) =0, m=1,2,---.

Let L, (z) be a polynomial of a;(x) such that the set of all zeros of L;,(z) includes
the set of al zeros of L;, (z). Hence there exists an unbounded increasing sequence
of zeros of L, (z). Since Lj,(x) is a finite linear combination of z-th powers of
some positive numbers, it follows from Lemma that ﬁjn (z) is identically 0. This
is a contradiction. On the other hand, if ag(z) is identically 0, then ai(z) is also
identically 0 by the argument in the former part of Step (ii). In this case we also
obtain the same result.
Similarly, we obtain the desired properties for . This completes the proof.



The next remark shows that Theorem does not always hold for all positive
number z. We shall give the example that there exists a 4 x 4 positive semi-
definite matrix A with A > O satisfying A® ¢ O for z € [0,1).

Remark. Note that v{M,(R)™") is isometrically isomorphic to a circular cone

z
HT={¢= (y) €R31F(§):x2+y2—z2gO,zZO}.
\z

Consider the following positive semi-definite matrix A:

Then A > O. In fact, we have A% > O for all @ > 1. To see it, it suffices to

1

3*4+3 3*-3 2-3% cos @
6A4%n(#)=|3*—-3 3*+3 2-3° sin 8

cos .
examine that for n(f) = (sin@ ) we have F(A®n(6)) < 0 as follows:

2.3 2.3* 4.3% 1

(3% + 3) cos§ + (3% — 3)sinf +2- 3%
= | (8% —~3)cosf+ (3% + 3)sinf +2- 3%
(2-3% cosf+(2-3%)sinf +4-3%

and so

F(6A%n(f)) = 18 — 10 - 32 — (4 - 3%* + 36) cos fsinf — 8 - 3%*(cos § + sin f)

63

= —(36+4-3%)(cosf 4 1)(sinf + 1) — (4 - 3°* — 36)(2(cos @ + sin ) + 3)

<0

for « > 1 and 0 < 8 < 27. On the other hand, we shall show that for every
a € [0,1) there exists a real number 6y such that F(6A%n(fp)) > 0. Indeed, one
can choose fy satisfying

)‘ 9. 32

. . vis
cos g +sinfy = V2sin (60 + =)= 91 3%

4

since
2. 3% 1

a9+ 32) = V2

for 0 < a < 1. Taking a square of both sides of the above equalities, we have

0«

4-3%

1 +20059()Si1160 = m.
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It follows that for 0 < a < 1

2 3%
9 4 322

4‘34a

1} +8-3%.
G )

F(6A%7(6y)) = 18 — 10 - 3% — 2(9 + 3%%) (

36

= W(g— 320:) > 0,

from which we have A* I O. _
Finally, we obtain immediately the following theorem, which is understood to
be a matrix version of Lemma, reviewing the proof of Theorem 5.1:

Theorem 5.2. Let Ay, , A, be positive semi-definite matricial representations
of linear transformations on v(Ma(R),) with a self-dual cone v(Ma(R)T), and
ai,--- ,an be real numbers. Suppose that

at AT+ -+ an A B O
holds for m = 1,2,--- . Then there exists s > 0 such that
a1 AT+ -+ a, AL B O
for all z € [s,00).
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