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1 Introduction
Let $\Omega$ be a bounded domain in $\mathbb{R}^{n}$ and $K$ be a compact set contained in

$\Omega$ . We consider the so-called curvature equations of the form

$H_{k}[u]=S_{k}(\kappa_{1}$ , . . . $)\kappa_{n})=\psi$ in $\Omega\backslash K$ , (1.1)

where, for a function $u\in C^{2}(\Omega)$ , $\kappa_{1}$ , $\ldots$ , $\kappa_{n}$ are the principal curvatures of
the graph of the function $u$ , namely, the eigenvalues of the matrix

$\mathrm{C}$ $=D( \frac{Du}{\sqrt{1+|Du|^{2}}})=\frac{1}{\sqrt{1+|Du|^{2}}}(I-\frac{Du\otimes Du}{1+|Du|^{2}})D^{2}u$, (1.2)

and $S_{k}$ , $k=1$ , $\ldots$ , $n$ , is the $\mathrm{A};$-th elementary symmetric function, that is,

$S_{k}( \kappa)=\sum\kappa_{i_{1}}\cdots\kappa_{i_{k}}$ , (1.3)

where the sum is taken over increasing k-tuples, $\mathrm{i}_{1},$

$\ldots,$
$\mathrm{i}_{k}\subset\{1, \ldots n\}\mathrm{l}$ . The

mean, scalar and Gauss curvatures correspond respectively to the special
cases $k=1,2$ , $n$ in (1.3).

Here we consider generalized solutions to curvature equations, which are
solutions in a certain weak sense. In [23] the author introduced the notion
of generalized solutions to

$H_{k}[u]$ $=\nu$ , (1.4)

where $L^{J}$ is a non-negative Borel measure. Generalized solutions form a wider
class than classical solutions or viscosity solutions under the convexity as-
sumptions. In section 2, we give a definition of generalized solutions to
curvature eq uations with some examples
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In the previous article [24] , we discussed the removability of isolated sin-
gularities (i.e. $K=$ {one point}) for solutions to homogeneous k-curvature
equation (i.e. (1.1) with $\psi$ $\equiv 0$)

$\}$
both in the viscosity sense and in the

generalized sense. Among other things, we proved that for $1\leq k\leq n-1$ ,
isolated singularities are always removable under the continuity assumption
on the solution. In this article, we study the removability of singular sets of
generalized solutions to (1.4). We consider the following problem.

Problem: How large a singular set K can be allowed in the remov-
able singularity theorem?

For the case of $k$ $=1$ , which corresponds to the mean curvature equa-
tion in (1.1), such removability problems have been already studied. Bers
[2], Nitsche [20] and De Giorgi-Stampacchia [12] proved the removability of
isolated singularities for solutions to the equation of minimal surface $(\psi\equiv 0)$

or constant mean curvature ( $\psi$ is a constant function). Serrin $[21, 22]$ stud-
ied the same problem for a more general class of quasilinear equations of
mean curvature type. He proved that any weak solution $u$ to the mean cur-

’ vature type equation in $\Omega\backslash K$ can be extended to a weak solution in $\Omega$ if
the singular set $K$ is a compact set of vanishing $(n-1)$-dimensional Haus-
dorff measure. For various semilinear and quasilinear equations, there are a
number of papers concerning removability results.

Here we remark that (1.1) is a quasilinear equation for $k=1$ while
it is a fully nonlinear equation for $k\geq 2$ . It is much harder to study the
fully nonlinear equations’ case. For Mon$\mathrm{g}\mathrm{e}$-Ampere equations’ case, there are
some results about the removability of isolated singularities (see, for example,
$[3, 14])$ . However, until recently, no results are known for other types of fully
nonlinear elliptic PDEs except for the recent work of Labutin [16, 17, 18] who
have studied the case of uniformly elliptic equations and Hessian equations.

We note that for the case $k=n$ which corresponds to Gauss curvature
case, one has a solution to (1.1) with non-removable singularity at a single
point. For example,

$u(x)=\alpha|x|$ , $x\in\Omega=B_{1}(0)=\{|x|<1\}$ (1.5)

where $\alpha>0$ , satisfies the equation (1.1) with $\psi$ $\equiv 0$ and $K=\{0\}$ ? in the
classical sense as well as in the generalized sense. However, $u$ does not satisfy
$H_{n}[u]=0$ in $\Omega=B_{1}(0)$ (see Example 2.1 (1)). Accordingly, it is sufficient
to discuss our Problem for $1\leq k\leq n-1$ .

We state our main result in this article. We establish a removability result
for a singular set of a generalized solution to the curvature equation. This is
a Serrin type removability result for the curvature equation.
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Theorem 1.1. Let $\Omega$ be a convex domain in $\mathbb{R}^{n}$ and $K\Subset\Omega$ be a compact
set whose $(n-k)$ -dimensional Hausdorff measure is zero. Let $1\leq k\leq n-1$ ,
$\psi$ $\in L^{1}(\Omega)$ be a non-n egative function and $u$ be a continuous function in
$\Omega\backslash K$ . We assume that $u$ is a locally convex function in $\Omega$ and a generalized
solution to $H_{k}[u]=\psi dx$ in $\Omega\backslash K$ . Then $u$ can be defined in the whole domain
$\Omega$ as a generalized solution to $H_{k}[u]=\psi dx$ in $\Omega$ .

2 Viscosity solutions and generalized solutions

In this section we give the definition of viscosity solutions and generalized
solutions to curvature equations, both of which are solutions in a weak sense.

For a large class of elliptic PDEs, it is well kn own that one can consider a
function which is not necessarily differentiable in a usual (classical) sense as $\mathrm{a}$

solution to the equation. Many mathematicians have investigated solutions in
a generalized sense, such as weak solutions for quasilinear equations of diver-
gence type and distributional solutions for semilinear equations. Moreover,
in many nonlinear PDEs, the notion of viscosity solutions provides existence
and uniqueness theorem under mild hypotheses. Crandall, Evans, Ishii; Li-
ons and others have developed the theory of viscosity solutions since early
$1980’ \mathrm{s}$ (we refer to [9, 10, 11, 19]). First, we define the notion of viscosity
solutions to the equation

$H_{k}[u]=\psi(x)$ in $\Omega$ , (2.1)

where $\Omega$ is an arbitrary open set in $\mathbb{R}^{n}$ and $\psi$ $\in C^{0}(\Omega)$ is a non-negative
function.

We define the admissible set of &-th elementary symmetric function $S_{k}$

by

$\Gamma_{k}=$ {A $=(\lambda_{1)}\ldots$ , $\lambda_{n})\in \mathbb{R}^{n}|S_{k}(\lambda+\mu)\geq S_{k}(\lambda)$ for all $\mu_{i}\geq 0$} (2.3)
$=\{\lambda=(\lambda_{1}, \ldots, \lambda_{n})\in \mathbb{R}^{n}|S_{j}(\lambda)\geq 0, j=1, \ldots, k\}$.

Let $\Omega$ be an open set in Rn. We say that a function $u\in C^{2}(\Omega)$ is k-admissible
if $\kappa=$ $(\kappa_{1}, \ldots, \kappa_{n})$ belongs to $\Gamma_{k}$ for every point $x\in\Omega$ , where $\kappa_{1}$ , . . . , $\kappa_{n}$ are
the principal curvatures of the graph of $u$ at $x$ .

Remark 2.1. Let $1\leq k\leq n$ and u $\in C^{2}(\Omega)$ .
(i) $\Gamma_{k}$ is a cone in $\mathbb{R}^{n}$ with vertex at the origin, and

$\Gamma_{1}\supset\Gamma_{2}\supset\cdots\supset\Gamma_{n}=\Gamma_{+}=\{\lambda\in \mathbb{R}^{n}|\lambda_{i}\geq 0, i=1, \ldots, n\}$ . (2.4)

(ii) $u$ is n-ad missible if and only if $u$ is (locally) convex in $\Omega$ .
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Except for the case $k=1$ , equation (2.1) is not elliptic on all functions
$u\in C^{2}(\Omega)$ , but the following property is known.

Proposition 2.1. The operator $H_{k}$ is degenerate elliptic for k-admissible
functions.

This proposition is proved by Caffarelli, Nirenberg and Spruck $[4, 5]$ .

Now we define a viscosity solution to (2.1). A function $u\in C^{0}(\Omega)$ is said
to be a viscosity subsolution (resp. viscosity supersolution) to (2.1) if for any
$k$-admissible function $\varphi\in C^{2}(\Omega)$ and any point $x_{0}\in\Omega$ which is a maximum
(resp. minimum) point of $u-\varphi$ , we have

$H_{k}[\varphi](x_{0})\geq\psi(x_{0})$ (resp. $\leq\psi(x_{0})$ ). (2.5)

A function $u$ is said to be a viscosity solution to (2.1) if it is both a viscosity
subsolution and supersolution.

Remark 2.2. (i) The notion of viscosity subsolution does not change if all
$C^{2}(\Omega)$ functions are allowed as comparison functions $\varphi$ .

(ii) One can prove that a function $u\in C^{2}(\Omega)$ is a viscosity solution to
(2.1) if and only if it is a $k$-admissible classical solution. Therefore, the notion
of viscosity solutions is weaker than that of classical solutions.

The existence and uniqueness of Lipschitz solutions to the Dirichlet prob-
$\mathrm{l}\mathrm{e}\mathrm{m}$ in the viscosity sense was established by Trudinger [$25_{\mathrm{J}}^{\rceil}$ , under natural
geometric restrictions and under relatively weak regularity hypotheses on $\psi$ ,
for instance $\psi_{\mathrm{F}}^{1}\in C^{0,1}(\overline{\Omega})$ .

However, the requirement that $\psi$ is a regular function is a serious lim-
itation for curvature equations (for example, see Example 2.1 (1)). Weak
solutions for quasilinear equations and distributional solutions for semilin-
ear equations have an integral nature, while viscosity solutions do not have.
It is difficult to define solutions with an integral nature for fully nonlinear
PDEs. For some special types of fully nonlinear PDEs, one can introduce an
appropriate notion of solutions that have such property, such as generalized
solutions for the class of Monge-Ampere type equations (see [1, 6]) and for
Hessian equations (see [8, 26, 27, 28]). We note that for $k=n$ , (1.1) is
a Monge-Ampere type equation. However, the concept of generalized solu-
tions to curvature equations for $k=1$ , $\ldots$ , $n-1$ has not been treated in the
literature. Recently, the author [23] established a definition of generalized
solutions for such cases as well as for $k=n$ , which allows the inhomogeneous
term $\psi$ to be a Borel measure



95

We give the definition of generalized solutions to curvature equations.
We state some notations which we shall use. We assume that $\Omega$ is an open,
convex and bounded subset of $\mathbb{R}^{n}$ and we look for solutions in the class of
convex and (uniformly) Lipschitz functions defined in $\Omega$ . For a point $x\in\Omega$ ,
let $\mathrm{a}\mathrm{o}\{\mathrm{u}$ ; $x$ ) be the set of downward normal unit vectors to $u$ at $(x, u(x))$ .
For a non-negative number $\rho$ and a Borel subset $\eta$ of $\Omega$ , we set

$Q_{\rho}(u;\eta)=\{z\in \mathbb{R}^{n}|z=x+\rho v, x\in\eta, v\in\gamma_{u}(x)\}$ , (2.6)

where $\gamma_{u}(x)$ is a subset of $\mathbb{R}^{n}$ defined by

$\gamma_{u}(x)=$ { $(a_{1}$ , $\ldots$ , $a_{n})|(a_{1}$ , $\ldots$ , $a_{n}$ , $a_{n+1})\in$ Nor$(u;x)$ }. (2.7)

The following theorem, which is an analogue of the so-called Steiner type
formula, plays an important part in the definition of generalized solutions.

Theorem 2.2. {[$23$, Theorem l.lf) Let $\Omega$ be an open convex bounded set in
$\mathbb{R}^{n}$ and $u$ be a convex and Lipschitz function defined in O. Then the following
hold.

(i) For every Borel subset $\eta$ of $\Omega$ and for every $\rho\geq 0_{\lambda}$ the set $Q_{\rho}(u;\eta)$ is
Lebesgue measurable.

(ii) There exist $n+1$ non-negative, finite Borel measures $\sigma_{0}(u$ ; $\cdot$ $)$ , . . . ,
$\sigma_{n}(u$ ; $\cdot$ $)$ such that

$\mathcal{L}^{n}(Q_{\rho}(u,\cdot\eta))=\sum_{m=0}^{l?}$ $(\begin{array}{l}nm\end{array})$ $\sigma_{m}(u;\eta)\rho^{m}$ (2.8)

for every $\rho\geq 0$ and for every Borel subset 7 of $\Omega$ , where $\mathcal{L}^{n}$ denotes the
$n$ -dirnensional Lebesgue measure.

Remark 2.3. The measures $\sigma_{k}(u$ ; $\cdot$ $)$ determined by $u$ are characterized by
the following two properties.

(i) If $u\in C^{2}(\Omega)$ , then for every Borel subset $\eta$ of $\Omega$ ,

$(\begin{array}{l}nk\end{array})$ $\sigma_{k}(u;\eta)=\int H_{k}[u](x)dx$ . (2.9)

(The proof is given in [23, Proposition 2.1].)
(ii) If $u_{i}$ converges uniformly to $u$ on every compact subset of $\Omega$ , then

$\sigma_{k}(u_{i};\cdot)arrow\sigma_{k}(u,\cdot\cdot)$ (weakly) (2.10)

Therefore we can say that for $k=1$ , $\ldots$ , $n$ , the measure $(\begin{array}{l}nk\end{array})$ $\sigma_{k}(u$ ; $\cdot$ $)$ gener-

alizes the integral of the function $H_{k}[u]$ . Moreover, if the curvature equation
(1.1) has a convex solution, then $\psi$ must be a Borel measure.
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Now we state the definition of a generalized solution to (1.4).

Definition 2.3. Let $\Omega$ be an open convex bounded set in $\mathbb{R}^{n}$ and $\nu$ be $\mathrm{a}$

non-negative finite Borel measure on $\Omega$ . A convex and Lipschitz function
$u\in C^{0,1}(\Omega)$ is said to be a generalized solution to

$H_{k}[u]=\nu$ in $\Omega$ , (2.11)

if it holds that

$(\begin{array}{l}nk\end{array})$ $\sigma_{k}(u;\eta)=\iota/(\eta)$ (2.12)

for every Borel subset $\eta$ of $\Omega$ .

We note that one can also define the notion of a generalized solution stated
above when $\Omega$ is merely an open set which is not necessarily convex and $u$ is
a locally convex function in $\Omega$ . Indeed, we shall say that $u$ is a generalized
solution to (2.11) if for any point $x\in\Omega$ and for any ball $B=B_{R}(x)\subset\Omega$ ,

$\ell$

$(2.12)$ holds for every Borel subset $\eta$ of $B_{R}(x)$ .
Here are some examples of generalized solutions.

Example 2.1. Let $B_{1}(0)$ be a unit ball in $\mathbb{R}^{n}$ and a be a positive constant.
(1) Let $u_{1}(x)=\alpha|x|$ , which is a function we have already seen in (1.5),

is a generalized solution to

$H_{n}[u_{1}]=( \frac{\alpha}{\sqrt{1+\alpha^{2}}})^{n}\omega_{n}\delta_{0}$ in $B_{1}(0)$ , (2.13)

where $\omega_{n}$ denotes the volume of the unit ball in $\mathbb{R}^{n}$ , and $\mathit{5}_{0}$ is the Dirac
measure at 0.

(2) Let $u_{2}(x)=\alpha\sqrt{x_{1}^{\mathrm{i}1}+\cdots+x_{k}^{2}}$ , where $x=(x_{1}$ , . . . , $x_{n})$ . One can see
that $u_{2}$ cannot be a viscosity solution to $H_{k}[u_{2}]=\psi$ in $B_{1}(0)$ for any $\psi\in$

$C^{0}(B_{1}(0))$ . However, $u_{2}$ is a generalized solution to

$H_{k}[u_{2}]=( \frac{\alpha}{\sqrt{1+\alpha^{2}}})^{k}\omega_{k}\mathcal{L}^{n-k}\lfloor T$ in $B_{1}(0)$ , (2.14)

where $\omega_{k}$ denotes the $k$-dimensional measure of the unit ball in $\mathbb{R}^{k}$ and $T=$
$\{(x_{1}, \ldots, x_{n})\in B_{1}(0)|x_{1}=\cdots=x_{k}=0\}$ .

We state some properties of generalized solutions to (2.11) defined above
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Remark 2.4. (i) If $u\in C^{2}(\Omega)$ is a generalized solution to (2.11), then $u$ is
a classical solution to $H_{k}[u]=\psi$ for some $\psi\in C^{0}(\Omega)$ and $\nu=\psi(x)dx$ .

(ii) For $k=n$ which corresponds to Gauss curvature equation, there is
a notion of generalized solutions, since they are in a class of Monge-Ampere
type. As far as the Gauss curvature equation is concerned, the definition of
generalized solutions for Monge-Ampere type equations coincides with the
one introduced in Definition 2.3. (The proof is given in [23, Theorem 3.3].)

In the last part of this section, we prove that the notion of generalized
solutions is weaker than that of viscosity solutions in some sense.

Proposition 2.4. Let $1\leq k\leq n$ and $\Omega$ be an open convex bounded set in
$\mathbb{R}^{n}$ . Let $\psi$ be a positive function with $\psi^{1/k}\in C^{0,1}(\overline{\Omega})$ and $u$ be a locally convex
function in $\Omega$ . if $u$ is a viscosity solution to $H_{k}[u]=\psi$ in $\Omega_{\mathrm{Z}}$ then $u$ is $a$

generalizel solution to $H_{k}[u]=\nu$ in $\Omega$ , where $\nu=\psi(x)dx$ .

Proof, Let $x_{0}$ be any point in Q. We wish to show that $u$ is a generalized
solution to $H_{k}[u]=\nu$ $dx$ in some ball centered at $x_{0}$ . We fix a sufficiently
small constant $r>0$ such that

$|| \psi||_{LE(B_{r}(x\mathrm{o}))}n<\frac{1}{2}$ $(\begin{array}{l}nk\end{array})$

$\omega^{\frac{k}{n^{n}}})$ (2.15)

which assures $C^{0}- \mathrm{a}$ priori bound for a solution to $H_{k}[u]=\psi$ (see [25]). We
may assume that $\Omega=B_{r}(x_{0})$ .

First we extend the function $u$ to a convex function defined in $\mathbb{R}^{n}$ , which is
proved in [7]. Let $\varphi$ be a non-negative function in $C_{0}^{\infty}(\mathbb{R}^{n})$ vanishing outside

$B_{1}(0)$ and satisfying $\int_{B_{1}(0)}\varphi dx=1$ . We define

$\varphi_{\epsilon}(x)=\frac{1}{\epsilon^{n}}\varphi(\frac{x}{\epsilon})$ , (2.16)

and set $u_{i}=\varphi\underline{1}*u$ , the regularization of $u$ . It turns out that $u_{i}$ converges
uniformly to $u\ln\Omega i$ as $\mathrm{i}arrow\infty$ .

Next, iet $\{\Omega_{i}\}_{0=1}^{\infty}$ be a sequence of convex domains such that $\Omega_{1}\subset\subset\Omega_{2}\subset\subset$

$\ldots$ and that $\Omega=\bigcup_{i=1}^{\infty}\Omega_{i}$ . In the case of $1\leq k\leq n-1$ , we take $\{\psi_{i}\}_{i=1}^{\infty}\subset$

$C^{\infty}(\overline{\Omega})$ which satisfies that

$\psi_{i}arrow\psi$ in $L^{1}(\Omega)$ and uniformly in $C^{0}(\overline{\Omega_{j}})$ for every $j\in \mathrm{N}$ , (2.17)
for every $j \in \mathrm{N},\sup_{i=1,2},\ldots|D\psi_{i}|$ is bounded in $\Omega_{j}$ , (2.18)

$S_{k}(\kappa_{1}’, .. . ’ \kappa_{n-1}’,0)\geq\psi_{i}$ on an, (2.19)



98

where $\kappa’=$ $(\kappa_{1}’, \ldots, \kappa_{n-1}^{l})$ denotes the principal curvatures of the boundary
an and that

$\psi_{i}>0$ in $\overline{\Omega}$. (2.20)

For $k=n$ , the condition (2.20) is replaced by

$\psi_{i}>0$ in 1) and $\psi_{i}=0$ on an. (2.21)

One can get $\{\psi_{i}\}_{i=1}^{\infty}$ by using the regularizations of $\psi$ .
Now we consider the following Dirichlet problem:

$\{$

$H_{k}[v_{i}]=\psi_{i}$ in $\Omega$ ,
$v_{i}=u_{i}$ on an. (2.22)

By virtue of the results in $[13, 25]$ , there exists a unique classical solution
$v_{i}\in C^{\infty}(\overline{\Omega})$ to (2.20)

$)$ for sufficiently large $\mathrm{i}$ . From the maximum principle
[25], the sequence $\{v_{i}\}$ is uniformly bounded. We also see that for any open
set $\Omega’\subset\subset\Omega$ , the interior gradient bound by Korevaar [15] implies that $\{v_{i}\}$

is equicontinuous in $\Omega’$ . Therefore, using the diagonal argument, we deduce
from Ascoli-Arzela’s theorem that there exists a subsequence of $\{v_{i}\}$ (we
relabel it as $\{v_{i}\}$ again) converging uniformly to some function $v\in C^{0}(\Omega)$ on
every compact subset of $\Omega$ . By the stability property of viscosity solutions,
it follows that $v$ is a viscosity solution to

$\{$

$H_{k}[v]=\psi$ in 0,
$v=u$ on an. (2.23)

The uniqueness of solutions to the Dirichlet problem (2.23) implies that $u\equiv v$

in $\Omega$ .
We set

$\mu_{i}(\eta)=\int_{\eta}\psi_{i}(x)dx$ (2.24)

for Borel subset $\mathrm{n}\mathrm{y}$ of O. From (2.17), we obtain

$\mu_{i}arrow\nu$ (strongly). (2.25)

On the other hand; from the uniform convergence of $\{v_{i}\}$ on every compact
subset of $\Omega$ and Remark 2.3 (ii) (see also [23, Proposition 3.2]), we see that

$\mu_{i}arrow(\begin{array}{l}nk\end{array})$ $\sigma_{k}(u;\cdot)$ (weakly). (2.26
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Then, the uniqueness of the weak limit yields

$(\begin{array}{l}nk\end{array})$ $\sigma_{k}(u;\eta)=l\psi(x)dx$ (2.27)

for every Borel subset 7 of $\Omega$ . Hence the proposition is proved. $\square$

3 Proof of Theorem 1.1
Before giving a proof of Theorem 1.1, we introduce some notations. We

write $x=$ $(x_{1}, \ldots, x_{n-1}, x_{n})=(x_{\mathrm{J}}’x_{n})$ , $x’\in \mathbb{R}^{n-1}$ . $B_{r}^{n-1}(x’)\subset \mathbb{R}^{n-1}$ denotes
the $(n-1)$-dimensional open ball of radius $r$ centered at $x’$ .

Proof. The proof is split into two steps.

Step 1. (Extension of $u$ to a convex function in $\Omega$)
Here we prove that $u$ can be extended to a convex function in the whole

domain $\Omega$ . The idea of the proof is adapted from that of Yan [29].
Let $y$ , $z$ be any two distinct points in $\Omega\backslash K$ . Without loss of generality

we may assume that $y$ is the origin and $z$ $=(0, \ldots, 0, 1)$ . First we prove the
following lemma.

Lemma 3.1. There exist sequences $\{yj\}_{j=1}^{\infty}$ , $\{z\mathrm{j}\}_{j=1}^{\infty}\subset\Omega\backslash K$ such that yj $arrow$

y, $z_{j}arrow z$ as j $arrow\infty$ and

$[y_{j}, z_{J}]=\{ty_{j}+(1-t)z_{j}|0\leq t\leq 1\}\subset\Omega\backslash K$. (3.1)

Proof. To the contrary, we suppose that there exist $\mathit{5}>0$ such that for
every $\tilde{y}\in B_{\mathit{5}}(y)$ and for every $\tilde{z}\in B_{\delta}(z)$ , there exists $\tilde{t}\in(0, 1)$ such that
$\overline{t}\tilde{y}+$ $(1 -\overline{t})\overline{z}\in K$ . Here we note that $\tilde{t}\overline{y}+(1 -\tilde{t})\tilde{z}$ must be in $\Omega$ since $\Omega$

is assumed to be convex. In particular, if we set $\tilde{y}=$ $(a_{1}, \ldots, a_{n-1}, 0)$ , $\tilde{z}=$

$(a_{1}, \ldots, a_{n-1},1)$ with $a’=(a_{f}, \ldots, a_{n-1})\in B_{\delta}^{n-1}(0)$ , one sees that there exists
$t_{a’}\in$ $(0, 1)$ such that $(a’, t_{a’})\in K$ . We define the set $V$ by

$V=\{(a_{7}’t_{a’})|a’\in B_{\mathit{5}}^{n-1}(0)\}$ . (3.2)

Clearly $V\subset K$ .
The assumption on $K$ implies that the $(n-1)$ -dimensional Hausdorff

measure of $K$ is zero. Hence there exist countable balls $\{B_{r_{i}}(x_{i})\}_{i=1}^{\infty}$ such
that

$K\subset\cup B_{r_{i}}(x_{\mathfrak{g}})i=1\infty$ and $\sum_{i=1}^{\infty}r_{i}^{n-1}<\delta^{n-1}$ . (3.3)
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It follows that $V$ is also covered by $\{B_{r_{i}}(x_{i})\}_{i=1}^{\infty}$ . By projecting both $V$ and
$\{B_{r_{i}}(x_{i})\}_{i=1}^{\infty}$ onto $\mathbb{R}^{n-1}\rangle\langle$ $\{0\}$ , we have that

$B_{\delta}^{n-1}(0)\subset\cup B_{r_{l^{l}}}^{n-1}(x_{\tau}’)i=1\infty$ . (3.4)

Taking $(n-1)$-dimensional measure of each side of (3.4), we obtain that

$\omega_{n-1}\delta^{n-1}\leq\sum_{i=1}^{\infty}\omega_{n-1}r_{i}^{n-1}<\omega_{n-1}\delta^{n-1}$ , (3.5)

which is a contradiction. Lemma 3.1 is thus proved. $\square$

Let $\lambda\in[0,1]$ and set $x=$ Ay $+(1-\lambda)z\in\Omega\backslash K$ . Rom the above lemma
and the local convexity of $u$ , it follows that

$u(x)\leq\lambda u(y_{j})+(1-\lambda)u(z_{J})$ (3.5)

for all $j\in \mathrm{N}$ , where $\{y_{j}\}_{j=1}^{\infty}$ and $\{z_{j}\}_{j=1}^{\infty}$ are sequences which we obtained in
’ Lemma 3.1. Since $u$ is locally convex in $\Omega\backslash K$ , $u$ is continuous in $\Omega\backslash K$ .

Taking $jarrow\infty$ ,

$u(x)\leq$ Au(y) $+(1-\lambda)u(z)$ . (3.7)

Next let $U$ be the supergraph of $u$ , that is,

$U=\{(x, w)|x\in\Omega\backslash K, w \geq u(x)\}\subset \mathbb{R}^{n+1}$ , (3.8)

and for every set $X\subset \mathbb{R}^{n+1}$ , $\mathrm{c}\mathrm{o}X$ denotes the convex hull of $X$ . Now we
define the function $\tilde{u}$ by

$\tilde{u}(x)=\inf$ { $w\in \mathbb{R}|(x,$ $w)\in$ co $U$ }. (3.9)

One can easily show that the convex hull of $\Omega\backslash K$ (in $\mathbb{R}^{n}$) is $\Omega$ , so that $\overline{u}$ is
defined in the whole $\Omega$ . Moreover , $\tilde{u}$ is a convex function due to the convexity
of $\mathrm{c}\mathrm{o}$ $U$ . Finally, we show that $\tilde{u}$ is an extension of $u$ defined in $\Omega\backslash K$ . To
see this, fix a point $x\in\Omega\backslash K$ . The definition of $\tilde{u}$ follows that $\tilde{u}(x)\leq u(x)$ .
Taking the inffmum of the right-hand side of (3.7) over all $y$ , $z\in\Omega\backslash K$ , we
have that $u(x)\leq\tilde{u}(x)$ . Consequently it holds that $u\equiv\tilde{u}$ in $\Omega\backslash K$ . $\tilde{u}$ is the
desired function.

Step 2. (Removability of the singular set K)
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We denote the extended function constructed in Step 1 by the same sym-
bol $u$ . Theorem 2.2 implies that there exists a non-negative Borel measure $\nu$

whose support is contained in $K$ such that $u$ is a generalized solution to

$H_{k}[u]=\psi dx+\nu$ in $\Omega$ . (3.10)

We fix arbitrary $\epsilon$ $>0$ . By the assumption we can cover $K$ by countable
open balls $\{B_{r_{i}}(x_{i})\}_{i=1}^{\infty}$ such that

$\sum_{i=1}^{\infty}r_{i}^{n-k}<\epsilon$. (3.11)

For any $\rho\geq 0_{7}$ it holds that

$\omega_{n}(r_{i}+\rho)^{n}\geq \mathcal{L}^{n}(Q_{\rho}(u;B_{r_{i}}(x_{\mathrm{i}})))$ (3.12)

$= \sum_{m=0}^{n}$ $(\begin{array}{l}nm\end{array})$ $\sigma_{m}(u; B_{r_{i}}(x_{i}))\rho^{m}$

$\geq(\begin{array}{l}nk\end{array})$ $\sigma_{k}(u;B_{r_{i}}(x_{i}))\rho^{k}$

$=( \int_{B_{r_{i}}\{x_{\dot{\mathrm{t}}})}\psi dx+\nu(B_{r_{i}}(x_{i})))\rho^{k}\geq\nu(B_{r_{i}}(x_{i}))\rho^{k}$ .

The first inequality in (3.12) is due to the fact that $Q_{\rho}(u;B_{r_{\mathrm{t}}}(x_{i}))\subset B_{r_{i}+\rho}(x_{i})$ ,
since taking any $z\in Q_{\rho}$ $(u;B_{r_{i}}(x_{i}))$ we obtain

$|z-x_{i}|=|y+\rho v-x_{i}|\leq|y-x_{i}|+\rho|v|<r_{i}+\rho$ , (3. i3)

for some $y\in B_{r_{i}}(x_{i})$ , $v$ $\in\gamma_{u}(y)$ . Inserting $\rho=r_{i}$ in (3.12), we obtain that
$\omega_{n}2^{n}r_{l}^{n}\geq\nu(B_{r_{i}}(x_{i}))r_{i}^{k}$. (3.14)

Consequently, it holds that
$l/$ $(B_{r_{i}}(x_{\iota}))\leq\omega_{n}2^{n}r_{i}^{n-k}$ . (3.15)

Now taking the summation for $i\geq 1$ , we have that

$\nu(K)\leq\nu$ $( \bigcup_{i=1}^{\infty}B_{r_{i}}(x_{i}))$ (3.16)

$\leq\sum_{i=1}^{\infty}\nu(B_{r_{i}}(x_{i}))$

$\leq\sum_{i=1}^{\infty}\omega_{n}2^{n}r_{i}^{n-k}$

$<\omega_{n}2^{n}\epsilon$ .
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Since we can take $\in$ $>0$ arbitrarily, we see that $\nu(K)=0$ . Therefore, $\nu$ $\equiv 0$ .
We conclude that $K$ is a removable set. $\square$

We see from Example 2.1 (2) that the number (n-k) in Theorem 1.1 is
optimal, since the Hausdorff dimension of T is n-k.

4 Future work
There are a number of results concerning the Dirichlet problem for curva-

ture equations (1.1) in the literature, for general $k=1,2$ , $\ldots$ , $n$ . Such prob-
lems were investigated by Caffarelli, Nirenberg and Spruck [5] and Ivochkina
[J3] in the classical sense, and by ’budinger [25] in the viscosity sense.

Therefore, it seems an interesting problem to study the solvability of the
Dirichlet problem

$\{$

$H_{k}[u]=\nu$ in $\Omega$ ,
$u=\varphi$ on an, (4.1)

in the class of generalized solutions, where $\nu$ is a non-negative Borel measure,

For $k=n$ (Gauss curvature case) which is an equation of Monge-Ampere
type, the existence and uniqueness of generalized solutions to the Dirichlet
problem (4.1) in a bounded convex domain have been studied. We refer the
reader to [1], for example. We would like to seek appropriate conditions on $\nu$

which guarantee the solvability of generalized solutions to (4.1) for the case of
$1\leq k\leq n-1$ . However, we obtain few results about that so far. Theorem 1.1
in this article implies that, for example, there exist no generalized solutions
to (4.1) when $1\leq k\leq n-1$ and $\nu$ $=C\delta_{x\mathrm{o}}$ where $C$ is a positive constant
and $\delta_{x\mathrm{o}}$ is a Dirac delta measure at $x_{0}\in\Omega$ . In fact, if we write $\nu$ $=\psi dx+\mu$

where $\psi$ is a non-negative $L^{1}(\Omega)$ function and $\mu$ is the singular part of $\nu$ with
respect to the Lebesgue measure, then either of the two alternatives must
hold:

(i) the $(n-k)$-dimensional Hausdorff measure of the support of $\mu$ is non-
zero; or

(ii) $\mu=0$ .
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