Obooo0ooooOonoO 14280 20050 143-149

143

A NOTE ON THE HOMOGENIZATION
OF FULLY NONLINEAR DEGENERATE ELLIPTIC EQUATIONS

Hitoshi Ishii *
(BHCF RREXT #HF - RERFLME)

Abstract. In this note we describe some of results on the homogenization of fully
nonlinear degenerate elliptic equations in the frame work of periodic homogenization,
which have been obtained in a joint work with K. Shimano and P. E. Souganidis [4].

1. Periodic homogenization

We study the periodic homogenization for degenerate elliptic equations. Let 2 C RV
be a bounded open set. Here N = n +m, with n, m € N, RY = R" x R™, and a
generic point z € RY will be denoted as z = (z,y), with z € R" and y € R™. We
consider the Dirichlet problem

F(Dqu,Dyue,m,y, —::—, Q) =0 in$,

5
u® =0 on 0f1,

L)

where F' is a real-valued continuous function on 8™ x R x O xR™ xR™, S™ denotes the
space of n x n real symmetric matrices, uf = u¥(x,y) represents the unknown function,
and £ > 0 is a parameter to be sent to zero.
Throughout this note we assume:
(AD) F(X,4,2,¢) = Fo(X,2) + Fi(g: 2, ¢), where Fo € C(S™ x Q) and Fy € C(R™ x
Q x RY).
(A1) The functions (¢) — F1(q, z,¢) are periodic with period 7N ie., for all (q,2) €
R™ x 0, ¢ € RY, and ¢’ € ZV,

Fl(Q>z’C+ C’) = Fl(Qizag)'

(A2) The function Fy is uniformly elliptic. That is, there are constants 0 <A < A< co
such that for all X, P € 8" and z € Q, if P >0, then

—AtrP < Fo(X + P,z) — Fo(X,2) £ —Atr P.
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(A3) There are constants Cp > 0 and « > 0 such that forallg € R™, 2z € Q, and
(eRY,
CO.IIQIK' - CO S Fl (Q= 2, () S CO(IQIH + 1)

(A4) Foreach R > 0 there is a continuous non-decreasing function pg : [0, 00) — [0, 00),
with pg(0) = 0, such that for all X, X', Y € 8", 2,7 € Q, and o > L, if [[Y|| < R

and L, O X L I
n 0 n —4n
(G )< (0 w)s= (G o)

then ‘
Fo(Y + X, 2) — Fp(Y = X', 2') > —prlalz — 2> + ]2 - 2|).

Here and henceforth I, denotes the unit matrix of order n.
(A5) There is a continuous non-decreasing function p; : [0,00) — [0,00), with
p1(0) = 0, such that for all g € R™, 2,2/ € Q, and (&,7), (&',7) € RY,

\Fi(g,2,€,m) — Fi(g, 2, &, 0")| < pr((lal + (|2 = 2| + [n = ']} + 1€ = €]

(A6) F(0,0,2,¢) <0 for all (2,¢) € 2 x RV,

(A7) For compact subsets K of R™, the functions (g,7) — Fi(g, z,§,7n) are Lipschitz
continuous on K x R™. More precisely, for each compact K C R™ there is a
constant Cx > 0 such that for all ¢,¢' € K, 2 € Q, £ € R", and 1, € R™,

|Fi(g,2,&,m) — Fi(d, 2,6,17)| < Cxllg —¢'| + In = 7))

Our last assumption concerns the domain 2, which is stated under the assumptions
of (A0), (A1), and (A3). Set Mp = max, gmax{—Fp(0,2),0}. For any r > 0 we
introduce a constant A, > 0 which depends only on r > 0, My, the constants Cp, &
from (A3), the constants A, A from (A2), and diam (€2). One possible choice of A; is
described as follows. We define o > 1, My > 0, B > 1, L > 0, and A, in this order by

A+1 i

a=1+—5 My = [Co(Cy + Mo)]* diam (9),
& M. M 1

B=1+500 4 =l L= [Go(Co+ Mo+ 20BA)]F,
ta 3

Ar=1+ir—L.

For any (£,17) e RN, r > 0, and A > 0 we set

B mrA) ={(z,y) e RY ||z - ¥ + A®ly — n|* <%},
I={(&n) e RN |E(,n;r, A)NQ =0}
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(A8) There are constants r > 0 and A > A, such that

Q=RN\ ] E(&mrA).
(&mel

This condition may be considered as an “ellipse” version of the uniform exterior
sphere condition.

Henceforth T* denotes the k-dimensional torus R*/Z*. We identify any function f
on T* with the periodic function g with period Z* given by g(z) = f(n(z)) for z € RF,
where 7 denotes the projection: R* 3 z — z + Zk e Tk,

Example. A typical example of equations which satisfies (A0)—(A3) is given by

~a(@, 5) At +b(z,y, DDyl = F@,v, 2 2)

where a € C(§), b€ C(@ x T™), f € C(E¥ x TV), and

mina > 0, _min b > 0.
Q OxRm™
If the functions @ and b are Lipschitz continuous, then (A4) and (A5) are satisfied.
If f > 0, then (A6) is satisfied. If b(z,n) and f (2,€,7) are Lipschitz continuous in 7
uniformly for (z,y,&) € RN x R™, then (A7) is satisfied.

Assumptions (A4) and (A5) are made so that the uniqueness of solutions for (1) and
the Dirichlet problem for the effective equation (see (4) below) is valid. Assumption
(A6) guarantees that the function u(z,y) :==01is a subsolution of (1). Assumption (A8)
is made in order to guarantee, together with (A2), (A3), and (A0), the existence of a
supersolution for (1).

2. Effective equations

The following pair of cell problems describes the effective equation, i.e., the PDE
which characterizes the limit function of the solutions u® of (1).
Cell problem I: given (X,q,2,1) € S™ x R™ X 0 x R™, find a constant G(X, ¢, 2,7)
and a viscosity solution w € C(T™) of

(2) F(X + D*w(£),q,2,¢,n) = G(X,q,2,m) inR"

Cell problem II: given (X,q,2) € 8" x R™ X Q) find a constant H(X,q,z) and a
viscosity solution v € C(T™) of

(3) G(X,q+ Dv(n),z,n) = H(X,q,z) in R™.
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The limit function of solutions u¢ of (1} will turn out to be the unique solution of
the Dirichlet problem for the effective equation:

(@ { H(D2u,Dyu,z,y) =0 in &,

=0 on 0.

Some properties of the effective functions G and H are given in the following propo-
sitions.

Proposition 1. For each (X, ¢,z 1) € S* x R™ x {1 x R™ there is a unique constant
G(X,q,z,1) € R such that (2) has a viscosity solution w € C(T").

Proposition 2. The function G : S® x R™ x 0 x R™ — R is continuous. Moreover G
is uniformly elliptic, that is, for all X, P € 8%, (g,2,n7) € R™ x 1 x R™, if P > 0, then

—AtrP<G(X +P,q,2,n) — G(X,q,2,n) < —Atr B,

where the constants A and A are those from (A2).

Proposition 3. For each R > 0 there is a continuous non-decreasing function pg :
[0, 00) — [0, 00), with pr(0) = 0, such that for all X, X", Y € 8", ¢ € R™, 2, Z € q,
n,7 € R™, and a > 1, if ||Y|| £ R and

I, 0O X 0 I, -I,
()< (3 x)s=(h W)

G(Y +X1 q,%, 77) - G(Y - XI)Q’ Z’>77,)
> —pr(elz— 2P+ 1+ )|z = 2 + In = n'D)-

then

Proposition 4. For all (X,q,2,1) € S® x R™ x O x R™, we have
Cytlgl® — Co < G(0,q,2,m) — F5(0,2) < Co(la]™ + 1),

where the constants Cy and x are those from (A3).

Proposition 5. For each (X, ¢, z) € 8" xR™x{ there is a unique constant H(X, g,z) €
R such that (3) has a viscosity solution v € C(T™).

Proposition 6. The function H : 8™ x R™ X Q0 — R is continuous and uniformly
elliptic, that is, for all X, P € 8" and (g,2) € R™ x R¥, if P > 0, then

—AtrP< H(X+P,q,z)— H(X,q,2) < =Atr P,

where A and A are the counstants from (A2).
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Proposition 7. For each R > 0 there is a continuous non-decreasing function

PR : [(_)loo) — [0,00), with pr(0) = 0, such that for all X, X", Y € 8", ¢ € R™,
2,2 €Q,and a> 1, if Y]] < R and

I, 0 X 0 I, ~I
— < o n
()= (5 0)=(5 5,

H(Y + X,q,2) — HY — X',q,2') > =pr(elz - 2> + (L + |a]) |2 — Z'])-

then

Proposition 8. For all (X,q,2) € S® x R™ x §, we have

] X < <
Inin, G(X,q,2,m) < H(X,q,2) < Jnax. G(X,q,zn),

and, in particular,
Cotlgl® = Co < H(0,9,2) — Fo(0,2) < Co(jal" +1),
where Cy and & are the constants from (A3).

3. Homogenization
We begin with an existence theorem for (1) and (4).

Theorem 1. For each ¢ € (0, 1) there is a unique viscosity solution u® € C(Q) of (1)
and a unique viscosity solution u € C(R2) of (4).

One can use the Perron method for the proof of the theorem above and then a crucial
observation is that there is a non-negative function 3 € C (Q) vanishing on 9§} which is
both a viscosity supersolution of (1) and of (4).

The main result in this note is the following:

Theorem 2. Foreach e € (0,1) let u® € C (1) be the unique viscosity solution of (1)
and u the unique viscosity solution of (4). Then, as & — 0,

u®(z) —» u(z) uniformly on Q.

Brief outline of proof. Part of the following arguments is heuristic, which simplifies

the arguments.
First we define @ € USC(Q2) by

(z, y) = limsup'u®(z, y).
e\0
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By a barrier argument, we can show that
Ulan < 0.
In order to show that 7 is a viscosity subsolution of
(5) H(D2u,Dyu,z,y) =0 in,

let ¢ € C%(1) and assume that % — ¢ attains a strict maximum at z = (Z, ) € Q. We

need to show that

H(X’gi )<O’

Ny

where X = D2p(2) and § = Dyp(Z).
Let v € C(T™) be a viscosity solution of

G(X,§+ Du(n),zn) = H(X,q,2) inR™.

Let w € C(T™ x R™ x T™) be a function such that for each (g, 7) € R™*™ the function

u(€) := w(§, ¢, n) of
& is a viscosity solution of

F(X +D*u(8),4+¢,%&n) =G(X,d+¢,%¢&n) R
Now, we make a strong assumption for simplicity of the arguments that
ve CHT™), weClC*T"xR™xT™).
For 0 < € < 1 we consider the function

(o) = o) = eo ) (G, 00(2) )

on £ x  and let z. = (z.,y.) be one of its maximum points. In view of the definition
of &, we see that there is a sequence {¢;} C (0, 1) such that

lim ¢; =0, lim z,; = Z.
Jj—oe F—oo0

We will take the limit as ¢ = ¢; and j — oo in the following arguments. Hence we may
assume that z. € {2 for all € € (0,1) under considerations.
Now, in view of the definition of viscosity subsolutions, we have

F(XB,QE>Zs> C&‘) S Oa
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where (. = (&, 1) := z:/€ and

X, :=D2p(zc) + Dgw(gs, Du(ne), e ),
g := Dyp(2:) + Du(ne) + eD*v(n.) Dw(ée, Dv(ne); M) + eDqw(€e, Dv(ne), e)-

Sending j — oo along a subsequence, we find a point ¢ = (€,7) € T such that
(6) F(X + D*w(€, Dv(#),7),d + Dv(7), 2,¢) < 0.
On the other hand, by our choice of v and w, we get

F(X + D*w(&, Dv(#),7),3+ Dv(@), % ) = G(X, @+ Dv(7), % ¢),
G(X,§+ Dv(@),z1) = H(X,q,2),

which together yield
F(X + D*w(£, Dv(#), %), 3+ Du(@), 2,¢) = H(X, 4, 2).

This combined with (6) guarantees that H (X,q,z) <0, which was to be shown.
Similarly, we define u € LSC(Q) by

— 2 . f* £ ,
u(z,y) = liminfu (z,y)

and proceed as before to observe that Tlaq = 0 and u is a viscosity supersolution of (5).
By comparison, we find that 7 <u < uin 2, which shows that as € — 0,

«*(z,y) — u(z,y) uniformly on Q. O
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