
9

Inf-sup tyPe differential games and Isaacs equations:
dynamic programming approach

HIDEHIRO KAISE

Graduate School of Information Science, Nagoya University,
Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan,

E-mail:kaise@is.nagoya-u.ac.jp

1Introduction

Let us consider the state dynamics influenced by two factors:

$\{\begin{array}{l}\frac{dx}{ds}(s)=f(s,x(s),a(s),b(s)),t\leq s\leq Tx(t)=x\in \mathbb{R}^{N}\end{array}$ (1.1)

where $a(\cdot)$ , $\mathrm{b}(-)$ are measurable functions on $[t, T]$ taking its value in metric spaces $A$ , $B$

respectively. For given $a$ and 6, we introduce game payoff function:

$J(t, x;a, b) \equiv\int_{t}^{T}l(s, x(s),$ $a(s)$ , $b(s))ds+\Phi(x(T))$ , (1.2)

where $l$ : $[0, T]$ $\mathrm{x}$

$\mathbb{R}^{N}\mathrm{x}$ A $\mathrm{x}$ $Barrow \mathbb{R}$ , $\Phi$ : $\mathit{1}\mathrm{R}^{N}arrow \mathbb{R}$ . In this problem, $a(\cdot)$ is considered
as control of minimizing player and $b(\cdot)$ as control of maximizing player. Under certain
assumption on available information for each player, we can define two types of game
value

$V(t, x) \equiv\inf\sup J(t, x;\alpha[b], b)$ (1.3)
$\alpha$

$b$

$W(t,x) \equiv\sup_{\beta}\inf_{a}J(t, x;a,\beta[a])$
. (1.4)

In (1.3), supremum is taken over any $b(\cdot)$ and infimum is taken on a set of mappings from
$b(\cdot)$ to $a(\cdot)$ , which is considered as aclass of strategies for minimizing player. Equation

(1.4) is interpreted in the same way.

In conventional differential game problems, it is considered as a basic problem to find

appropriate classes of strategies which enable us to characterize $V$ , $W$ and to $i\mathrm{d}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{i}\theta$

$V$ with $W$ under $\min-\max$ (Isaacs) condition. Evans and Souganidis [5] answered to

these problems by using theory of viscosity solutions. In [5], by taking Elliott-Kalton
strategy (see Definition 2.2 in the present paper), it is showed that Dynamic Programming

Principles (DPPs) hold: For $0\leq t<t+\delta\leq T$, $x\in \mathbb{R}^{N}$ ,

$V(t, x)= \inf_{\alpha}\sup_{b}[\int_{t}^{t+\delta}\mathit{1}(s, x(s), \alpha[b](s), b(s))ds+V(t+\delta, x(t+\delta))]$ (1.5)

$W(t, x)= \sup_{\beta}\inf_{a}[\int_{t}^{\mathrm{t}+\delta}l(s, x(s), a(s), \beta[a](s))ds+W(t+\delta, x(t+\delta))]$ . (1.6)
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Then, it is proved that $V$ and $W$ are characterized as the unique viscosity solutions of the
following Isaacs equations respectively:

$\{$

$\frac{\partial V}{\partial t}(t, x)+\underline{H}(t, x, \nabla V(t, x))=0$ in $(0, T)$ $\mathrm{x}\mathbb{R}^{N}$

$V(T, x)=\Phi(x)$ , $x\in \mathbb{R}^{N}$ ,
(1.7)

$\{$

$\frac{\partial W}{\partial t}(t, x)$ $+\overline{H}(t, x, \nabla W(t, x))=0$ in $(0, T)$ $\mathrm{x}$

$\mathbb{R}^{N}$

$W(T, x)=\Phi(x)$ , $x\in \mathbb{R}^{N}$ ,
(1.8)

where $\underline{H}$ , $\overline{H}$ are defined as follows:

$\mathrm{F}(\mathrm{s}, x,p)=\sup_{b\in B}\inf_{a\in A}[f(s, x, a, b)\cdot p+l(s, x, a, b)]$

$\overline{H}(s, x,p)=\inf_{a\in}$ $\sup_{b\in B}[f(s, x, a, b)\cdot p +l(s, x, a, b)]$ .

Here, we point out that the order of inf and $\sup$ in DPPs is flipped in the Isaacs equation.
Since comparison theorems for Isaacs equations are proved under some condition and
$\underline{H}\leq\overline{H}$ holds, one can have

$V(t, x)\leq W(t, x)$ .
Note that under min-max condition $\underline{H}=\overline{H}$, we can see that $V(t, x)=W(t, x)$ because
of uniqueness of viscosity solutions (see Theorem 4.1, Corollary 4.2, [5]),

In certain problems, we often need to give a special role to each player. For instance,
maximizing player is regarded as disturbance in $H^{\infty}$-control (cf. [2]). In this interpreta-
thon inf-sup type value (1.3) is preferable to sup-inf type value (1.4) because we want to
control the worst case criterion caused by disturbance. Recently, Fleming [8] considers
inf-sup type value in terms of $\max$-plus stochastic control which gives a generalization of
$H^{\infty}$-theory. In [8], by using discretization method, sup-inf type value $W(t, x)$ in Elliott-
Kalton sense is identified with inf-sup type value defined by a smaller class of strategies
than Elliott-Kalton (see Theorem 4.1, [8]).

To make a motivation for the study of inf-sup type games clear, we shall give some
observation through the small noise limit in risk-sensitive control. Let us consider the
controlled stochastic differential equation:

$\{$

$dX^{\epsilon}(s)=F(s, X^{\epsilon}(s),$ $a(s))ds+\sqrt{\epsilon}\sigma(s, X^{\epsilon}(s)$ , $a(s))dW(s))t\leq s\leq T$

$X^{\epsilon}(t)=x\in \mathrm{R}^{N}$ ,

where $\{W(s)\}$ is $m$-dimensional $\{\mathcal{F}_{s}\}$-standard Brownian motion on a filtered probability
space $(\Omega, F, P, \{F_{s}\})$ , $a(s)$ is a control process which is usually considered to be A-valued
$\{F_{s}\}$-progressively measurable and $\epsilon$ is a positive parameter representing noise intensity,
In risk-sensitive control, we try to minimize the logarithmic-exponential type criterion:

$V^{\epsilon}(t,x) \equiv\inf_{a(\cdot)}\epsilon\log E[\exp\{$ $\frac{1}{\epsilon}$ ($\int_{t}^{T}L(s, X^{\epsilon}(s)$ , $a(s))ds+\Phi(X’(T))$) $\}\ovalbox{\tt\small REJECT}$
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By DPP for $V^{\epsilon}$ , it is considered that $V^{\epsilon}(t, x)$ should be characterized as a solution of the
Bellman equation:

$\frac{\partial V^{\epsilon}}{\partial t}+\min_{a\in A}[\frac{\epsilon}{2}\mathrm{t}\mathrm{r}(A(t, x, a)D^{2}V^{\epsilon})+\frac{1}{2}A(t, x, a)\nabla V^{\epsilon}\cdot\nabla V^{\epsilon}$

$+F(t, x, a)\cdot\nabla V^{\epsilon}+L(t, x, a)]=0$ in $(0, T)$ $\mathrm{x}\mathbb{R}^{N}$ (1.9)

$V^{\epsilon}(T, x)=\Phi(x)$ , $x\in \mathbb{R}^{N}$ , (1.10)

where $A(t, x, a)=\sigma(t, x, a)\sigma(t, x, a)^{*}$ and $D^{2}V^{\epsilon}=[\partial^{2}V^{\epsilon}/\partial x_{i}\partial x_{j}]$. Indeed, (1.9) is equiva-
lent to

$\frac{\partial V^{\epsilon}}{\partial t}+\min_{a\in Ab}\max_{\in \mathbb{R}^{m}}[\frac{\epsilon}{2}(\mathrm{t}\mathrm{r}A(t, x, a)D^{2}V^{\epsilon})$

$+(F(t, x, a)+ \sigma(t, x, a)b)\cdot\nabla V^{\epsilon}+L(t, x, a)-\frac{1}{2}|b|^{2}]=0$. (1.11)

By taking the limit as $\epsilonarrow 0$ , we expect that $V^{\epsilon}$ converges to some function $V^{0}$ and $V^{0}$

satisfies the limit equation of (1.11) in some sense:

$\{\frac{\partial V^{0}}{\partial t}+\min_{a\in A}\max_{b\in \mathbb{R}^{m}}[$

$(F(t, x, a)+\sigma(t, x, a)b)$ . $\nabla V^{0}$

$+L(t, x, a)- \frac{1}{2}|b|^{2}]=0$ in $(0, T)$ $\mathrm{x}$

$\mathbb{R}^{N}$

(1.10)

$V^{0}(T, x)=\Phi(x)$ , $x\in \mathbb{R}^{N}$ .

This equation is a special case of (1.8). For rigorous arguments in the case that $\sigma(t, x, a)$

does not depend on $a$ , $\mathrm{i}.e.$ , $\sigma(t, x, a)=\hat{\sigma}(t, x)$ , see [3], [9]. Note that if $\sigma(t, x, a)=\hat{\sigma}(tx)\rangle$
’

we have min-max condition. But this is not true in general for (1.12). In terms of
relationships to $H^{\infty}$-control, it is preferable to associate $V^{0}$ with an inf-sup type game

value $V$ in (1.3). However if we take Elliott-Kalton strategy class to define inf-sup type

value, $V$ corresponds to (1.7), not to (1.8) (cf. [5]). Thus, we need to seek a smaller class

of strategies under which the inf-sup value is associated to (1.8).

Our aim is to provide a general framework how to relate inf-sup type games with the

corresponding Isaacs equations without proof (see [11] for details). To utilize viscosity

solution methods, we have to work with two steps: one is DPP and the other is identifi-

cation of infinitesimal generator (cf. Chapter $\mathrm{I}\mathrm{I}$ , [10]). When we give a class of strategy,

we can define an inf-sup type value by (1.3). Then, it would be natural to expect that

DPP holds in the form of (1.5). If DPP holds, we formally have the following equation:

$\lim_{\deltaarrow 0+}\frac{1}{\delta}\inf_{\alpha}\sup_{b}$ [ $\int_{t}^{t+\delta}l$ ( $s$ , $x(s)$ , a $[b](s)$ , $b(s)$ ) $ds+V(t+\delta,$ $x(t+\delta))-V(t$ , $x)$ ] $=0$ .

Indeed, this can be rewritten as follows:

$\lim_{\deltaarrow 0+}\frac{1}{\delta}(F_{t,t+\delta}V(t+\delta, \cdot) (x)-V(t, x))=0$ (1.13)
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where $F_{t,s}$ is defined for $\phi$ : $\mathbb{R}^{N}arrow \mathbb{R}$ as follows

$F_{t,s}\phi(x)$ $=$
$\inf_{\alpha}$

$\sup_{b}$
[ $\int_{t}^{s}l(r,$ $x(r)$ , a $[b](r)$ , $b(r))dr+\phi(x(s))$ ], $x\in \mathbb{R}^{N}$ .

In general, it is known that $V$ is not smooth. So, we consider the left hand side of (1.13)
for smooth function $\varphi(t, x)$ instead of $V$ :

$\lim_{\deltaarrow 0}\frac{1}{\delta}(F_{t,t+\delta}\varphi(t+\delta, \cdot)(x)-\varphi(t, x))$ . (1.13)

In Section 2, we shall study the infinitesimal generators (1.14). We give upper and
lower bounds of (1.14) for quite general classes of strategies. In fact, lower bound is
given by $\underline{H}$ and upper bound by $H$ . In general, it is not easy to find a class which
has infinitesimal generator. However, we can show that the lower bound of generators
corresponds to Elliott-Kalton strategy (which we call progressive in this paper) and the
upper bound corresponds to strictly progressive strategy.

Relationships between DPP and infinitesimal generator are discussed in Section 3.
Once the infinitesimal generator is obtained, we can consider the corresponding Isaacs
equation. Following the general ideas of viscosity theory, we shall prove that if we have
infinitesimal generator and DPP, the inf-sup value is a viscosity solution of the corre-
spond ing Isaacs equation. In this procedure, we also have to see if DPP holds. DPP for
Elliott-Kalton case is proved in [5]. We shall see that DPP holds for strictly progressive
strategy.

We assumed that the control spaces for both of players are compact, but this is not
the case in (1.12) because $B$ ; $\mathbb{R}^{m}$ . in Section 4, we shall make some remarks on the
possibility of an extension to (1.12). Indeed, if we assume that $F(t, x, a)$ and $L(t, x, a)$

are linearly growing, $\sigma(t, x, a)$ is bounded and $A$ is compact, the sam $\mathrm{e}$ results could be
obtained. This case can be applied to differential game problems obtained by totally
risk-averse limit in classical optimal investment problems (cf. [6], [7]).

2 Infinitesimal generators for game values

As we mentioned in Introduction, it is an important step to study infinitesimal generators
associated to game values. In this section, we shall give bounds for infinitesimal gener-
ators of inf-sup type value for general class of strategies. In particular, we shall identify
infinitesimal generators for progressive and strictly progressive strategies.

In Sections 2, 3, we suppose the followings:

$A$ , $B$ are compact subsets of Euclidean spaces. (A.I)

$f$ , $l$ and (1) are bounded and uniformly continuous. (A.2)

There exists $L>0$ such that for each $s\in[0, T]$ , $x$ , $y\in \mathbb{R}^{N}$ , $a\in A_{l}b\in B$

$|f(s, x, a, b)-f(s, y, a, b)|\leq L|x-y|$
(A. I)

$|l(s, x, a, b)-l(s, y, a, b)|\leq L|x-y|$

$|\Phi(x)-\Phi(y)|\leq L|x-y|$ .
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$A_{t,s}$ (resp. $B_{t,s}$ ) is the set of $A$-valued (resp. $B$-valued) measurable functions on $[t, s]$ ,
which is considered as all of the controls for minimizing player (resp. maximizing player).
We denote the set of mappings from $B_{t,s}$ into $A_{t,s}$ (resp. $A_{t,s}$ into $B_{t,s}$ ) as $\Gamma_{t,s}^{0}$ (resp. $\Delta_{t,s}^{0}$ ).
$\Gamma_{t,s}^{0}$ (resp. $\Delta_{t,s}^{0}$ ) is considered as all the possible strategies of minimizing player (resp.
maximizing player).

For given $\Gamma_{t,T}\subset\Gamma_{t,T}^{0}$ , we define inf-sup type value:

$V(t, x) \equiv\inf_{\iota\alpha\in\tau b},\sup_{\in B_{l,T}}J(t, x;\alpha[b], b)$

$\equiv\inf_{\alpha\in\Gamma_{tT}}.\sup_{b\in B_{t_{1}T}}[\int^{T}l(s, x(s), \alpha[b](s), b(s))ds+\Phi(x(T))]$,
(2.1)

where $x(\cdot)$ is a solution of (1.1) with initial condition $x(t)=x$ and controls $a=\alpha[b]$ , $b$ .
We also introduce the operators on $C(\mathbb{R}^{N})$ associated to (2.1):

$F_{t,s}^{\alpha,b} \phi(x)=\int_{t}^{s}l(r, x(r),$ $a(r)$ , $b(r))dr+\phi(x(s))$ ,

$F_{t,s} \phi(x)\equiv\inf_{\alpha\in\Gamma_{\mathrm{t}s}},\sup_{b\in B_{t,s}}F_{t_{7}s}^{a[b],b}\phi(x)$ , $\phi\in C(\mathbb{R}^{N})$ , (2.2)

where $x(\cdot)$ is a solution of (1.1) with $x(t)=x$

Proposition 2.1. Suppose $\Gamma_{t,s}$ includes open loop strategies, i.e., a : $B_{t,s}arrow A_{t,s}$ defined
in the following belongs to $\Gamma_{t,s}$ : for arbitrarily given a $\in A_{t,s}$

$\alpha[b](r)\equiv a(r)$ , $t$ $\leq r\leq s$ , $b\in B_{t,s}$ . (2.3)

then for $\varphi\in C^{1}((0, T)\mathrm{x}\mathbb{R}^{N})$ , we have

$\varlimsup_{\deltaarrow 0+}\frac{1}{\delta}(F_{t_{\delta},t_{B}+\delta}\varphi(t_{\delta}+\delta, \cdot)(x_{\delta})-\varphi(t_{\delta}, x_{\delta}))\leq\frac{\partial\varphi}{\partial t}(t, x)+\overline{H}(t, x, \nabla_{x}\varphi(t, x))$ , (2.4)

$\frac{\partial\varphi}{\partial t}(t, x)+\underline{H}(t, x, \nabla_{x}\varphi(t, x))\leq\varliminf_{\deltaarrow 0+}\frac{1}{\delta}(F_{t_{\delta\prime}t_{\delta}+\delta}\varphi(t_{\delta}+\delta, \cdot)(x_{\delta})-\varphi(t_{\delta}, x_{\delta}))$, (2.5)

where $(t_{\delta}, x_{\delta})$ is any sequence such that $(t\delta, x\delta)arrow(t, x)\in(0, T)\mathrm{x}\mathbb{R}^{N}$ as $\deltaarrow 0+$ .

In general, it is not obvious to find an explicit form of infinitesimal generators. How-

ever, we can identify the limit for progressive and strictly progressive strategies. We

introduce these two notions of strategies.

Definition 2.2. (cf. [4], [13], [14]) a $\in\Gamma_{t,s}^{0}$ is called progressive strategy for minimizing

player if the following condition is satisfied:

For each $r\in[t, s]$ , if $b\equiv\tilde{b}a.e$. on $[t, r]$ , then $\alpha[b]\equiv\alpha[\tilde{b}]a.e$ . on $[t, r]$ .

We denote by $\Gamma_{t,s}^{P}$ the set of progressive strategies for minimizing player. Progressive strat-

egy for maximizing player $\beta\in\Delta_{t,s}^{0}$ is defined in a similar way and the set of progressive
strategies for maximizing player is denoted by $\Delta_{t,s}^{P}$ .
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Definition 2.3. (cf. [8]) $\alpha\in\Gamma_{t,s}^{P}$ is strictly progressive strategy if for any $\beta\in\triangle_{t,s}^{P}$ , there
exist $a\in A_{t,s}$ and $b\in B_{t,s}$ such that

a $[b]=a$ , $\beta[a]=ba.e$ . on $[t, s]$ .

We denote the set of strictly progressive strategies as $\Gamma_{t,s}^{SP}$ .
Remark 2,4. $\Gamma_{t,s}^{P}$ and $\Gamma_{t,s}^{SP}$ include open loop strategies.

We define the operators associated with these two classes of strategies:

$F_{t_{1}s}^{P} \phi(x)\equiv\inf_{\alpha\in\Gamma_{\mathrm{t}s}^{P}},\sup_{b\in e_{t,s}}F_{b,s}^{\alpha[b],b}\phi(x)$
,

$F_{t,s}^{SP} \phi(x)\equiv\inf_{\alpha\in\Gamma_{\mathrm{t},s}^{BP}}\sup_{b\in B_{t,\epsilon}}F_{t,s}^{\alpha[b],b}\phi(x)$

We also introduce the corresponding inf-sup type game values:

$V^{P}(t, x) \equiv\inf_{\alpha\in\Gamma_{lT}^{P}}.\sup_{b\in B_{t,T}}J(t, x;\alpha[b], b)$

$V^{SP}(t, x) \equiv\inf_{\alpha\in \mathrm{r}_{t_{1}T}^{sP}}\sup_{b\in B_{t,T}}J$
( $t$ , $x$ ; a $[b]$

$,$ &).

Note that under (A. 1)-(A.3), $V^{P}$ and $V^{SP}$ are bounded and Lipsehitz continuos on $[0, T]$ $\mathrm{x}$

$\mathbb{R}^{N}$

We first give the form of the generator for progressive case. The proof is implicitly
done in [5].

Proposition 2.5, For $\varphi\in C^{1}((0,$T) $\mathrm{x}\mathbb{R}^{N})$ ,

$\frac{1}{\delta}(F_{t,t+\delta}^{P}\varphi(t+\delta, \cdot)(x)-\varphi(t, x))arrow\frac{\partial\varphi}{\partial t}(t, x)+\underline{H}(t, x, \nabla\varphi(t, x))$, $\deltaarrow 0+$ (2.6)

unifor $nly$ on each compact set in $(0, T)$ $\mathrm{x}\mathbb{R}^{N}$ .

In the next result, we shall prove the infinitesimal generator associated to strictly
progressive strategy corresponds to upper Hamiltonian $\overline{H}(t, x,p)$ .
Proposition 2.6. For $\varphi\in C^{1}$ $((0,$T) x $\mathbb{R}^{N})7$

$\frac{1}{\delta}(F_{t,t+\delta}^{SP}\varphi(t+\delta, \cdot)(x)-\varphi(t, x))arrow\frac{\partial\varphi}{\partial t}(t, x)+\overline{H}(t, x, \nabla\varphi(t, x))$, $\deltaarrow 0+$ (2.7)

uniformly on each compact set in $(0, T)$ $\mathrm{x}$

$\mathbb{R}^{N}$ .

3 Dynamic programming principle and Isaacs equa-
tions

In the present section, we shall study relationships between Dynamic Programming Prin-
ciple (DPP) and its infinitesimal generators. More precisely, if DPP holds and the in-
finitesimal generator is identified, the inf-sup type game value is a viscosity solution of
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the corresponding Isaacs equation. Furthermore, if the Hamiltonian of the Isaacs equation
satisfies certain structural conditions, the value is characterized as the unique viscosity
solution.

In progressive and strictly progressive case, we can show DPPs hold. By combining
results in Section 2, we can prove that value defined by progressive (resp. strictly progres-
sive) strategy is characterized as the unique viscosity solution for lower Isaacs equation
(resp. upper Isaacs equation).

Firstly, we give a general result on relationship between DPP and the Isaacs equation.
For given class of strategies $\Gamma_{t,s}\subset\Gamma_{t,s}^{0}$ , $0\leq t<s\leq T$ , we define inf-sup type game value
$V(t, x)$ as (2.1). For given class $\Gamma_{t,s}$ , DPP is described as follows: For $0\leq t<t+\delta\leq T$ ,
$x\in \mathbb{R}^{N}$ ,

$V(t_{?}x)= \inf_{\alpha\in\Gamma_{\mathrm{t},t+\delta}}\sup_{b\in B_{t,t+\delta}}[\int_{t}^{t+\delta}l(s, x(s), \alpha[b](s), b(s))ds+V(t+\delta, x(t+\delta))]$.

This is reformulated in terms of (2.2):

$F_{t,t+\delta}V(t+\delta, \cdot)(x)=V(t,$x) (3.1)

Proposition 3.1. Suppose that (3.1) holds and the infinitesimal generator is identified,

i.e., there exists $H(t,$x,p) such that for $\varphi\in C^{1}((0,$T) $\mathrm{x}\mathbb{R}^{N})$ ,

$\frac{1}{\delta}(F_{t,t+\delta}\varphi(t+\delta, \cdot)(x)-\varphi(t, x))arrow\frac{\partial\varphi}{\partial t}(t, x)+H(t, x, \nabla\varphi(t, x))$, $\deltaarrow 0+$ . (3.2)

Then, $V(t, x)$ is a viscosity solution of the equation:

$\{\begin{array}{l}\frac{\partial V}{\partial t}(t,x)+H(t,x)\nabla V(t,x))=0,(t,x)\in(0,T)\mathrm{x}\mathbb{R}^{N}V(T,x)=\Phi(x)\mathrm{J}x\in \mathbb{R}^{N}\end{array}$
(3.3)

We shall next apply Proposition 3.1 to progressive and strictly progressive cases. In

Section 2, we showed that infinitesimal generators for progressive strategies and strictly

progressive strategies have explicit forms. To associate the values defined by these classes

with the corresponding Isaacs equation, we need to prove DPP.

In progressive case, DPP and characterization of $V^{P}(t, x)$ as viscosity solution is proved

in [5] (See Theorems 3.1, 4.1, [5]). By using $\mathrm{D}\mathrm{P}\mathrm{P}$ in [5], we can apply Propositions 2.5

and 3.1 to obtain characterization result for $V^{P}$ .

Proposition 3.2 (Theorem 3.1, [5]). $V^{P}(t,$x) satisfies DPP:

$V^{P}(t, x)=F_{t,t+\delta}^{P}V^{P}(t+\delta, \cdot)(x)$

$= \inf_{\alpha\in\Gamma_{t,\mathrm{t}+\delta}^{P}}\sup_{b\in B_{\mathrm{t},\mathrm{t}+\delta}}$

[ $\int_{t}^{t+\delta}l$ ( $s$ , $x(s)$ , a $[b](s)$ , $b(s)$ ) $ds+V^{P}(t+\delta,$ $x(s))$ ].

We have another proof for characterization of $V^{P}$ .
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Theorem 3.3 (cf. Theorem 4.1, [5]), $V^{P}(t, x)$ is the unique viscosity solution in $BUC([0, T]\mathrm{x}$

$\mathit{1}\mathrm{R}^{N})$ for the lower Isaacs equation:

$\{$

$\frac{\partial V^{P}}{\partial t}(t, x)+\underline{H}(t, x, \nabla V^{P}(t, x))=0$ , $(t, x)\in(0, T)\mathrm{x}\mathbb{R}^{N}$ ,

$V^{P}(T, x)=\Phi(x)$ , $x\in \mathbb{R}^{N}$ ,
(3.4)

$\mathbb{R}^{N}where$
$BUC([\mathrm{O}, T]\mathrm{x} \mathbb{R}^{N})$

is the set of bounded, Lipschitz continuous functions on
$[0, T]$

$\mathrm{x}$

We consider value for strictly progressive strategies $V^{SP}(t,x)$ . In [8], relationship
between $V^{SP}$ and upper Isaacs equation is studied and $V^{SP}$ is identified with upper game
value which is a viscosity solution of upper Isaacs equation. On the other hand, we directly
prove DPP and apply Propositions 2.6 and 3.1.

Proposition 3.4. $V^{SP}(t,$x) satisfies DPP: For $0\leq t<t+\delta\leq T$, x $\in \mathbb{R}^{N}$ ,

$V^{SP}(t, x)=F_{t,t+\delta}^{SP}V^{SP}(t+\delta, \cdot)(x)$

$= \inf_{\alpha\in\Gamma_{t,t+\delta}^{SP}}\sup_{b\in B_{t,t+\delta}}[\int_{t}^{t+\delta}l(s, x(s), \alpha[b](s), b(s))ds+V^{SP}(t+\delta, x(t+\delta))]$. (3.5)

Then, we have characterization for $V^{SP}$ .

Theorem 3.5. $V^{SP}$ ($t$ , x) is the unique viscosity solution in $BUC([0, T]\mathrm{x}\mathbb{R}^{N})$ for the
upper Isaacs equation:

$\{$

$\frac{\partial V^{SP}}{\partial t}(t, x)+\overline{H}(t,x, \nabla V^{SP}(t, x))$ $=0$ , $(t, x)\in(0, T)$ $\mathrm{x}$

$\mathbb{R}^{N}$ ,

$V^{SP}(T, x)=\Phi(x)$ , $x\in \mathrm{R}^{N}$ .
(36)

4 Remarks on unbounded control

In the above sections, we studied the case that the control spaces for both of players are
compact. However, as we saw in Introduction, if we would like to treat differential games
arising from small noise limit problem in risk-sensitive control or totally risk-averse limit
in optimal investment problems, we need to consider the case that $B$ is unbounded. See
[3], [9] for small noise limit and [6], [7] for total risk averse limit. In this section, we shall
provide an extension of the previous sections to (1.12) without details of argument and
proof. We just point out that a main difference of the arguments could be some estimate
of $\epsilon$-optimal control of the maximizing player uniform on $\epsilon$ . This could be proved because
of the linear growth condition on $F(t, x, a)$ , $L(t, x, a)$ as assumed below.

We shall consider a special case of system dynamics (1.1) with $f(x, a, b)=F(t, x, a)+$
$\sigma(t, x, a)b$ , $i.e.$ ,

$\{$

$\frac{dx}{ds}(s)=\mathrm{F}(\mathrm{t}, x(s),$ $a(s))+\sigma(t,x(s)$ , $a(s))b(s)t\leq s\leq T$,

$x(\mathrm{f})=x\in \mathrm{R}^{N}$ ,
(4.1)
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where $F$ : $[0 T]\}$ $\mathrm{x}\mathbb{R}^{N}\mathrm{x}$ $Aarrow \mathbb{R}^{N}$ , $\sigma(t, x, a)$ is a mapping of $[0, T]$ $\mathrm{x}$

$\mathbb{R}^{N}\mathrm{x}$ $A$ into set of
$N\mathrm{x}m$-matrices. In the similar way to the previous sections, we denote by $A_{t,s}$ the set of
A-valued measurable functions on $[t, s]$ . But we suppose that control space of maximizing
player $B=\mathbb{R}^{n}$ and $B_{t,s}=L^{2}(t, s;\mathbb{R}^{m})$ which is set of square integrable functions from
$[t, s]$ into $\mathbb{R}^{m}$ . ea ch ayoff function (1.2) with $l(t, x, a)=L(t, x, a)-|b|^{2}/2$ is considered:

$J(t, x;a, b)= \int_{t}^{T}(L(s, x(s)$ , $a(s))- \frac{1}{2}|b(s)|^{2})ds+\Phi(x(T))$ , (4.2)

where $L$ : $[0, T]$ $\mathrm{x}\mathbb{R}^{N}\cross$ $Aarrow \mathbb{R}$ , $\Phi$ : $\mathbb{R}^{N}arrow \mathbb{R}$.

We assume the following conditions:

$A$ is compact in $\mathbb{R}^{7b}$ , (B. 1)

$F(t, x, a)$ , $\sigma(t, x, a)$ , $L(t,x, a)$ , $\Phi(x)$ are continuous, (B.2)

There exists $C>0$ such that for each $s\in[0, T]$ , $x$ , $y\in \mathbb{R}^{N}$ , $a\in A$

$|F(s, x, a)-F(s, y, a)|\leq C|x-y|$ ,
$|\sigma(s, x, a)-\sigma(s, y, a)|\leq C|x-y|$ , (B.3)
$|L(s, x, a)-L(s, y\rangle a)|\leq C|x-y|$ ,

$|\Phi(x)-\Phi(y)|\leq C|x-y|$ ,

$\sigma(t, x, a)$ is bounded on $[0, T]$ $\mathrm{x}\mathbb{R}^{N}\mathrm{x}$ A. (B.4)

Under the conditions (B. 1) - (B.4), by using the estimate for $\epsilon$-optimal control of max-
imizing player, all the results in previous sections can be obtained except for uniqueness

of viscosity solutions in (3.4) and (3.6). It is not obvious that inf-sup values $V^{P}(t, x)$

and $V^{SP}(t, x)$ are in $BUC([0, T]\mathrm{x}\mathbb{R}^{N})$ and that Hamiltonians $\underline{H}(t, x,p)$ and $\overline{H}(t, x,p)$

have nice regularity to apply uniqueness results used in Theorems 3.3, 3.5 (cf. Theorem
9.1, Chapter $\mathrm{I}\mathrm{I}$ , [10], Exercise 3.9, Chapter $\mathrm{I}\mathrm{I}$ , [1] $)$ . However, we can prove that $V^{P}(t, x)$ ,
$V^{SP}(t, x)$ are locally Lipschitz continuous on $x$ uniformly on $t\in[t, T]$ at least and we
have uniqueness results in this class including the case for $\underline{H}(t, x, p)$ and $\overline{H}(t, x, p)$ (cf.

[12] $)$ . Thus, $V^{P}(t, x)$ and $V^{SP}(t, x)$ can be characterized as the unique viscosity solution

of (3.4) and (3.6) respectively.
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