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Notes on the X = M = K conjecture

Mark Shimozono

July 27, 2004

Abstract

This is an expanded version of a talk presented at the 2004 work-
shop on Combinatorial Aspects of Integrable Systems at the Research
Institute of Mathematical Sciences, Kyoto, Japan.

We show that in the large rank limit, for any nonexceptional affine
family of root systems, the one-dimensional sums associated to tensor
products of Kirillov-Reshetikhin modules, have a very simple relation-
ship to those of type A.

1 X = M conjecture

1.1 Notation

Let g O g’ D g where g is a Lie algebra of nonexceptional affine type, g’ is
its derived subalgebra and g its canonical simple Lie subalgebra. Let I and
I\{0} be the vertex sets of the Dynkin diagrams of g and g respectively,
where 0 € I is the distinguished node [9]. Let Uy(g) D Uglg) O Uq(3)
be the quantized universal enveloping algebras associated tog D g O
respectively [10]. Let {w; | i € I\{0}} be the fundamental weights of g
and PT(§) = @jen (o) L=owi the dominant weights. For A € P*(g) denote

by VA the irreducible Uy(g)-module of highest weight A\. For r € I\{0}
and s € Zxo let W) be the finite-dimensional Ug(g)-module known as the

Kirillov-Reshetikhin (KR) module [8] [7]. Conjecturally W is irreducible
and has an affine crystal base B™*.

We warn the reader that unless otherwise stated, we use the opposite of
Kashiwara’s tensor product convention for crystal graphs.

We shall use an encoding of dominant weights A = > ;e\ (o} Gis by
partitions. Using the Dynkin diagram labeling given in (1.1), and assuming
that a; = O for i a spin node (that is, ¢ = n for types B,,,Cp,Dpandi =n—1
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for D) we identify the weight A with the partition that has a; columns of
height ¢ for all i.

9, Dynkin diagram

O—Q—=-r=-—O—0

Ay 1 2 n—1 n
O—O—mme

n 1 2 n—-1 7
OO ==

I
O—O—--

D, 1 2 n—1

1.2 Classical decomposition of KR modules
" is generally reducible as a U,(g)-module. This decomposition, pre-
scribed by [8] [7], has the form
WS(’") & V¥ @ “children”

We give examples of this decomposition below, using the encoding of a
weight as a partition. Thus sw, is the rectangle with r rows and s columns.
According to [8] [7] the “children” are obtained by removing certain kinds
of “tiles” from this rectangle.

Example 1. Let » = 2, s = 3, and the rank of § large. We use the labeling
of affine Dynkin diagrams given in [8] [7]. The classical decompositions of

W3§2) are given as follows.

1. g= A,(ll): No children; Remove the empty tile &
Wi = B
2. g= Diﬁl, Agi)fz Remove o
W —HRefFefemeMeoFemefona-
3. g= é”,A,E,i): Remove m
W =EReFRef
4. g= B,gl), Dg), Agi)_lz Remove B

W —Fpe@ene -



21

1.3 The X formula

Consider any finite tensor product of KR modules

W'L = ®(WS(7‘) )@Lgr) .

7,8

WYL has a U,(g)-equivariant grading by the energy function D [12] [8] [7].
For A € P*(g), the one-dimensional sum X7, »(t) is by definition the graded
multiplicity of V* in the restriction of WL to Uy(g). It can be described
entirely in terms of the combinatorics of the crystal graph of WZL. This
definition makes sense in the cases where the KR modules that occur in Wt
and their crystal bases have been constructed.

1.4 X=M

Let M x(t) be the fermionic formula [8] [7]. It is defined for all L rep-
resenting finite tensor products of KR modules and all A € P@t. It is
conjectured there that Xz, (t) = Mra(%).

2 The K formula

We now consider the one-dimensional sims for nonexceptional affine alge-
bras in the special case that the rank is large with respect to the data (L, \).
We have observed that the one-dimensional sums are well-behaved and have
conjectured that they have a simple formula in terms of the one-dimensional
sums of type A. This conjectural formula is called the K formula.

2.1 The large rank limit

Let {g,} be nonexceptional family of affine algebras where g,, has rank n. To
obtain the Dynkin diagram of a nonexceptional affine algebra one attaches
the 0 node somewhere on the left end of one of the classical Dynkin diagrams
in (1.1). By examining the fermionic formulas one may prove the following

result.

Proposition 2. [20/ For cach nonezceptional family F = {gn} of affine
algebras, there is a well-defined large rank limit

MEA(#) = Jim MES(®)

00
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called the stable fermionic formula. There are 4 distinct families of M 7,
labeled by & € {3, 0, m,B}. This grouping of affine diagrams depends on
the way in which the zero node is attached.

‘ attachment
family | affine root systems of 0 node

M~? ‘ AY Ooz—ol

MO AD p¥ 0o==01

M c, A1 00==01
2

ME | BY, DI, 4D | ?Z>D

The grouping is the same as that for the classical decomposition of KR
().

modules Wg'’; see section 1.2.

2.2 Ubiquity of type A

Kleber [10] observed that the character QY of the KR module Wi for
r a nonspin node, should behave like such a character of type Agl). The
Q-system [8] [7] is a relation among the KR characters, giving an expression
for (QQ‘)V — Qi?nggl in terms of QS) for i adjacent to r in the Dynkin
diagram of g. For a fixed r and in large rank, near r the Dynkin diagram
always looks locally like that of type A,. Therefore such KR characters have
the same relations as those in type A.

2.3 Minimal affinizations

For 7 € P*(§) (containing no spin weight) let W7 be the associated minimal
affinization [4]. It is an irreducible finite-dimensional U,(g)-module with
U,(@)-decomposition of the form

WT 2 V7™ @ children.

Conjecture 3. For L containing no spin weights, up to filtration, as Uy, (g)-
modules,

whe @B xg wr.
T

In type A it is known that W™ 2 V7. This agrees with the definition of
X1 as a graded tensor product branching multiplicity.



29

2.4 Decomposition of minimal affinizations

Define the branching coefficients byx € Zzp by the U,(g)-decomposition
W™= bV
A

Let Py be the set of partitions that are tiled by ¢. Explicitly, Py is the
singleton set containing just the empty partition, I} is the set of all parti-
tions, P is the set of partitions with even row lengths, and I—’g is the set of
partitions with even column lengths.

Conjecture 4. [3] If g is in the family & and 7 contains no spin weights
then
brx = Z Au
ne P

where ¢}, is the Littlewood-Richardson coefficient or type Ay tensor product
multiplicity defined by
VAQVH 2@,V

This conjecture has been proved by Chari for many cases of 7 of the

form swy [2].

2.5 The K-formula
Comparing the decomposition of WwE directly into V* or via W7, we have
Xp,0)=> X{,Q) > G
T uePy
Inserting a t strategically, we define the K formula
KQ,\(6) =tFN YT XL () 3 e
T nePy

Originally the K formula was discovered through t-analogues of creation op-
erators for the symmetric functions given by the large rank limits of classical

characters [20].

26 X=M=K
Conjecture 5. [20] For large rank, X = M = K.
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This was previously known for ¢ = & (type AP ) and L general [13]. A
special case has independently been conjectured by Lecouvey [14].
Our main result is:

Theorem 6.
x¢ = K¢
for & € {o,m} and L consisting of tensor factors of the form 3(1).

The proof is to show bijectively that X ¢ satisfies the definition of K.

3 Recording tableaux and the X formula

3.1 Crystals B!

For simplicity we consider the case that W' is a tensor power of the KR
crystal BY. In this context we will just regard L as the single integer
previously denoted Lgl). We also assume that the rank n of the classical
subalgebra § is large, say, n > L. For each partition { € {@,0,m,8}, we
fix a representative affine family Xj(\?;). Its crystal By := BL! is drawn in
Figure 1.

3.2 Walks in Young’s lattice

Let b € Bg’l’ be a classical highest weight vector (that is, a U,(g)-highest
weight vector). Let A € P(g)t be the weight of the first 4 steps in b.
Identifying dominant weights with partitions, the path & can be encoded
by the sequence of partitions A, A1), ... XL, These sequences should be
regarded as recording tableaux in the language of the Robinson-Schensted
correspondence. The shape of such a tableau is by definition the ending
partition.

We give examples below. Every unbarred (resp. barred) step r (resp.
7) adds (resp. removes) a cell to (resp. from) the r-th row in the partition
diagram. A step @ leaves the partition unchanged.

1. A standard tableau of shape (4,1,1) and type @-path:

O aw s man 533 - 0
1 1 2 1 3 1
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o | Xy By
0
1
| AD,

0

(1)
K

m
2) 0 o 0
a Dn+1
0
H (1)

R EINY |
n @ n-1

0

Figure 1: Representative affine families

Usually a standard tableau is written as follows, where the entry i is
in the r-th row if and only if the i-th element in the path has value 7.

1/2]416]
P =3 2)
5]
2. An oscillating tableau of shape (1,1) and type m (or B) path:
d . Bj _ B B _ E (3)
1 1 2 1 3 3

3. A Motzkin tableau of shape (2) and type o path:

0 ) H H — m
1 1 2 1 %) 1 2

3.3 Energy function on paths

In general the way to compute the energy function D is given in [7]; see
also [16]. Under the current assumptions the energy function can be com-
puted as follows. We now. reverse the order of the paths (the opposite of
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Kashiwara’s convention for crystal graphs). The subscripts label the gaps
between steps in the path. The subscripts at positions that contribute to
the energy function are underlined.

1. Type @: Sum the positions of descents (gaps between steps where the
step on the left is greater than the one on the right).

C = 113_2_132&151

_ B 4)
Dg(c)=2+4=6
2. Typem: same, with 1 <2<3<---<3<2<1
b:3l32i_3_22151 (5)
Do(b)=1+3+4=8

3. Type H: same, except a descent of the form 1 > 1 is counted twice.

4. Typeo:

(a) Adjacent pairs z > y and @@ count double
(b) Pairs @ and @z count once for z # &
(c) If the rightmost letter is &, there is a descent to its right.

b= ‘?1 126314251617

Do(b)=1-2+2-1+3-1+4-2+45-2=25.

3.4 X formula
For $ € {@, o, =, H}

X0 Y 0
bEPo(L,/\)

where Py (L, A) is the set of classical highest weight vectors in BgL of weight
A
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3.5 The required bijection
We shall only state it for the { = m case. To prove X = K we must show
that ‘ '
XE @) =tE MY XT () Y, S (6)
T

uE’PED
|u|=L—[Al

Therefore we require a bijection

Oscillating Standard
tableaux \
e SN Q tableaux » x LR(T; A\, ) (7)
|7|=L | shape 7
length L p€RD

b > (¢, Z)

where Z is an element of a set LR(7; A, p) of cardinality cj,,. We use the
following realization [15]: ¢}, is equal to the number of factorizations T' - S
of any fixed semistandard tableau P of shape 7, into semistandard tableaux
T and S of shapes A and p respectively. The factorization is taken in the
plactic monoid; see [6].

In summary, given the oscillating tableau b as input (see (3)), we must
construct a standard tableau c, either in the form of a type @ path (see (1))
or in the more traditional form, denoted here as P (see (2)). Then we must
also prescribe a factorization of P into T S with 7" and S tableaux of shapes
A and p respectively.

Moreover, the bijection must be grade-preserving:

9 Den(b) = L — |A| + 2 Do(c) | (8)

Example 7. Let b be as in (3); it has shape A = (1,1), L =6, and by (5) it
has D(b) = 8. We do not say how to find it yet, but the corresponding path
¢ is given in (1); it has D(c) = 6 by (4). Then (8) becomes 2-8 = 6—2+2-6.

4 The VXR map

We describe a way to compute the element c in the desired bijection (7). It
uses the virtual crystal (VX) construction of [16] and the computation of
the combinatorial R-matrix. Thus the name VXR.
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4.1 Dual crystal

Let BY be the dual crystal graph of B [10]. By definition B" has a vertex b¥
for each b € B. The arrows are reversed: f;(bY) = ¢V if and only if fi(c) = b

for b,c € B. For example, for B4 = B! of type Agl) we have (omitting
Zero arrows)

By : 3»—2»—3—)&3»@
BY: [V <RY B¢ 1< B <Y

For an element of BX®L , one may compute its energy using the usual rule
for type @ paths, with the ordering --- < 3V < 2Y < 1V,

4.2 Virtual crystals

For certain affine root systems and KR crystals it was shown in [16] that
crystals of nonsimply laced type could be realized using those of simply laced
type. This is called the virtual crystal construction. For example, the KR
crystal Bg = BY! of type G5V, can be embedded into the tensor product

B4 ® BY, where B4 = BY! is the KR crystal of type Agf_ ;- Let us call this
the virtual crystal (VX) embedding. Moreover the one-dimensional sum X
can be entirely expressed in terms of the crystal of simply-laced type.

For example, define the embeddings ¥ and ¥’ by

Bo T, BX@BA

i —— 2n+1-0)V @i (9)
i —— VR (2n+1-19)
Beo ———\—I’—/——-% Bs® BX

i —— i@ @2n+1-1i)V (10)
i —— 2n+1-19)®iv
More generally, there is an embedding

. ,
BEL 5 (BY ® B4)®*
bL® @by = U(by) ®-- @ U(by)

defined by the L-fold tensor product of the map (9). A similar construction
can be made for ¥,
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4.3 The R-matrix

If B and B’ are the crystal bases of irreducible Uy(g)-modules then there
is a unique isomorphism of affine crystal graphs Rpp : B® B —- B ®B
called the combinatorial R-matrix [12]. |

We need an explicit computation of the following R-matrix. Here By

has type A%)—l-

BA®BX§+BX®BA
iR i Qi ifisyg
i« (E+1)Vei+l if i < 2n
mInY «1Vel

In particular the following diagram commutes:

Be % BY®Ba

1l lR (11)

Be X5 Ba® B}

4.4 Local energy function

Given B and B’ as above, there is a map H = Hpp : B® B’ — Z called

the local energy function. See [12] [7].
We also have the value of the local energy function H : BY ® By — Z,

given in this case by

1 fzy=1"V®l
Hz®y)= y (12)
0 otherwise.
Similarly the local energy function H : B4 ® BY — Z is given by
1 ifz@y=2n®2n"
Hz®y) = ’ (13)
0 otherwise.

4.5 VXR map

We show how to compute the part of the bijection (7) that, given b €
Pr(L, \), determines an element ¢ € Py(L, ), and why the grade-preserving
property (8) holds. At this time we do not compute the Littlewood-Richardson

data T - S.
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By (11) the following diagram commutes.

®L ®L
. BC —_ BC

BY®L @ B$" — (BY® Ba)®Y —— (Ba® BY)® —— B%L @ BY®"
’ ° (14
The maps R, Ro, and R are compositions of R-matrices of the form given
in section 4.3. Consider the composite map R4 o ¥. Say it maps b+ d®c.
"This ¢ € BY¥ is the one in the desired bijection.
In the followmg example n = 3. The computatlon of R. on ¥(b) is
shown below. Here we write 1 instead of 1V, et

b 3 3 1 2 1 1
B |3 44316526161
355135662611
351553116211
3571661361211
351616631211
dec|3 5 1 6 1 1 131211

From the path ¢ one obtains the standard tableau P; see (2). The
element d tells how to make the factorization P = T - §. We prefer to

compute this another way later.
We now prove (8). The main ingredient is the following result.

Theorem 8. [16] The virtual crystal embedding VU respects energy.
More precisely, in our situation this means that
2 D(b) = Dg(d ® ¢).

Let R : BX®L @B%E — B®L ®BY®" be the R-matrix and H : BV®L ®B®L
Z be the local energy functlon [12] Let d @ ¢ = R(d®c) € B ® BV®L.
By the definition of D [7] [16] we have

D(d®c) = D(c)+ D(c) + H{d®c).
To. prove (8) it is enough to show that

D(¢') = D(c) | | (15)
H(d®c) = L — |\ =2 (the number of barred steps in b).  (16)



To prove (15) we note that the computations of d ®c and d ® c are
entirely parallel. By the commutativity of the diagram (14) we see that
& ® ¢ = R_ o ¥(b). Since the pairs of factors in ¥(b) and in W’ (b) are just
reversed, we have the following computation:

b 3 3 1 2 1 1
vp) |4 33461251616
4236 4211516 6
426 % 24661566
426 11641615066
42616 1 14615 ¢6¢6
dodl4 26166646566

vvvvvv

So ¢ = 646566. Compare this with ¢ = 131211. In general one can show
that ¢ and ¢ have descents in the same positions, which implies that they

have the same energy, proving (15).

- To prove (16), one must use the fact that the desired value of H, is
obtained as the sum of local energy functions Hpvyen, evaluated at adjacent
tensor factors which are exchanged by the R-matrices BY ® By — Ba® B}
which comprise the computation of the R-matrix BX@’ ® B%L — B?L &
BX@’L [7) [16]. The latter R matrix is given by R_ o Rgo R7'. By (12)
the only contributions to the energy are given by places where one has an
application of the local R matrix of the form 1V ®1 — 2n®2nY. By studying
the above computations we see that such exchanges happen an even number
of times, and that they occur in symmetric pairs, with one occurrence during
R_T_l and the other during R_. One also sees that the number of times that
such exchanges occur during R;‘_l is the number of barred elements in b.
From these considerations (16) follows.

5 DDF bijection

We now take a completely different approach to the desired bijection (7).

5.1 DDF

The following bijection is due to Delest, Dulucq, and Favreau [5]. Let [L] =

{1,2,...,L} and (‘£)) be the collection of subsets of [L] of cardinality k.

37
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The DDF bijection is between the following sets.

Oscillatiﬁg standard Fixed point
tableaux U tableaux 9 free
of shape A # of shape A involutions
length L A€(}]) | alphabet A on [L] - A
b - (T,1)

Let b = byby---by. Start with 7" and I both empty. For ¢ from 1 to L
do:

(D1) If b; = r then adjoin i to T at row r.

(D2) If b; = 7 then reverse Schensted row insert on T' at row r, ejecting the
value a, say. Add the pair (4,a) to I.

Example 9. Let b = 112133 as before.

01 2 3 4 5 6
b, 1 2 1 3 3
1
1]2] L
T .
i
{0101 O 1 O [(24)](24)(24)(16)
. 6 4 2 1
T = —_ -—
he output is T’ and I = (24)(16) (1 9 4 6)
The DDF bijection may be extended to a bijection
Motzkin | standard
tableaux . U tableaux Involutions
of shape A g of shape A on[L]—-A
length L Ae(}x)) alphabet 4
b > (T, 1)

In the extended DDF bijection there is an additional rule.
(D3) If b; = & then add a fixed point (7) to I.



5.2 The Burge correspondence

The Burge correspondence [1] is a bijection

Standard
Fixed point free . tableaux
Involutions with
even rows
I — S

It can be obtained as the restriction of the following bijection.

Standard}

{Involutmns} — { tabloaux

To compute I — S, write the involution [ as a two-line permutation. Re-
verse the lower word and row insert it into the empty tableau, obtaining
S.

Example 10. Let I = (24)(16) in cycle notation. Then in two-line notation
we have

1 2 4
I= (6 49 (13) (@« 1246) =[1]2]4]6]= S
Here is another example with I = (24)(5)(17). We have

I::(l 2 409 7) (& — 15247) = 24T g

7 4 2 5 1 5

5.3 Insert DDF and Burge data

Let P =T - S be the standard tableau obtained by the plactic product of T’
and S [6]. Then define ¢ to be the corresponding type & path. This gives
us the desired data ¢ and P =T - S for (7).

Example 11.

2[4]6]

=P

T-S=-.2 4[6]=

c = 112131

[or]es]—

Here c is written in the unreversed order.
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5.4 Finishing the proof

One may show that the VXR map and DDF bijection give the same answer.
The DDF formulation is a composition of bijections and is therefore bijective.
The VXR. map was shown to be grade-preserving. This completes the proof
of X = K in the special case that was explained here.

6 Closing remarks

6.1 Level-rank duality

The type A one-dimensional sums satisfy a graded level-rank duality [17]
[18] [19]
KZ\(t) = tWHIKE, (7

where \! indicates the transpose or conjugate partition of A, L* is obtained
by transposing all rectangles in L, and ||L]| = 22; j>1 (", (L)) where 7i;(L) =

Z'r>z Zs>3 (T) :

This implies the following identity, where [L] Dors rsL{:
KO () = tIEIHEE D 0 (1

The X = M = K conjecture implies that in large rank, types B and C have
one-dimensional sums which are given by polynomials whose terms occur in
the reverse order from each other. Just from the definitions it is entirely
unclear why the one-dimensional sums of types B and C should have any
relationship with each other.

6.2 The missing case

Our methods don’t seem to work at all for type H. Even though types m
and H involve exactly the same kinds of paths, the energy functions for these
two types behave rather differently.
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