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1 Introduction

The notion of geometric crystals and unipotent crystals has been introduced by Berenstein
and Kazhdan([1]) for reductive algebraic groups and it is extended to Kac-Moody setting
in [11]. It seems to be a geometric lifting of the Kashiwara’s crystal base theory. They are
related to each other by “tropicalization/ultra-discretization” procedures.

Theory of perfect crystals([6],[7]) plays an important role in studying vertex type solvable
lattice models and certain limit (denoted by Bo) has been treated in [5].

In the mean while, Schubert varieties/cells associated with Kac-Moody groups have a
canonicaal geometric/unipotent crystal structures([11]). Indeed, the geometric crystal and
the crystal By, are related by tropicalization /ultra-discretization procedures.

In this article, we review [11] and in the last section, we see some relation between
geometric crystal on an affine Schubert cell and a crystal Be.

2 Kac-Moody groups and Ind-varieties

In this section, we review Kac-Moody groups following [9],{10],[12].

2.1 Kac-Moody algebras and Kac-Moody groups

Fix a symmetrizable generalized Cartan matrix A = (aij)i,jer, where I be a finite index
set. Let (t, {ai}ier, {hi}ier) be the associated root data, where t be the vector space over C
with dimension [I|+ corank(4), and {a;}ier C t* and {hi}ier C tare linearly independent
indexed sets satisfying a;(h;) = aij-

The Kac-Moody Lie algebra g = g(A) associated with A is the Lie algebra over C
generated by t, the Chevalley generators e; and f; (i € I) with the usual defining relations
(19],[10]). There is the root space decomposition g = @, ct* 8o Denote the set of roots by
A:={aeta#0, g, # (0)}. Set Q =3, Za, Qi =Y. Zso0; and Ay := ANQ4. An
element of A, is called a positive root. :

Define simple reflections s; € Aut(t) (¢ € I) by si(h) = h — a;(h)h;, which generate
the Weyl group W. We also define the action of W on t* by si(A) := A — alhi)oi. Set
Are = {w(a;)|w € W, i € I'}, whose element is called a real root.

Let g’ be the derived Lie algebra of g and G be the Kac-Moody group associated with
g'([10]). Let Uy = expg, (@ € A™®) be an one-parameter subgroup of G. The group G
is generated by U, (a € A™). Let U* be the subgroups generated by Usn (@ € AF =
AN QL) de., US = (Usola € AT).

For any i € I, there exists a unique homomorphism; ¢; : SLo(C) — G such that

®; (( (1) i )) = expte;, @i (( 115 (1) )) =exptfi(t € C).
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Set z;(t) := expte;, yi(t) := exptf;, T; := ¢;({diag(t,t~1)|¢ € C}) and N; := Ng,(T;). Let T
(resp. N) be the subgroup of G generated by T; (resp. NV;), which is called a mam‘ma;l torus
in G and B* = U*T be the Borel subgroup of G. We have the isomorphism ¢ : W-—N/T

defined by ¢(s;) = N;T/T. An element 5; = z;(—1)y:;(1)z;(—1) is in Ng(T), which is a
representative of s; € W = Ng(T')/T. Define R(w) for w € W by

R(w) = {(i1, 42, -+ ,i1) € I'lw = 54,84, -+ -84, },
where [ is the length of w. We associate to each w € W its standard representative @ €
Ng(T) by @ = 5;, 8, - - - &, for any (1,42, -+ ,4;) € R(w).
2.2 Ind-variety and Ind-group
Let us recall the notion of ind-varieties and ind-groups. (see [8]).
Definition 2.1. Let k be an algebraically closed field.

(i) A set X is an ind-variety over k if there exists a filtration Xy C X1 C Xp C -+ such
that

(a) Unzc)X" =X.
(b) Each X, is a finite-dimensional variety over & such that the inclusion X, < Xy, 11
is a closed embedding.

(i) A Zariski topology on an ind-variety X is defined as follows; a set U C X is open if
and only if U N X, is open in X, for any n > 0.

(ili) Let X and Y be two ind-varieties with filtrations {X,,} and {Y,,} respectively. A map
f i+ X —Y is a morphism if for any n > 0, there exists m such that f(X,) C Yy, and
fx,. : Xn — Y, is a morphism. A morphism f: X — Y is said to be an isomorphism
if f is bijective and f~1:Y — X is also a morphism.

(iv) Let X and Y be two ind-varieties. A rational morphism f: X — Y is an equivalence
class of morphisms fy : U — Y where U is an open dense subset of X, and two
morphisms fy : U — Y and fy : V — Y are equivalent if they coincide on UN V.

Definition 2.2. An ind-variety H is called an ind (algebraic)-group if the underlying set H
is a group and the maps

HxH — H H — H
(z,4) = =y z - ozt

are morphisms of ind-varieties.
We have the following facts:
(1) A finite dimensional variety over k holds canonically an ind-variety structure,

(i) If X and Y are ind-varieties, then X X Y is canonically an ind-variety by taking the
filtration

(X X Y)p 1= Xn % V.
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(iii) Let G be a Kac-Moody group and U % B¥ be its subgroups as above. Then G is an
ind-group and U%, B¥ are its closed ind-subgroups.

(iv) The multiplication maps

TxU — B U-xT — B~
(t,u) +~— tu (v,t) — vt

are isomorphisms of ind-varieties.

3 Geometric Crystals and Unipotent Crystals

In this section, we define geometric crystals and unipotent crystals associated with Kac-
Moody groups, which is just a generalization of [1] to a Kac-Moody setting.

3.1 Geometric Crystals

Let (as;)ijer be a symmetrizable generalized Cartan matrix and G be the associated Kac-
Moody group with the maximal torus 7. An element in Hom(T,C>) (resp. Hom{(C*,T)) is
called a character (resp. co-character) of T. We define a simple co-root o) € Hom(C*,T)
(i € I) by o) (t) := T;. We have a pairing (&, &) = a4

Definition 3.1. (i) Let X be an ind-variety over C, v : X — T be a rational morphism
and a family of rational C-actions e; : C* x X — X (1 €1 )

‘ei CXx X - X
co) - @)
The triplet x = (X,7,{ei}icr) is a geometric pre-crystal if it satisfies {1} x X C
dom(e;), e*(z) = z and
v(ef(z)) = o (c)y(z). (3.1)

(ii) Let (X,vx,{e}ier) and (Y, vy, {e) }Yier) be geometric pre-crystals. A rational mor-
phism f : X — Y is a morphism of geometric pre-crystals if f satisfies that '

fOBiX:ez’YC’f? 7X:’YYof-
In particular, if a morphism f is a birational isomorphism of ind-varieties, it is called
an isomorphism of geometric pre-crystals. ‘

Let x = (X,,{ei}ier) be a geometric pre-crystal. For & word i = (1,142, ,i1) € R(w)
(w e W), set o) = oy, &1 = sy (e, ), s a® = s, -85, (0y, ). Now for a word
i= (i1,42, - ,i1) € R(w) we define a rational morphism e; : TxX—Xby

: 1) (2) 0
(t,z) v el(z) = e;, (t)ez ® .. e, (t)(a:).

Definition 3.2. (i) A geometric pre-crystal x is called a geometric crystal if for any
w € W, and any i, I’ € R(w) we have :

e = ey. (32)



46

(i) Let (X, vx,{ef }ier) and (Y, vy, {€] }icr) be geometric crystals. A rational morphism
f: X — Y is called a morphism (resp. an isomorphism) of geometric crystals if it is
a morphism (resp. an isomorphism) of geometric pre-crystals.

The following lemma. is a direct result from [1][Lemma 2.1] and the fact that the Weyl
group of any Kac-Moody Lie algebra is a Coxeter group [3][Proposition 3.13].

Lemma 3.3. The relations (3.2) are equivalent to the following relations:

Ccy C2 __ ,C2,C1 ‘ v N
e, e =ei“e; if (Oli,&3>—0,

ci ,C1C2 C2 __ _Cg C€1€3 Cji ap v N vV N e

e;re;t et = e et e , if (o, 05) = (&) ,c5) = —1,

¢c1 ,C1€2 cica ca __ _c3 ci1cg [C1C2 cq s \% N Voo
€6y G TE =G TE 6 cs o if (o, ;) = ~2, (o ,4) = —1,
c1 ,CiC2 CiC2 €10 cica C2 __. ,C2,C1C2 C1C2 Ci1¢2 Ci¢2 _c1 v N e vV oo\ —
eireyt e ey et e =efel el Te e eyt i (o o) = -3, (af i) = ~1,

Remark. If (o, aj){a, ;) > 4, there is no relation between e; and e;.

3.2 Unipotent Crystals

In the sequel, we denote the unipotent subgroup Ut by U. We define unipotent crystals
(see [1],{11]) associated to Kac-Moody groups.

Definition 3.4. Let X be an ind-variety over C and « : U x X — X be a rational U-action
such that « is defined on {e} x X. Then, the pair X = (X, ) is called a U-variety. For
U-varieties X = (X,ax) and Y = (Y,ay), a rational morphism f : X — Y is called &
U-morphism if it commutes with the action of U.

Now, we define the U-variety structure on B~ = U~T. As in Sect.2, B~ is an ind-
subgroup of G and hence an ind-variety over C. The multiplication map in G induces the
open embedding; B~ xU — (&, which is a birational isomorphism. Let us denote the inverse
birational isomorphism by g;

g:G— B xU.

Then we define the rational morphisms 7~ : G — B~ and 7 : G — U by 7~ := projg- o g
and 7 := proj;; o g. Now we define the rational U-action ag- on B~ by

ap-=7n om:UxB™ — B™,
where m is the multiplication map in G. Then we obtain U-variety B~ = (B~, az- ).

Definition 3.5. (i) Let X = (X, &) be a U-variety and f : X — B~ be a U-morphism.
The pair (X, f) is called a unipotent G-crystal or, for short, unipotent crystal.

(ii) Let (X, fx) and (Y, fy) be unipotent crystals. A U-morphism g : X — Y is called
a morphism of unipotent crystals if fx = fy o g. In particular, if ¢ is a birational
isomorphism of ind-varieties, it is called an isomorphism of unipotent crystals.

We define a product of unipotent crystals following [1]. For unipotent crystals (X, fx),
(Y, fr), define a morphism axxy :Ux X xY — X x Y by

axxy (u, 3,y) = (ax(u,z), oy (r(u- fx(2)),y)). (3.3)

If there is no confusion, we use abbreviated notation u(z,y) for ax wy (U, Z, ).
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Theorem 3.6 ([1]). (i) The morphism axxy defined above is a rational U-morphism
on X xY.

(i4) Letm: B~ x B~ — B~ be a multiplication morphism and f = fxxy : X xY — B~
be the rational morphism defined by

Ffxxy =mo (fx X fy).

Then fxxy is a U-morphism and (X x Y, fxxy) is a unipotent crystal, which we call
a product of unipotent crystals (X, fx) and (Y, fv). ‘

(i4) Product of unipotent crystals is associative.

3.3 From unipotent crystals to geometric crystals
For i € I, set U 1= U* N§UF5 !t and UL == U*N 5;U*5; . Indeed, UF = Uiq,. Set

Vi, = (T+os (t>Ua$iOtz'(_"t> teC, ac AY \ {:ta’i}>'
We have the unique decomposition;
U~ =U;  Yia; = U—o, - UL.

By using this decomposition, we get the canonical projection & : U™ — U_q,. Now, we
define the function on U~ by

Xi = yi—l 0&;: U — U—OH_N—)C’

and extend this to the function on B~ by xi(u - t) = xs{u) for w € U™ and t € T. For a
unipotent G-crystal (X, fx), we define a function ¢; 1= oX : X = Chby

@i = x; o fx,
and a rational morphism yx : X — T by
vx i=projpofx : X —= B” - T, (3.4)

where projp is the canonical projection. Suppose that the function ¢; is not identically zero
on X. We define & morphism e; : C* x X — X by

e£(z) = 7 (%) (). (3.5)

2

Theorem 3.7 ([1]). For a unipotent G-crystal (X, fx), suppose that the function p; is
not identically zero for any i € I. Then the rational morphisms vx : X — T and €; :
C* x X — X as above define a geometric G-crystal (X, vx,{€i}tier), which is called the
induced geometric G-crystals by unipotent G-crystal (X, fx).

Note that in [1], the cases ¢; = 0 for some i € I are treated by considering Levi subgroups
of G. But here we do not treat such things.

The following product structure on geometric crystals are most important results in the
sense of comparison with the tensor product theorem in Kashiwara’s crystal theory.
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Proposition 3.8. For unipotent G-crystals (X, fx) and (Y, fy), set the product (Z, fz) :=
(X, fx) x (Y, fv), where Z =X x Y. Let (Z,vz,{ei}) be the induced geometric G-crystal

from (Z, fz). Then we obtain;
(1) vz =mo (yx X ).
(i1) For eachi€ I, (z,y) € Z,

Z =X x .
o5 (z,y) = ;i (x) + il (@)

(ii3) For any i € I, the action e; : C* x Z — Z is given by: ei(z,y) = (ei*(z),e*(y)),
where

_colx@ef @+ ol @) | __atx@ef @+l ®) gy
alrx @)X @ T el ) T wlux ()o@ + ool W)

Here note that cica = c. The formula ¢; and ¢ in [1] seem to be different from ours.

4 Crystal structure on Schubert varieties

4.1 Highest weight modules and Schubert varieties

As in Sect.2, let G be a Kac-Moody group, B* = U*T (resp. U*)be the Borel (resp.
unipotent) subgroups in G and W be the associated Weyl group. Here, we have the following
Bruhat decomposition and Birkhoff decomposition;

Proposition 4.1 ([8],{10],{12]). We have

G= U Bt@wB'T = U UtwB* (Bruhat decomposition), (4.1)
weW weW

G = U B~ @Bt = U U-wB* (Birkhoff decomposition). (4.2)
weW weW

Let J C I be a subset of the index set I and W; := (s;{i € J) be the subgroup of W
associated with J. Set P; := BYW;B* and call it a (standard) parabolic subgroup of G
associated with J C I. We denote the set of the minimal coset representatives of W/Wj in

. W by W7. There exist the following parabolic Bruhat/Birkhoff decompositions:

Proposition 4.2 ([8],[10],[12]). Let J be a subset of I and, Wy and WY be as above.
Then we have

G= |J Utwp, G= |J U uwPs.
wxeW wrEWJ
4.2 Unipotent crystal structure on Schubert variety

For A € Py (P is the set of dominant integral weight), let us denote an integral highest
weight simple module with the highest weight A by L{A)([3]) and its projective space by
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P(A) := (L(A)\ {0})/C*. Let vp € P(A) be the point correspondmg to the line containing
the highest weight vector of L{A) and set

X(A) =G -vp C IP(A).

Set J := {i € I|(h;, A) = 0}. By Proposition 4.2 and the fact that P, is the stabilizer of
v, we have the isomorphism between X (A) and the flag variety G/Pj,:

Proposition 4.3 ([10],[12]). There is the following isomorphism and the decomposition;

p: G/P1, =Uyewsn USWPs,/Psy — X(A)
9Py, g UA

Definition 4.4. We denote the image p(Ut@Py, /Py, ) (resp. p(U~@Py, [Ps,)) by X (A)w
(resp. X(A)¥) and call it a finite (resp. co-finite) Schubert cell and its Zariski closure in
P(A) by X(A)y (resp. X(A)¥) and call it a finite (resp. co- -finite) Schubert variety.

The names “finite” and “co-finite” come from the fact
dimX (A)y = l(w), codimx ) X(A)” = i{w),
Indeed, X (A)y & CH®). There exist the following ciosuré relations;

XAw= || X, XWv= [] X (4.3)

y<w,yeWa y>w,yeW7A
Indeed, by [8, 7.1,7.3],
X(A)y and X(A)¥ are ind-varieties. (4.4)

Let us associate a unipotent crystal structure with X (A),,. Since by the definition of X(A)w
and Proposition 4.3, we have X (Aw=U T4 - vp, the following lemma.

Lemma 4.5. Schubert cell X(A),, is a U-variety.

Next, let us construct a U-morphism X (A),, — B~. For that purpose, we consider the
followmg let w = s;,8i, -~ - 8, be a reduced expression and set Uy = U N wU~w™ ! and
U¥ =U NoUm !, Define

Bi =y, Bo = si,(ty), ﬁk = 84, Sip Sy (Qi )
then we have
Uy :=Ug, -Up, -~ Up,
This is a closed subgroup of U and we have an isomorphism of ind (algebraic)-varieties ([12])
w 2 Ug, x Ug, x -+ x Ug, 2CF, (4.5)
by

U @ = Uny, 81y + Uniy 5z *+++ Ung, 55 ——C* (4.6)

i, (01)5i, - Ty (@2)3s, - -+ @i, (ak)55, — (a1,02,7+ , ak)-
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Lemma 4.6 ([12, 2.2]). For any w € W7 (A € Py), there ezists an isomorphism of ind
(algebraic)-varieties
§:Uw — XAy

U —  u-Up
Define an isomorphism of ind (algebraic)-varieties

(XN — Uyw
v o= ((v):=5"tv)w,

where w € WY and A € Py. Since X(A), is U-orbit of p(w - P;, /Py, ), U acts rationally
on X(A),. We denote the action of z € U on v € X(A)y by z(v).

Lemma 4.7. The isomorphism ¢ : X{(A)y — Uypw is a U-morphism.

Define a rational morphism fy, : X(A)y — B~ by fu = 7~ o (. The following is one of the
main results of this article.

Theorem 4.8. For A € Py and w € WA, let X(A)y be a finite Schubert cell and f, :
X(A) — B~ be as defined above. Then the pair (X(A)w, fu) 15 a unipotent G-crystal.

In the sense of Definition 3.5(ii), ¢ is an isomorphism of unipotent crystals on X(A),
and U,w.

Since X (A)y < X(A)y is an open embedding, they are birationally equivalent. Let w :
X(A)w — X(A)y be the inverse birational isomorphism. Thus, fy, := fyow : X(A)y — B~
is a U-morphism. Then we have

Corollary 4.9. Let X{A)y be a finite Schubert variety and f,, be defined as above. Then

the pair (X {(A)w, fu) 15 @ unipotent G-crystal.

Remark. Note that for all w < w', we have the closed embedding X (A)y, — X (A)yr
([12]), and the isomorphism
X(A) = lim X(A)y.
weW‘IA
Nevertheless, in general, we do not obtain a unipotent crystal structure on X (A) by using

this direct limit since for y < w, the rational morphism o X(A)y — B~ is not defined
on X(A)y.

4.3 Geometric Crystal structure on X(A),

As we have seen in 3.3, we can associate geometric crystal structure with the finite Schubert
cell (resp. variety) X(A), (resp. X(A)y) since we have seen that they are unipotent G-
crystals.

By Theorem 3.7, we have

Theorem 4.10. For w € W, suppose that I = I{w). We can associate the geometric G-
crystal structure with the finite Schubert cell X (A)y (resp. variety X (A)w ) by setting (see
(3.4) and (3.5))

) _ . - c—1
Y = Projp o fu (1e8p. 7y = projp o fu), €5(c) = s ( ) (),
vi(x)

where projp : B~ =U"T —T.
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We denote this induced geometric crystal by (X (A)w, Yw, {€: }ier) (resp. (X (A)ws T {€itier))-
This geometric/unipotent crystal (X {(A)w,Yuw,{€i}ie ;) is realized in B~ in the following
sense,

Proposition 4.11. For w = s;, + -+ Si,, define
B = {Yu(ci, - ycx) =Yy, (c1) - Yip (er) € BT le; € C*}
where Y;(¢) = yi(2)ay (c) and U-actions on By by
W(Vales - en)) =7 (- Yoles, - 1ex)) (€ D)

Then X (A)y and By, are birationally equivalent via fu and isomorphic as um’poteni crystals.
Moreover, they are isomorphic as induced geometric crystals.

5 Tropicalization of Crystals and Schubert Varieties

5.1 Positive structure and Ultra-discretizations/Tropicalizations
Let us recall the notion of “positive structure” ([1},{11] ).

The setting below is simpler than the ones in ([1],[11] ), since it is sufficient for our

purpose.
Let T = (CX)! be an algebraic torus over C and X*(T) & Z' (resp. X.(T) = Z}) be the

lattice of characters (resp. co-characters) of T'. Set R := C(c) and define

v: R\{0} — Z
fley = deg(f(e)):

Here note that for f1, f2 € R\ {0}, we have

fi

oife) = o) +olis o ()=o) (s (5.1
Let f = (f1, -+, fn) 1 T — T’ be arational morphism between two algebraic tori 7" = (C*)™
and 7" = (C*)". We define a map f : X.(T) — X.(T") by
(Flo)le) = (e ..  oUn (&l
where £ € X.(T). Since v satisfies (5.1), the map f is an additive group homomor-

phism. Identifying X.(T) (resp. X,(T”))with Z™ (resp. Z") by £(e) = (ch,---,cdm) &
(I, -+ ylm) € Z™, we write

Flta, -+ lm) = @(F2(E()), - s v(fal€()))):

A rational function f(c) € Cle) (f # 0) is positive if f can be expressed as a ratio of

polynomials with positive coefficients.
Remark. A rational function f(c) € C(c) is positive if and only if f {a) > 0 for any a > 0
If f1, f2 € R are positive, then we have (5.1) and

v(f1 + fo) = max(v(f1),v(f2))- (5.2)
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Definition 5.1 ([1]). Let f = (f1,---, fa) : T — T" between two algebraic tori 7, 7" be a
rational morphism as above. It is called positive, if the following two conditions are satisfied:

(i) For any co-character £ : CX — T, the image of £ is contained in dom(f).
(ii) For any co-character £ : C* — T, any f;(€(c)) (i € I) is a positive rational function.
Denote by Mor™t (T, T") the set of positive rational morphisms from T to T”.

Lemma 5.2 ([1]). For any positive rational morphzsms f € Mort(T,Tz) and g € Mort (T2, T3),
the composition go f is in Mor™ (13, T3).

By Lemma, 5.2, we can define a category 75 whose objects are algebraic tori over C and
arrows are positive rational morphisms.

Lemma 5.3 ([1]). For any algebraic tori Tl, Ty, T3, and positive rational morphisms f €
Mor* (T}, Tz), g € Mor* (T3, Ts), we have go J =Go f.

By this lemma, we obtain a functor

UD : T+ — Set
T — X.(T)

(F:T=T) — (F:XJT)—> X.(T))

Definition 5.4 ([1]). Let x = (X,+,{ei}ic1) be a geometric crystal, 77 be an algebraic
torus and 6 : 7" — X be a birational isomorphism. The isomorphism @ is called positive
structure on y if it satisfies

(i} the rational morphism yo & : T’ — T is positive.

(ii) For any ¢ € I, the rational morphism e; g : C* x T" — T defined by e;g(c,t) =
61 o ef 0 6(t) is positive.

Let 8 : T — X be a positive structure on a geometric crystal x = (X,, {ei}ier})-
Applying the functor UD to positive rational morphisms e;4 : CX x TV — T and yo0 8 :
T’ — T (the notations are as above), we obtain

& = UD(eig):Z x X.(T) — X.(T)
¥ o= UD(yo8): Xu(T') = X.(T).

Now, for given positive structure 8 : 7 — X on a geometric pre-crystal x = (X,~, {e;}ier),
we associate the triplet (X.(7"),%,{&}ics) with a free pre-crystal structure (see [1, 2.2])
and denote it by UDg, 1/ (x). By Lemma 3.3, we have the following theorem:

Theorem 5.5. For any geometric crystal x = (X,v,{e:}ier) and positive structure ¢ :
T’ — X, the associated pre-crystal UDg /() = (X«(T"), %, {€: }icr) is a free W-crystal (see
[1, 2.2])

We call the functor UD “ultra-discretization” instead of “tropicalization” unlike in [1].
And for an object B in Set, if there exists a geometric crystal x, an algebraic torus T
in 74 and & positive structure 8 on x such that UDyr(x) = B as crystals, we call x a
tropicalization of B.
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Now, we define certain positive structure on geometric crystal By (I = I(w), and w €
W74} and see that it turns out to be a tropicalization of (Langlands dual of) some Kashi-

wara’s crystal.
For i € I, let B; be the crystal defined by (see e.g.[4])

B; = {(z);|lz € Z},
Gi(z)i = (+1)i, file)i = (@— i &@) = filw)i =0 (i #7)
wt(x); = oy, &5(@)s = —, 0il@)i =T, £5(); = pj(x)i = —00 (1 # 7
For w = 54,8i, 8y, € W and i = ({1,182, ,ix) € R(w), we define the morphism
6; : (CX)* — B by
Bi(cr,co, - k) = Yay(er) - Y (cx) = yil(cll)al(cl) : ”yik(g;)fl}i (ce)  (5:3)

Proposition 5.6. (i) For anyi€ R(w) (we W, [ (w) = I), the morphism 6; defined in
(5.8) is a positive structure on the geometric crystal B,.

(i) Geometric crystal By, 1s a tropicalization of the Langlands dual of the crystal B, ®
B;, ® --- ® B;, with respect to the positive structure 6i(c1,ca, - »C), or equivalently
UD(B,) = Langlands dusl(B;, ® -+ ® B;,) as crystals.

Indeed, we have
1 1
v (yu(a)aivl(ﬁ) = 'yik(a)aﬁ (Ck)) =aj (c1) - o, (ck),

and the explicit action of f on Yy (i, , Cr )

eg(Yw(ch Tt ,Ck)) = Ty ((Pg(yw(i;l . ,Qc))) (Yw(cls T 5ck))) = Y’w(ch et ,Ck),

where

c 1
E : c‘lz’l.i . Fign 15t + Z Qiy.i ca’im—lvic

1<m<Gim=i “1 '€ m—1 Om

me1  Cm jem<k,im=i C1
(5.4)
c 1
Z Ay, ca‘;m—l""' + Z Aiy 4 Qi 14t

Cj =Cy

1<m<gyim=i €1~ "Cm-1 Om  j<m<kim=il m—1 Cm

Furthermore, we describe the action of & on By, ® -+ ® Bi,. Take b = (b1)i, ® - ® (b,
(i = (i1, k), bj € Z). Since the action of & on tensor products is described explicitly
in [4], we obtain

&) = (Br)is @ -+ ® (Br)ias

where

Bj=b;+max| max (c—bm- Z biaii ), max (—bm — Z biais,)

1<m<y, I<m g<m=k, <m
=i =i
—max max (¢ —bm — E b6isy), max (—bm — E biai i) (5.5)
1<m<y, l<m j<m<k, l<m

im =1 im =1
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Now, we know that (5.4) and (5.5) are related to each other by the tropicalization/ultra-
discretization operations:

ultra—discretization
C; = Bj
tropicalization
Cj bj
z-y —Z+ Y
z
y z-Y
z+y max(z,y)
Gi,j Qi

Langlands dual

6 Affine perfect crystal Aff(By) for f/l\[n_}_l

In this subsection, we see an application of ultra-discretization of geometric crystal on Schu-
bert cells/varieties defined for SL;41.

6.1 Perfect crystals and their limit

Perfect crystals are defined for quantum affine algebras and they play an important role in
studying solvable lattice models([6],{7]). In [5], certain limit of perfect crystals are iniro-

duced, which is denoted Beo.
Let g be an affine Lie algebra and P, be a classical weight lattice and set (Py)] := {) €

Pul{e,A) =1, (hi,\) > 0} (I € Zso).

Definition 6.1. A crystal B is a perfect of level | if
(i) B® B is connected.
(i) There ezists Ao € Py sucht that

wi(B) C Ao+ Y Zeori, 4B, =1
140

(i) There ezists a finite dimensional U,(g)-module V with o crystal pseudo-base By, such
that B & B, /%1
(i) We have e, : B™™ := {b € Bl{(c,e(b)) = I}—(P} ) (bijective).

Now let us define the limit of perfect crystals. Let {B;};>1 be a family of perfect crystals
of level I and set J := {({,b)|l > 0, b € B™*"}.

Definition 6.2. A crystal Bo, with an element be is called a limit of {Bi}i»1 if
(1) wi(beo) = €(boo) = Y(boo) = 0.
(i) For any (I,b) € J, there exists an embedding of crystals:

Japy: Te) ® Bi®T_ () — Boo
ter) ® 0@ t_o) F* boo
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(7'7'?') By = U(l,b)e.] Imf([,b)'

Let B(oo) be the crystal of the subalgebra U; (g). Thene we have the isomorphism of
crystals:

B(oc)—B(o0) ® Be.
In the case g = slnt1, Boo and its affinization Aff(Bo,) are given as follows ([5)):

Boo = {b‘: (51,l2,' o ;ln)llz S Z}(E Zn)
Af(Boo) = {b = (k, L, 2y -, ln) |k, i € Z}H(E= Z™H)

éo(b) = <k+ lsll - 1)"')1
8i(5) = (o b+ Ll = 1,00) =100 ,m)
wt(b) = ké+ (—Qll — g == ln)AQ -+ Z?:l(l'i - l¢+1)Ai,

where A; is a fundamental weight and ¢ is a basis of null roots.

6.2 Alternative positive structure on certain affine Schubert cell
Now, for G = gf;:l, let w* = sp8;1 -+ * 8n—185 and set
B = {Y(co,c1,- - »en) = Yoleo)Yi(er) - Yalen)leo, 017+ 6o € C°1,

as in Sect.5, which is isomorphic to the Schubert cell X(A)y as a geometric crystal. We
define the following positive structure on B,.:

O: ((Cx)““"1 — B
(bilislas o 0n) o Yo(K)Ya(kl) - Ya(kls -+ 1)

Through this ©, on (C*)™*! we obtain

88,@(k7l13 e ) = (Ck/', C_lil, .. )
el ol lislir, ) = (-, cliy e Hig, ) (=1, ,n).

On the other hand, on Aff(Bs) we have

ég(k,ll,---)=(k+c,l1-c,--~)
ég("ﬂli?lﬁ'l?") = (“:l’i + ¢, Zi-i-l - C,--) (2 =1,--- ,n)v

which imply
UDe(By) 2 Aff(By)- (6.1)

Note that ultra-discritization of the function ; on L.H.S. of (6.1) does not coincide with &;
on R.H.S. of (6.1), which will be resolved in a forthcoming paper.
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