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A SIMPLE INTRODUCTION TO CRYSTALS B%* FOR
KIRILLOV-RESHETIKHIN MODULES OF TYPE D

ANNE SCHILLING AND PHILIP STERNBERG

ABSTRACT. The Kiriflov—Reshetikhin modules W™ are finite-dimensional representa-
tions of quantum affine algebras Uy (g), labeled by a Dynkin node r of the affine Kac—

Moody algebra g and a positive integer s. In this paper we explain the combinatorial
structure of the crystal basis B%'® corresponding to W? for the algebra of type D&Y,

Proofs of all claims, as well as more specific details of all constructions, may be found
in [16].

1. INTRODUCTION

At the workshop on the Combinatorial Aspect of Integrable Systems held at RIMS
Kyoto, one of the recurring themes was the X = M conjecture of [1, 2]. Briefly, this
conjecture states that the one-dimensional configuration sums X of a certain class of lat-
tice models can be expressed as fermonic formulas M, reflecting the corner transfer matrix
method and the Bethe ansatz as methods for solving these lattice models. The combina-
torial tools of these methods are Young tableaux/crystal bases and rigged configurations,
respectively. The following table summarizes the three regimes of this conjecture.

formulas X : 1-Dsum M : fermionic formuia
stat. mech. methods CT™M Bethe ansatz
comb. objects | tableaux/crystals | rigged configurations

More specifically, the theory of crystal bases is used to label the highest weight vectors
of irreducible representations (i.e., Bethe vectors) of a certain algebra by crystal basis
elements. Since each Bethe vector corresponds to a solution of the Bethe equations and
these solutions are indexed by rigged configurations, there should be a natural bijection
between highest weight crystal elements and rigged configurations. Such bijections have
been found by Kirillov and Reshetikhin [7] for type AD (see also [8]), and later for all
nonexceptional types for the vector representation [10] and symmetric powers [15]. For
type D¢ ) the bijection was given in {14] for the fundamental representations.

The X = M conjecture depends upon the existence of the crystals B™* for the Kirillov—
Reshetikhin modules W7 °. The Kirillov—Reshetikhin (KR) modules are finite-dimensional
irreducible representations of quantum affine algebras U,(g). In general, it is not known
yet whether the B™° exist and what their combinatorial structure is. It is the purpose of
this note to give the combinatorial structure of B%* of type Dgl) . The KR crystals of type
ALY have been explicitly described [4, 13], as well as B™! and BY* for most types [4, 6].
Furthermore, according to the theory of virtual crystals [11, 12], the following algebra
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embeddings have been explicitly extended to the crystals of their KR modules:

W, AP 4Pt DB, — AR,
AP B — DY
Eéz),Fil) o Eél)
Dis)’Ggl) — DP.

The next case to explore is therefore B?s for type D&Y, which is the focus of this paper.
Here, we present the combinatorial construction of B%* assuming existence as recently
given in [16]. The combinatorial crystal is denoted by B2#; we illustrate our main defi-
nition with examples. Proofs and further details can be found in [16]. The main result of
[16] is:

Theorem 1.1. If B>* exists with the properties as in Conjecture 2. 1, then B%* = B>S.

2. REVIEW

For background on quantum groups, crystal bases, perfect crystals, and other well-
understood concepts, please refer to [16] or any of the standard references on these topics.

The fermionic formulas suggest not only the existence of the crystals B™*, but also
several conjectures about the structure of these crystals as well [1]. In the case of B%#, this
specializes to

Conjecture 2.1 ([1]). The crystal B%® of type D,(f) exists and has the following properties:
(1) 4s a classical crystal B2 decomposes as B>* = @0 B(kAj).
(2) B%® is perfect of level s.
(3) B%* is equipped with an energy function Dpa.s such that Dgz.«(b) = k— s ifbis
in the component of B(kAs3) (in accordance with the energy D as in [16)).

To construct B%* so that it satisfies these propetties, we first find a way to label the
vertices of the crystal. Our approach is to define a set of rules for what a legal “affine
tableau” is, and then show that this set is in bijection with the direct sum €;,_o B(kAz).

This bijection provides the action of the crystal operators &; and fifor1 < i< m,but
we still need to know the action of & and fo. To define these crystal operators, we use
an auxilliary construction called the branching component graph. It can be shown that the
resulting affine crystal B2# is perfect of level s. In fact it was proved in [16] that this is the
unique perfect level s crystal for which the energy function is as stated in Conjecture 2.1.

3. AFFINE TABLEAUX

We briefly recall the labelling by tableaux of the vertices of classical highest weight
crystals B{kAz) of highest weight kAo, following the construction by Kashiwara and
Nakashima [5]. Each crystal element can be represented by a tableau of shape A = {(k, k)
on the partially ordered alphabet

1<2<'-—<n-—1<;<n—1<-~§<1
such that the following conditions hold [3, page 202):

Criterion 3.1.
(1) If ab is in the filling, then a < b;
(2) If$ isin the filling, then b £ a;
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(3) No configuration of the form 7 or ; . appears;

nln nlﬁ

(4) No configuration of the form o7 O T appears;
(5) No configuration of the form appears

Note that for & > 2, condition 5 follows from conditions 1 and 3.

We define the set of affine tableau in B by removing parts 3 and 5 from Criterion
3.1. The bijection between B2 and P;_, B(kA2) is as follows. Given an affine tableau
T which is not a classical tableau (i.e., a tableau that satisfies parts 1, 2, and 4 of 3.1,
but violates part 3 or 5) there must be a configuration of the form * 2, = . or 1 Remove
columns of the form ; (possibly with a = 1) until the resulting tableau satisﬁes Criterion
3.1. It can be shown “that this procedure gives a well-defined bijection between the two
sets.

The following examples are taken from B2 for DY,

Example 3.2. The affine tableau i g g g ? corresponds to the classical tableau
11313 . .
S EREE by removing the second and third columns.

It is easy to see that for any affine tableau the removed columns must be adjacent, as
they are in these examples.

21313134

37331 corresponds to the classical tableau

Example 3.3. The affine tableau

213134
4131211

As the above example indicates, if there is a choice about which column to remove, it
has no effect on the outcome.

by removing either the second or the third colummn.

Example 3.4. The classical tableau ; g corresponds to the affine tableau
1121222
412121212

While we could choose to add columns of the form % either to the middle or to the right
side of the first tableau, either choice results in the same affine tableau.

Example 3.5. The classical tableau i 3 ? corresponds to the affine tableau
2121313
4121211}

By part 1 of Criterion 3.1, the only place that a column of the form ; may be inserted
is between the first and second columns of £. However, we may choose between using this
to create a configuration of either of the forms ® 2 or 2 _. Once again, this “choice” does
not affect the outcome.

4, THE BRANCHING COMPONENT GRAPH

Since the Dynkin diagram for type DY hasa graph automorphism interchanging nodes
0 and 1, we know that interchanging the role of 1-arrows and O-arrows in B?** will pro-
duce an affine crystal isomorphic to B%*. We may use this fact to our advantage at a
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FIGURE 1. Branching component graph BC(3Az)

larger scale by considering the D,,1-crystals that result from removing the 1-arrows from
@5, B(kA2), since this direct sum is isomorphic to B** with the 0-arrows removed.

The branching component graph of B%#, denoted BC (B%#), is defined as follows. Its
vertices correspond to the Dy, - 1-crystals that remain connected after removing all O-arrows
and l-arrows from B2<; we label the vertices (non-uniquely) by the partition A indicat-
ing the classical highest weight of the corresponding Ug(Dy-1)-crystal. The edges of
BC(B%#°) are defined by placing an edge from v to w if there is a tableau b € B(v) such
that f1(b) € B(w), where B(v) denotes the set of tableaux contained in the Dn—1-crystal
indexed by v.

It suffices to describe the effect of removing the 1-arrows from B(kAz) for arbitrary k.
We denote this branching component graph by BC(kAgz), and use vy to denote the “highest
. weight branching vertex”, i.e., the branching vertex such that the highest weight tableaux

bkAz €B ('Uk)-

An intuitive way to construct BC(kAs) is as follows. Begin with a 1 x k rectangle,
which labels v For 1 < j < k, the partitions labeling the vertices of rank j are those
which are contained in a 2 X k rectangle and which are joined by an edge in Young’s lattice
to some partition labeling a vertex in rank j — 1. In each rank, the partitions appear with
multiplicity one. Fork+1<j < 2k, the partitions in rank j are the same as those in rank
2k — j, again with multiplicity one. Finally, there is an edge from a vertex v ofrank jtoa
vertex w of rank j + 1 precisely when the corresponding partitions are joined by an edge
in Young’s lattice.

Example 4.1. Figure 1 depicts BC (3As).

There is a unique inclusion of BC(kAz) in BC ((k+1)Az) that agrees with the labelling
of the vertices. We may define a rank function on all of BC(B%*) by setting the rank of
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FIGURE 2. Branching component graph BC(B%?)

a vertex to the rank of its image in BC(sA2) under the appropriate composition of these
inclusions. For example, every vertex labelled by @ always has rank s in BC(B%*).

Example 4.2. Figure 2 depicts BC(B*?), which is the union of BC(0), BC(A3), and
BC(2A3).

5. AFFINE KASHIWARA OPERATORS

In this section we describe how to “overlay” a set of arrows, called Fp arrows, on
BC(B**) in a way that specifics & and Fo. Let v € BC(B%*) be a vertex of global
rank 7 in BC(kAs) associated with the partition (A1, A2). Place an Fp arrow from v to the
following vertices, if they exist:
the vertex of global rank j — 1 in BC((k — 1)Ag) with shape (A1 — 1, 22);

e the vertex of global rank j — 1 in BC(kAz) with shape (A1, Az — 1);
o the vertex of global rank j — 1 in BC((k + 1)A;) with shape (A1 +1, Az);
o the vertex of global rank j — 1 in BC(kAz) with shape (A1, Az + 1).

The directed graph that consists of the vertices of BC (B%#) and the Fp arrows is iso-
morphic to BC(]?ZS). Via this graph isomorphism, which we denote o, we may define fo
for B%¢. Let b € B(v) be a tableau in B%s. Note that B{v) is isomorphic to B(c(v)) as
a D,_i-crystal; let b’ € B(o(v)) denote the tableau corresponding to b under this isomor-
phism. We may have f; (V') = ¢’ € B(w) for some branching vertex w, or we may have
f1(¥’) = 0. In the former case, we say that fo(b) = ¢, where ¢ corresponds to ¢’ under the
isomorphism between B{w) and B(c(w)); in the latter case, fo(b) = 0. By the definition
of crystals, this also determines €.

Example 5.1. In Figure 3 we have BC(B%?) with the original arrows removed and the Fo
arrows superimposed.

Of course, we could have chosen to define the graph isomorphism in terms of the
branching vertices, and let the definition of the Fy arrows follow. In fact, we did ex-
actly that in [16], where ¢ is used to denote the automorphism of the vertices of B2
corresponding to interchanging nodes 0 and 1 of the Dynkin diagram. -

We now present some examples taken from B2,
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FIGURE 3. BC(B*?) with Fy arrows

Example 5.2. Letb = ? s0 b € B{v) where v is the branching vertex of shape (1,0)
with global rank 3 in BC(Az). We see from Figures 2 and 3 that o (v) is the vertex with the
same shape with rank 1 in BC(2A2). The corresponding tableau in olv)isd = ,‘1, %, and
d = b)) = é % The branching vertex containing ¢’ is the vertex of shape (1, 1) with

rank 2 in BC(2As), which is fixed under o, so ¢ = ¢. Therefore, fold)=3%.

P )

Example 5.3. Letb = % :%, so b € B(v) where v is the branching veriex of shape (2,0)

with rank 4 in BC(2Az). We see from Figures 2 and 3 that o(v) is the vertex of the
same shape with rank 0 in BC(2Az). The corresponding tableau in o(v) is b = é é, and
¢ = ) = ; g The branching vertex containing ¢’ is the vertex of shape (2, 1) with
rank 1 in BC(2A5). Its image under ¢ is the vertex of the same shape with rank 3 in

BC(2A2), 50 fo(b) =c=33.

Example 5.4. Let by, denote the classical highest weight tableau of B(kAz2) C B%s,
Then fo(bkAg) :-b(k+1)A2 for 0 S k $ s—1.

6. PERFECTNESS

Several conditions must be satisfied for a crystal B to be a perfect crystal of level £,
but the most significant challenge is in the condition that the maps € and ¢ from Bmin t0
(P:lr )¢ are bijective. We briefly recall the definition of these sets and maps below; for more

detail see [16] or [4].
For a crystal basis element b € B, define the weights

() =S ei)A and p(b) =D pilb)hs,
iel iel
where
£i(b) = max{n > 0| &'(b) # 9}
i (b) = max{n > 0] fr(b) # 0}
The level of a weight A is {¢, A), where ¢ = fig + h1 + hn—1 + fin + 29k, is the
canonical central element of the algebra of type DY The set of minimal vertices, denoted
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Bunin, is the set of crystal elements b for which {c, (b)) is minimal. Finally, define (P:]’ )e
to be the set of level £ weights A with no 4 component for which (h;, A) > 0 foralli € 1.
We now outline the construction of a 2 x s tableau T" such that given any level s weight
A, we have £(T) = @(T) = A. It was shown in [16] that these are precisely the tableaux
in Bmin-
Fors = 0,...,n, let k; = {h;, A). We first construct a tableau T, corresponding to
the weight M = S0, k;A;. We begin with the middle k.1 + %k, columns of Ty. If

i==2
ky_1 + k,, is even and &y, > k,,—1, these columns of Ty, are

n-2 n-2n-1 n-1 7w 7 n—-1 n-1
p-—l“ n—1 _n n n—-1 n-ln—-2 n-—-2
Fn 1 (bn—bne1)/2  (bp—hn1)/2 koo
ifkn,1+kn is odd and k,, > k.1, we have
n—2 n—2n-—1 n—1a = I n»-l”.n*l
n—-1 n—-1 mn n_nn—1 n-1n-2 n-—2
ket (bnmkno1=1)/2  (kn—kn—1~1)/2 ket

In either case, if k, < kn-1, interchange n and f1, and k,, and k,,_; in the above configu-

rations.
Next we put a configuration of the form

1 12 2 n'—3. n—3
2 23 3 7n—2 7 - 2
foo ks Kn—2

on the left, and a configuration of the form

n—2 n—2n—3 n-—23
n—23 n—3An—-4 n-—4/

“——

Kn—2 kn—3 k2

on the right.

We now use Lecouvey D equivalence as in [9] or type D sliding as in [16] to change
this tableau into a skew tableau of shape (s — kg, s — ko — k1)/{k1). If ky > s — ko — k1
(ie., k1 — (s — ko — k1) = 2k1 + ko — s > 0), place a configuration of the following form
in the empty spaces in the middle of this skew tableau:

1 12 2
55177
2k1+ko—s
1 122 2
2...2 5 ij,
2k1:;o-8

if 2k; + kg — s is even,

if 2k1 + kg — s 15 0dd,

where the number of 1’s equals the number of 1’s and the number of 2’s equals the number
of 2’s.

I_f s — ko is odd, the middle column of the tableau constructed so far is g fort<a<n
or 7. Whatever it is, simply insert ko of this column into the tableau next to the middle
column (cf. Section 3). If s — ky is even, the middle two columns are of the form § g for

some letters @ and b (it is possible that b is barred, in which case b is the corresponding
unbarred letter). In this case, simply add ko columns of the form ; between these columns.
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We provide a few examples with details of the construction of the tableaux, followed by
examples with less detail in Table 1.

Example 6.1. Letn = 5, and consider the weight Ag+2A1 + A2+ 2A4 + As. This weight
haslevel 1 +2+2-1+2+1 =8, soour proceedure will result in a 2 x 8 tableau, i.e.,

a minimal tableau in B%8. Since k4 + ks is odd and ks < ky, we begin with 2 g : !

3
. . 11315614]2 .
To incorporate Ap, we amend this tableau to get STATET3 1 Applying the type
2

D sliding algorithm twice and inserting 1’s and I’s gives us ; i é é ? i

. . . . c 1]1111414]56(4|2
Finally, we insert one column in the middle, which yields STATETI AT 11 1]

[anall

Example 6.2. Let n = 6, and consider the weight Ag + 2A; + Ag -+ 2A¢. This weight has

level 1+ 2+2-142 =17, sowe willhave a 2 x 7 tableau at the end; i.e., a minimal tableau

in B27. We begin with the tableau corresponding to 2Ae, which is Z g . and expand it

215163 1 " 11112(6(6]3
37615 2.TypeDshdmgturnsxtmto AT AVIEERS

111122663
316622111 ]

‘thus an account of Az:

and inserting one column gives us

Example 6.3, Table 1 shows several weights and the corresponding tableaux. The first 11
entries are all the level 2 weights forn = 4.
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