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Formal power series solutions of nonlinear partial differential
equations and their multisummability
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Abstract

Let 4(t,z) = >.°° up(z)t", (t,z) € C x C% be a formal power
series solution of a nonlinear partial differential equation in a complex
domain. We study the multisummmability of 4(¢, z), which implies ex-
istence of a genuine solution u(¢,z) with u{t,z) ~ 4(¢t,z) as t — 0
in strong sense. This article is a continuation of [7] in which linear
partial differential equations were studied.
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0 Introduction

In this article we study formal solutions of some nonlinear partial differential
equations in the complex domain. It is an important problem to study the
existence of genuine (true) solutions with given formal solutios. This problem
was studied in [6] for general nonlinear partial differential equations, where
the existence of genuine solutions were obtained. Recently we have the the-
ory of multisummability of formal power series (see [1]). Multisummability of
a formal power series ®(t,z) = 3.0 | ¢, (z)¢" means the existence of a holo-
morphic function ®(¢,z) on a sectorial region with ®(¢,z) ~ &(t,z) in much
stronger sense. It is shown in [2], [3], [4] and [5] that formal power series
solutions of ordinary differential equations are multisummable. The mul-
tisummability of formal solution was not studied in [6], because equations
studied were more general. As for formal series solutions of partial differen-
tial equations, it is shown in [7] that they are multisummable for some class
of linear partial differential equations. We generalize this result for nonlinear
partial differential equations. The details will be published elsewhere ([9]).
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1 Borel and Laplace transforms

In order to introduce the notion of multi-summability of formal power series
we first define Laplace transform, Borel transform and their formal theory.
For more detailed results of this topic we refer to [1]. The coordinates of
C1 is denoted by (t,z) = (t,21,---,z4) € C x C% For a region Q, O(Q)
is the set of all holomorphic functions on ). We often use the following
notations about sectorial regions. For § € R and 6,p > 0 set S(6,4,p) =
{0 < |t < g argt — 0] < 6} (57(6,6,0) = {0 < €] < pi|argé — 6] < 6}).
5(0,8) = S(8,6,00) (S*(8,8) = 5*(0,6,00)) is an infinite sector in f-space
(resp. &-space). 0 is often called a direction. We also put Si1(8,9) = {t €
50,80 < Il < wlargd)} (i (6,6) = {€ € 56,830 < |e] < wlarg&)})
called a sectorial neighborhood of ¢t = 0 (resp. £ = 0), where w(-) > 0 is a
positive continuous function on (8 — 6,6 + 9).
Let U C C¢ be an open polydisk with center z = 0.

Definition 1.1. Let v > 0. Ezpy (S* x U) is the set of all $(&, ) € O(S* x
U) such that for (§,z) € (S*N{|¢| > 1}) x U

lp(&, )| < Cexplclél”) (1.1)

for some constants C and c.

Let ¢(&,z) € Exppyy(S* x U) such that for (&,z) € (S*N{0 < [§] <
1 xU
8(,2)| < CIEIFTT {e>0). (1.2)

Then «y-Laplace transform (L, ¢¢)(2,z) is defined by

Coad)t2) = [ texp(~(Eote,alas”, (13)

d&Y = y&1d¢, which is holomorphic on Syoy(8,7/27+8) x U. Let (¢, z) be
a holomorphic function in Sy (0, 7/2y+8) x U with |4 (¢, z)| < Clt|° (¢ > 0).
Let ¢ # 0 with |argé — 8| < § and € be a contour in Sy (8, 7/2y + ) from
Oexp(i(¢' +argf)) to Oexp(i(—6 +argé)) with w/2v < 6" < 7/27y + min{f +
§ —argé, arg& — 0 + &}. Then y-Borel transform (B, g9)(€, z) is defined by

Bra0)(6,3) = 5 [ exp(EPute e (1.4



Let ¢i(z,§) € OU x S{y(0,6)) (i = 1,2) satisfying |¢s(z,£)| < CIEFT
(e > 0). Then ~y-convolution of ¢;(z,£) and ¢y(z, ) is defined by

3 .
B850 = [ GlE-1Den D7 €€ 50,0, (15)
Let 0 <y <+ and x™* =-7‘1 — (v')71. Set

A/y’,’y,e = 87’,9['7,97 (1'6)

which is called (v',7)-acceleration in the direction §. It was introduced by
Ecalle and shown that A, ¢ can be extended to ¢(§,z) € Expr(S* x U)
with (1.2) and (A, ,,6¢)(§, 2) is holomorphic in 575 (0, 7/2k +6) x U. We
have the following basic relations

Lemma 1.2. (1). Let ¢;(§,z) € Expp(S* x U) (i = 0,1,2) with (1.2).
Then

BW,BIC%HQSO = ¢0> (17)
(Lye91)(Lrgd2) = Lo p(d1 j $2). (1.8)

(2). Let ¢i(€,2) € Expry(S* x U) (i = 1,2) with (1.2). Then
(“47',%9@51),’;‘, (Av’m@@) = A«’,W(‘lﬁl j $a). (1.9)

The preceeding theory is analytical. For our aim let us define formal

~-Borel transform.

Definition 1.3. Let 6(t,z) = S oo s va(z)t™ € O(U)][t]].
We say that 9(t,x) has Gevrey order s in t, if there are positive constants A
and B such that

sup |v(z)| < AB"I'(sn +1). (1.10) |

sl
The totality of such formal series is denoted by O(U)[[t]ls.

Let 9(t,z) = > o0, vn(z)t" € tO(U)[[t]]. Then formal v-Borel transform
(B,0)(£,z) is defined by

(B,0) (&, @) = Z% (1.11)
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In general {B,9)(£, z) is a formal series in £. But if 0(¢,z) € tO(U)[[t]]%,
then (B,9)(¢,z) is converges, hence, it is holomorphic in {0 < |£] < pg} for

some py > 0.

2  Multisummability of formal series

Now let us proceed to define multisummability of 0(t,z) = > " va(z)t" €
tO(U)[[t]]- Let 0 < ky < kpq < -+ < ky < ko = +00 and define x; by
kil = k7t — kT for 1 <4 < r. Let {;}_; be real constants such that
0; — 01| < m/2k;. Set k = (ki,--- ,kr) and 8 = (8,--- ,6,). Wecall § a

multidirection.

Then 4(t,z) € tO(U)[[t]] is k-summable in multidirection 8, if the fol-
lowing conditions are satisfied. '

(1) 9(t,z) € O(U)[[t]].L.. Then v" (€, z) := (B, 0)(£,2) converges uniformly
on {0 <[&f <po} M U for some py > 0.

(2) Let i € {1,2,---,7 — 1,7}. v"(€,z) has the holomorphic prolongation
to Sf := §*(6;, ;) for some §; > 0 with exponential growth of order x;,

v'(€, )] < Cexp(clé]™) on (SN {21} xU.  (21)

If i 3 1, define v*"1&, 2} 1= (Ai,_, k,0,v") (€, &), which is holomorphic
in Sy (6, /26 + &) X U.

Then k-sum of #(¢,z) in multidirection @ is defined by (L, 0,v')(t,z) €
O(S1,401 x U), Sy = S(f1,7/2v + é1), and denoted by v(¢,z). It holds that

o n—kyr
:Zvn(ggi in {0<[¢]| <po}xU
kr

(2.2)

o n—ki—1
NZ 'Un(l-f)f in Sf{ko} (9@,71’/2:‘61' + 51) x U

n=x1

n=1

We have, by considering the behavior at £ = 0 and (2.1)

[V (€, @) < AlE) exp(clé]™) on 7 x U. (2.3)



Let 0(t,z) = Y00 s va(2)t™ € O(U)[[t]]. Set w(¢,z) = (0(t, ) — vo(z)) €
tO(U)[[t]. If @(¢, z) is k-summable in multidirection 8, we say that 9(¢, z) is
k-summable in multidirection 8. Set & (£, z) = (B, 10)(£, z) and w1 (€, z) =
(A o) (&,3) for 2 < 4 < 7. k-sum of 6(¢,z) is defined by vo(z) +
(Lk, p,w')(t,z) and denoted by v(t, z). v(t,z) is holomorphic in Sj 0 x U
and v(t,z) ~ O(t,z) as t — 0 in Sy} x U. There are other equivalent
definitions of k-summabilty multidirection 8. We refer [1] for this topics.

3 Formal power series solutions of nonlinear
partial differential equations

First we introduce notations about partial differential equations. As before
(t,z) = (t, 21, ,z4) € C x C% For multi-indices @ = (ag, 04, -+, 0q) =
(ag,0/) € N#1 o] = ¢ o and 9208% = (19,)%° 921 - - - 054, Let M be the
cardinal number of the set A, = {a € N Ja] < m}. For A = (A €
Ap) € NMand Z =(Z,;0 € A,,) define

Al = Y A, z4= [] zi-

a€Am 0€An,
So Z* is a monomial in {Z, }aea(m) With degree |A|. Set NM* .= N — {0} =
{A e NM;|A| > 1}. For A € NM* set my = maz{|al; 4q # 0}.
Let Uy ¢ C (U C C%) be an open polydisk with center ¢t = 0 (resp.
2 = 0) and Q C CM be a neighborhood of Z = 0. Set ¥ = t0;. Let L{u) =
L(t,z,9%0% u) be a nonlinear partial differential equation with order m of

the form

Lu) = Z calt, ) H (9406 u)4e + f(t,z), (3.1)

AcNM« a€dn,
where L(t, 2, Z) = 3 genur €a(t, ) 224 f(t,2) € O[UpxUxQ) and f(t,z) =
L(t,2,0). In this article for simplicity we assume L{t,,Z) is holomorphic
on Uy x U x §. Let ey € N such that ca(t,z) = t%4ba(t, z) with b4(0,z) & 0.
The linear part of L(u) denoted by Ly (2, x, 9, 03)u, that is,
Liin(t, 2,9, 0:)u = > calt,s) H (920 9% 1) A=

{AeNM~*; |Al=1} a€Am

= ) colt,z)9™°0% u.

aeNd+l
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Further we extract from Ly, (t,z,9,0,) the terms of ordinary differential
operator with respect to . It is denoted by L s(t, 7, ) and is of the form

Diin3(t,2,9) = Z en(t, x)9" = Z £ by (¢, z) 9" (3.2)
h—0 h=0

In the present article we consider nonlinear partial differential equations
which are regarded as perturbations of ordinary differential operators in some
sense. In order to explain the meaning of perturbations we define the charac-
teristic polygon. We denote by _i(a,d) an infinite rectangle with lower right
corner (a,b), (a,b) := {(z,y) € R*z < a,y > b}. Define a convex set
Y Lims C R? by

S Lins = the conver hull of Up o d(h,en), (3.3)

which is called the characteristic polygon of Ly, s. The boundary of Xy, ,
consists of a vertical half line Xy, ,(0), segments {Zr,,, L@OY.7 and a hor-
izontal half line Xy, ,(p*). Let ; be the slope of X, (7). Then 0 =y, <
Ypro1 < o+ <1 < o = +oo. Let {(m;,e(i)) € R%0 < i < p*—1} be the set
of vertices of Xz, ,, where e(i) 1= ey, and 0 < mypey < -+- <my < Mg = M.
The endpoints of the segment Xy, . ;(4) are (m;_y,e(i— )) and (m;, e{1)). Set

1; = {h € N;(h,e) € X, ,(i)} and define subsets 9; of NM* for 1 <4 < p*

by
M ={4=(4,) e N¥* |A| =1 and 4, =1

34
for some o = (h,0,---,0) € N*'* with h € T;}. (34)

We assume the following:
(C.0) bm,(0,0) # 0 forall 0<i<p*—1. (3.5)

Suppose (C.0) holds. Then there is R > 0 such that for all 0 <7 <p*—1
bm,(0,2) #£ 0 on {|z| < R} (3.6)
Set for 1<i<p*—1

Bi(§1 Z b (0, CL') % :

(h,0")EL;

Bi(¢,z)= Y ba(0,2)(n€)" ™.

(h,0")ET;

(3.7)



ELlin,{} 0)
(m, e(0))

ELzm,ﬂ Eﬂuny’)
© (h7 eh) (mbe(l))

o (m;_1,e(i — 1))
ELl'Ln ’L)

/0 (i, e(i))

Lo (e e(p-2)

2L
]hn,a? (p__e (mp*—I, e(p*_-l))

O

Then B;(€,z) = (v:€)™BY(&, z) and BY(¢, z) is a polynomial in § with degree
(mi_1 — my) and BY(0,) = b, (0,2) 7 0 on {|z| < R}.

Definition 3.1. Suppose (C.0) holds and p* > 2. Let i€ {1,2,--- ,p* —1}.
Set Z;(r) = Uy, & B (€, 2) = 0}. A singular direction of level v; on
{|z| < r} is an argument of an element of Z;(r). We denote by Z;(r) the
totality of singular directions on {|z| < r} of level v;.

We give other conditions.
(C.1)

(1). There ezists a formal solution 4(t,x) = Y7 u.(z)t* € OU)[[t]] of

(2). The following holds for all i € {1,2,--- ,p*}. For A€ N¥* — 9,

ea+ (iA] — 1)V0 — 6(2 — 1) > ’}’@'(m,q — mi_l). (38)
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The condition {C.1)-(2) {(3.8)) means that L(-) is a perturbation of Ly, s
in some sense. We note that ey + (|A| — Dy — e(i — 1) = yi(ma — mi_1)
holds if and only if A € 9%;, which means e(h) — e(i — 1) = y;(h — m; 1) for
h €1,

Remark 3.2. (1) The condition (C.1)-(2) depends on vg.
(2) It is obvious that (3.8) holds for large |A|. Hence it is enough to ezpand

ca(t, z) with respect to t, calt,z) = t°aby(t,z) (e} < e4), so that
elA + (I/l — 1)1/0 - 6(@ - 1) > “/z'(JMA — miwl).

Consider nonlinear partial differential equation
L{u) := L(t,z,9%°0%u) = 0. (EQ)

Then our main result is

Theorem 3.3. Assume that p* > 2, (C.0) and (C.1) hold. Let @ = (61, -+ ,0p-_1)

be a multidirection such that [6; — 6;,0; + &) NE{(R) = 0 for 6; > 0. Then
a(t,z) € OUN[H] is vy = (71, -+ s Ypr—1)-summable in the multidirection @
for a polydisk U' C U.

Set S;* = S*(8;,6;). Then the assumption [6; — &;,0; + ;] N é:(—R_) =0
means BY (&7, z) is invertible on S;* x {]z| < R}, which is used in the proof
of Theorem 3.3.

We give an outline of the proof of Theorem 3.3. For the details of it we
refer to [9]. First we show
Proposition 3.4. Let 4(t,z) = Yoo u,(x)t" be a formal solution of L(4) =
0. Then there are constants A and B such that

lu (z)] < ABnP(pr:ml) (3.9)

in o neighborhood V of z = 0.
It follows from Proposition 3.4 that
[o.0) un<$)§n_7p*—z

(By,._,0)(§,7) =) ) (3.10)

’]’p*—l

n=1

is holomorphic in {£;0 < [§] < p} x V. Set ¢(&,z) = (1’5’7?*_1@)(5, z). As for
holomorphic extension of ¢(£,z) to an infinite sector with respect to &, we
have



Proposition 3.5. Let 9 «_1 be a direction and 6,»_1 > 0 be a small constant

such that [Hp*_j (SP — —1+5 * l}mx_«z(R) (Z) Set S;aa_ﬂl = S*(gp*_h 5};*_1}.

89

Then ¢(€,x) is holomorphzcally extensible to Sp._ 1 xW and ¢ € Expy. . 1(Sp ;X

W) for a neighborhood W of z=0.

By Proposition 3.5, (.,4%*_2,,}7*_ljgp,,_1 . 1@)(5 ,z) is defined, and we can
show that it belongs to Expy, ._ 0}(5’ c g X W), Sh g = 5"(0p_2,8p_2), 50

(A sty ar s s s vpr e 2 B, ) (€, ) 18 deﬁned. Consequently, by
continuating these processes,

u(t1x) = (£’71,91A’11:"fz,92/1"/2{73,93 T A7p**27’¥p*—119p*—1Byp*—lﬂ)(t’Qs) (3'11)

can be defined, hence, i(t,z) is y-summable in the direction 8, u(t,z) is
~-sum of 4(t, z) and L{u) = 0 holds.

4 Remarks and Generalization

(1) In this article we assume for simplicity that L(¢,z,Z) is holomorphic
in a full neighborhood Uy x U x . We can show the similar result as
Theorem 3.3 under the following condition:

L(t,z, Z) is the v-sum of L(t,z,Z) € O(U x Q)[[t]] which is -
summable in multidirection .

(2) We give comments about more general nonlinear partial differential
equations to which we can apply the preceding results.

Let K(t,z,9°°0% u) = 0 be a nonlinear partial differential equation
with order m, where K (t,z, Z), (t,z,Z) € C x C¢ x CM, and be holo-
morphic in a neighborhood of (¢,z,Z) = (0,0,0) with X(0,0,0) = 0.
Suppose that there exists a formal power series 4(Z, z) = 3 oo un(z)t" €

OU)([t]] satisfying K (&) = 0. Let vy > 1 and v,,1(t,2) = S ()

n=1
Consider

L{ve;u) == K (1, 2,9%°0% (v,,_1 +u)) =0, (4.1)
which depends on v, 1(¢,z) and has a formal power series solution
a(t,z) = Yoo, un(@)t™ If L{vo;u) satislies the assumptions of The-
orem 3.3, then we have multi-summability of the formal power series
solution, that is, there exists a solution u(t, z) represented such as (3.11)

and u(t,z) ~ 4(t,z) as t — 0 in some sector.
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