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1 Introduction
In this short note, we consider a mathematical model for the spread of a directly
transmitted infectious disease in an age-structured population. We assume that
an infection confers permanent immunity, and the infective agent can be trans-
mitted not only by horizontally but also vertically from adult individuals to their
newborns. On the other hand, for simplicity, we assume that the demographic
process of the host population is not affected by the spread of the disease, since
the extra mortality due to the epidemic could be neglected. Then the host
population is assumed to be a demographic stable population, that is, its total
size is growing exponentially but its age profile is not changing through time.
Moreover we take into account existence of a vaccination program.

The age-structured SIR epidemic model with vertical transmission have been
analyzed by several authors, especially we can refer to [1], [5], [6] and [7]. For SIS
models the reader may refer to [2], [3] and [4]. Under the proportionate mixing
assumption (that is, the transmission kernel is given by the type of separation
of variable), Cha, et $al$ calculated the basic reproduction ratio $R_{0}$ and conclude
that if $R_{0}<1$ , there is no endemic steady state and the disease-free steady state
is locally stable, while if $R_{0}>1$ there exists at least one endemic steady state.
They have also provided conditions for unique existence of endemic steady state.
Local stability condition for endemic steady state is also given and they give
an example of unstable endemic steady state. However, so far there is no result
for this model with general transmission rate (non proportionate mixing case).
Hence our main purpose of this paper is to establish a most general approach
to deal with the age-structured SIR epidemic model with vertical transmission
and to extend the above mentioned results to the case of general transmission
rate.
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Since the space here is limited, we focus on the threshold condition for disease
invasion and endemicity. Complete proofs of following propositions (except for
some cases), well-posedness of the time evolution problem and stability results
for endemic steady states will be published in a separate paper [15].

2 The basic system
First as a host population, we consider a closed one-sex age-structured host
population under the demogra hic stable growth. Let $P(t, a)$ be the age-density
at time $t$ of the host population, $\mu(a)$ the age-specific natural death rate and
$f(a)$ the age-specific fertility rate. Then we assume that the host population
dynamics is described by the McKendrick equation as follows:

$\{$

$( \frac{\partial}{\partial t}+\frac{\partial}{\partial a})P(t, a)=-\mu(a)P(t, a)$ ,
$P(t, \mathrm{O})=\int_{0}^{\omega}f(a)P(t, a)da$ ,
$P(0, a)=P_{0}(a)$ ,

(2.1)

where $P_{0}(a)$ is a given initial data and $\omega$ $<\infty$ is the upper bound of age, The
system (2.1) is well known as the stable population model in demography.

It follows from the stable population theory (see [12], [13]) that the system
(2.1) has a unique persistent age profile as

$\psi(a):=\frac{e^{-r_{0}a}\ell(a)}{\int_{0}^{\omega}e^{-r_{\mathrm{O}}a}l(a)da}$ ,

where $\ell(a)$ is the survival rate defined by $\ell(a):=\exp(-\int_{0}^{a}\mu(\sigma)d\sigma)$ and $r0$ ,
called as the intrinsic rate of natural increas\^e is given by the dominant real
root of the Euler-Lotka characteristic equation:

$\int_{0}^{\omega}e^{-ra}f(a)\ell(a)da$ $=1$ . (2.2)

Since $\omega$ is the maximum attainable age, that is, $\ell(\omega)=0$ , we assume that $\mu\in$

$L_{+,lo\mathrm{c}}^{1}(0, \omega)$ and $\int_{0}^{\omega}\mu(\sigma)d\sigma$ $=\infty$ .
Moreover, for a given initial data there exists a constant $Q>0$ and a function

$\eta(t, a)$ such that

$P(t, a)=Qe^{r_{0}(t-a)}l(a)(1+\eta(t, a))$ , (2.3)

where $\lim_{tarrow\infty}\eta(t, a)=0$ uniformly for $a\in[\mathrm{O}, \omega]$ . Then as time evolves, the age
distribution converges to the persistent age profile:

$\lim_{tarrow\infty}\frac{P(t,a)}{\int_{0}^{\omega}P(t,a)da}=\psi(a)$. (2.4)
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That is, $\psi$ is relatively stable age distribution and if onee it is attained, its
profile is persistent. In fact, if $P_{0}(a)=C\psi(a)$ with a positive constant $C$ , then
$P(t, a)=Ce^{r_{0}t}\psi(a)$ for $t>0$ . In the following we assume that the stable
age distribution is already attained, the age density of the host population is
given by $P(t, a)=N(t)\psi(a)$ where $N(t)= \int_{0}^{\omega}P(t, a)da$ is the total size of the
population.

Subsequently let us divide the host population into three subpopulations;
the susceptible class, the infective class and the recovered class, the age-density
functions of each class are denoted by $S(t, a)$ , $I(t, a)$ and $R(t, a)$ . Let $\beta(a, \sigma)$ be
the transmission rate between the susceptible individual aged $a$ and the infective
individual aged $\sigma$ , $\gamma(a)$ the rate of recovery at age $a$ and $\theta(a)$ the vaccination
rate at age $a$ . Then the basic system (age-structured sm model) with vertical
transmission can be formulated as follows:

$\{$

$( \frac{\partial}{\partial t}+\frac{\partial}{\partial a})S(t, a)=-(\lambda(t, a)+\theta(a)+\mu(a))S(t, a)$ ,

$(+ \frac{\mathit{8}a\mathit{8}}{\partial a})R(t,a)=\theta(a)S(t,a)+\gamma(a)I(t, a)-\mu(a)R(t_{7}a)(\frac{\partial}{\frac{\partial t\mathit{8}}{\mathit{8}t}}, +\frac{\mathit{8}}{},)I(t,a)=\lambda(t,a)S(t,a)-(\gamma(a)+\mu(a))I(t, a),$

,
$S(t, 0)= \int_{0}^{\omega}.f(a)[S(t, a)+(1-q)I(t, a)+R(t, a)]da$ ,
$I(t, \mathrm{O})=q\int_{0}^{\omega}f(a)I(t, a)da$ ,
$R(t, 0)=0$ .

(2.5)

where the force of infection $\lambda(t, a)$ is given by

A $(t_{:}a)$ $= \frac{1}{N(t)}\int_{0}^{\omega}\beta(a, \sigma)I(t_{=}\sigma)d\sigma$ , (2.6)

and $q$ is the ratio that newborns produced from infected individuals are vertically
infected.

Since we assume that there is no true interaction between demography and
epidemics, it is convenient to introduce the fractional age distributions for each
epidemiological classes as follow $\mathrm{s}$ :

$s(t, a):= \frac{S(t,a)}{P(t,a)}$ , $i(t_{7}a).= \frac{I(t,a)}{P(t,a)}$ , $r(t, a).= \frac{R(t,a)}{P(t,a)}$ .

Then the new system for the fractional age distributions is given as

$\{i(r(s(\lambda(((\frac{\partial}{,\frac{\partial f\mathit{8}}{\partial t\mathit{8}},\frac\partial t(tttt’},,,,+),s(t,a).=-(\lambda(t,,a)+,\theta(a))s(t,a)0)q\int_{\omega,a)f}^{1-q}0\pi(\omega a)i(t,a)da\mathrm{o})f_{0}^{\omega}\pi(a)i(t,a)da0)+\frac{\frac{\partial}{\partial a\partial}}{=\frac\partial a\partial a=,==\mathit{8}})i(t,a)=\lambda(t,a)s(t,a)-\gamma(a)i(t,a’,)+)r(t,a)=\theta(a)s(t,a)+\gamma(a)i(t,a)0\mathrm{o}^{\beta(}a,\sigma)\psi(\sigma)i(t,\sigma)d\sigma$ (2.7)

where $\pi(a):=e^{-r_{\mathrm{O}}a}f(a)\ell(a)$ , and note that it follows from (2.2) that $\int_{0}^{\omega}\pi(a)\mathrm{a}$ a $=$

$1$ . Moreover of course, it follows from the definition that $s(t, a)+\mathrm{i}(t, a)+r(t, a)=$
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1. In the follow $\mathrm{i}\mathrm{n}\mathrm{g}$ , we mainly consider the basic system (2.7) under the above
normalization condition and the following technical assumption:

Assumption 2, 1 $\beta\in L_{+}^{\varpi}((0, \omega)\mathrm{x}$ $(0, \omega))$ artd $f$, $\gamma$ , $\theta\in L_{+}^{\infty}(0, \omega)$ .

3 The disease invasion process

It is easy to see that the basic system (2.7) has the disease-free steady state

$(s^{*}, \mathrm{i}^{*}, r^{*})=(\Theta(a), 0,1-\Theta(a))$ ,

where $\Theta(a):=$ $\exp(-\int_{0}^{a}\theta(\sigma)d\sigma)$ . If a very small number of infected individuals
enter into the disease-free steady state, the initial phase of epidemic could be
described by the linearized system at the disease-free steady state. Since the lin-
earized equations for infective population does not include other subpopulation,
we can only consider the single equation for infective population as

$\frac{d\mathrm{i}(t)}{dt}=A_{0}\mathrm{i}(t)+F_{0}\mathrm{i}(d)$ , (3.1)

where operators $A_{0}$ and $F_{0}$ acting on $E_{0}:=L^{1}(0, \omega)$ as follows:

$A_{0} \phi:=-\frac{d\phi}{da}-\gamma(a)\phi$ , $(F_{0}\phi)(a):=\Theta(a)\lambda[a|\phi]$ ,

where $\phi$ a $E_{0}$ , $\mathrm{T}$ and the domain of $A_{0}$ is given by

$D(A_{0})=\{\phi\in E_{0}$ : $v\in AC[0, \omega]$ , $\phi(0)=q\oint_{0}^{\omega}\pi(a)\phi(a)da\}$ .

In the following, we adopt the following technical assumption:

Assumption 3. 1 The transmission coefficient $\beta$ satisfies the following:

1.
$\beta\in L_{+}^{\infty}(\mathrm{R}[0,\omega],\rangle\langle \mathrm{R})$

where $\beta$ is extended as $\beta(a, \sigma)=0$ for $(a, \sigma)\neq[\mathrm{O}, \omega]\mathrm{x}$

2. The following holds uniformly for \langle $\in \mathrm{R}$:

$\lim_{harrow 0}\int_{-\infty}^{\infty}|\beta(a+h, \zeta)-\beta(a, \zeta)|da=0$

3. There exists a nonnegaiive function $\eta(\sigma)$ such that $\eta(\sigma)>0$ for a left
neighborhood at $\sigma=\omega$ anti $\beta(a, \sigma)\geq\eta(\sigma)$ for almost all $(a, \sigma)\in \mathrm{R}\mathrm{x}$ R.

Prom the above assumption and the well known compactness criteria in $L^{1}$ ,

we obtain the following:
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Lemma 3. 2 For $\phi\in L^{1}(0, \omega)$ , the mapping A : $\phiarrow\lambda[\cdot|\phi]$ defines a compact
operator from $L^{1}$ (0,$\omega)$ to itself.

Then it is easy to see that $A_{0}+F_{0}$ is a generator of an eventually norm
continuous semigroup $T_{0}(t)=\exp((A_{0}+F_{0})t)$ , since $A_{0}$ is a generator of a
nilpotent sem igroup and $F_{0}$ is a compact perturbation (Nagel [19], p. 87).
Since the spectral mapping theorem holds for the eventually norm continuous
semigroup, we know that

$\omega_{0}(A_{0}+F_{0})=\sup${ $\Re\lambda$ : A $\in$ a $(A_{0}+F_{0})$ }, (3.2)

where $\omega_{0}(A)$ denotes the growth bound of the semigroup $\exp(tA)$ and $\sigma(A)$

denotes the spectrum of $A$ . Then if $\gamma>\omega_{0}(A)$ , there exists a number $M(\gamma)\geq$

$1$ such that $||\exp(tA)||\leq M(\gamma)\exp(\gamma t)$ for $t\geq 0$ . In particular, if $\omega_{0}(A)<0$ ,
the equilibrium $\mathrm{i}=0$ of (3.1) is asymptotically stable. From the principle of
linearized stability ([8]), the stab ility of the equilibrium $\mathrm{i}=0$ in (3.1) implies
the local asymptotic stability of the disease-free steady state of (2.7).

For $u\in D(A_{0})$ and $v\in E_{0}$ , let us consider the resolvent equation:

$(z-(A_{0}+F_{0}))^{-1}v=u$ , $z\in \mathrm{C}$ , (3.3)

Then we have

$\frac{dv}{da}+$ $(z + \gamma(a))=\Theta(a)\int_{0}^{\omega}\beta(a, \sigma)\psi(\sigma)v(\sigma)d\sigma+u(a)$ , (3.4)

$v(0)=q<\pi$ , $v>$ ,

where we use the notation as $<f$ , $g>:= \int_{0}^{\omega}f(a)g(a)da$ . By the variation of
constants formula, we can obtain the expression

$v(a)=v(0)e^{-za} \Gamma(a)+\int_{0}^{a}e^{-z(a-\sigma)_{\frac{\Gamma(a)}{\Gamma(\sigma)}}}[w(\sigma)+u(\sigma)]d\sigma$, (3.5)

where $w(a)$ $:=\Theta(a)$ A $[a|v]$ and $\Gamma(a)$ $:=\exp(-\mathrm{J}_{0}^{a}.\gamma(\sigma)d\sigma)$ .
Multiplying $q\pi$ to the both sides of (3.5) and integrating from zero to $\omega$ , we

have

$v(0)=q \oint_{0}^{\omega}e^{-za}\pi(a)\Gamma(a)dav(0)$ (3.6)

$+q \int_{0}^{\omega}\pi(a)\int_{0}^{a}e^{-z(a-\sigma)}\frac{\Gamma(a)}{\Gamma(\sigma)}w(\sigma)d\sigma da+\chi_{1}$ ,

where we use $v(0)=q<\pi$ , $v>$ and

$\chi_{1}:=q\int_{0}^{\omega}\pi(a)f_{0}^{a}e^{-z(a-\sigma)}\frac{\Gamma(a)}{\Gamma(\sigma)}u(\sigma)d\sigma da$ .
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Then (3.6) can be written as follows:

$(1-a_{11}(z))v(0)-<a_{12}(z)$ , $w>=\chi_{1}$ , (3.7)

where

$a_{11}(z):=q \oint_{0}^{\omega}e^{-za}\pi(a)\Gamma(a)da$ ,

$<a_{12}(z)$ , $w>:=q \int_{0}^{\omega}\pi(a)\int_{0}^{a}e^{-z(a-\sigma)}\frac{\Gamma(a)}{\Gamma(\sigma)}w(\sigma)d\sigma da$.

Again multiplying $\Theta(a)\beta(a, \sigma)\psi(\sigma)$ to the both sides of (3.5) and integrating
from zero to $\omega$ with respect to $\sigma$ , we obtain

$w(a)=v(0) \Theta(a)\int_{0}^{\omega}e^{-z\sigma}\beta(a, \sigma)\psi(\sigma)\Gamma(\sigma)d\sigma$ (3.8)

$+ \Theta(a)\int_{0}^{\omega}\beta(a, \sigma)\psi(\sigma)\oint_{0}^{\sigma}e^{-z(\sigma-\eta)}\frac{\Gamma(\sigma)}{\Gamma(\eta)}w(\eta)d\eta d\sigma+\chi_{2}$ ,

where

$\chi_{2}:=\Theta(a)\oint_{0}^{\omega}\beta(a, \sigma)\psi(\sigma)\int_{0}^{\sigma}e^{-z(\sigma-\eta)}\frac{\Gamma(\sigma)}{\Gamma(\eta)}u(\eta)d\eta d\sigma$.

Then (3.8) can be written as follows:

$-a_{21}(z, a)v(\mathrm{O})+[(I-a_{22}(z))w](a)=\chi_{2}$ , (3.8)

where

$a_{21}(z, a):= \Theta(a)\int_{0}^{\omega}e^{-z\sigma}\beta(a, \sigma)\psi(\sigma)\Gamma(\sigma)d\sigma$ ,

and $a_{22}(z)$ is a linear operator from $L^{1}(0, \omega)$ into itself defined by

$[a_{22}(z)w](a):= \Theta(a)\oint_{0}^{\omega}\beta(a, \sigma)\psi(\sigma)\int_{0}^{\sigma}e^{-z\langle\sigma-\eta)}\frac{\Gamma(\sigma)}{\Gamma(\eta)}w(\eta)d\eta d\sigma$.

Let us define a linear operator $T(z)$ from $\mathrm{C}\mathrm{x}$ $L^{1}(0, \omega)$ into itself as

$T(z)\ovalbox{\tt\small REJECT}^{X}f\ovalbox{\tt\small REJECT}$ $=[_{a_{21}(z,\cdot)x+a_{22}(z)f}^{a_{11}(z)x+<a_{12}(z),f>\ovalbox{\tt\small REJECT}},$ $||_{f}^{X}\ovalbox{\tt\small REJECT}\in \mathrm{C}\rangle\langle L^{1}(0, \omega)$.

Then under our condition, $T(z)\}z\in \mathrm{C}$ is an analytic family of compact oper-
ators with respect to $z$ . By using $T(z)$ , we can formulate (3.7) and (3.9) as a
simultaneous equation as follows:

$(I-T(z))\ovalbox{\tt\small REJECT}^{v(\mathrm{O})}w\ovalbox{\tt\small REJECT}$ $=\ovalbox{\tt\small REJECT}_{x2}^{\chi_{1}}’]$ . (3.6)
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Thus the solution $(v(0), w)$ is uniquely determined, that is, the resolvent $(z-$
$(A_{0}+F_{0}))^{-1}$ exists if and only if $I-T(z)$ is invertible. Now we conclude that

Lemma 3. 3 Let I be the spectrum set of $A_{0}+F_{0}$ . Then it follows that

$\Sigma=$ { $z\in \mathrm{C}$ : $(I-T(z))$ is not invertible} (3.11)

$=$ { $z\in \mathrm{C}:z$ is pole of $(I-T(z))^{-1}$ } $=P_{\sigma}(A_{0}+F_{0})$ .

Now we can define $T(0)$ as the next generation operator for the invasion at
the partially immune population $(s‘, \mathrm{i}^{*}, r^{*})=(\Theta(a), 0_{7}1-\Theta(a))$ , since $T(\mathrm{O})$

maps the density of primary cases $(v(\mathrm{O}), w)$ to the density of secondary cases.
Hence the per-generation grow th factor of the infectious population density,
called as the basic reproduction rati\^o denoted by $R_{0}$ , is given by the spectral
raciius, denoted by $r(T(0))$ , of the next generation operator $T(0)$ (see [9], [10]).

Here in order to examine the linear operator $T(z)$ , we make use of some
ideas from positive operator theory. For detail of positive operator theory, the
reader may refer to [14], [11], [18] and [20]. Let $B(E)$ be the set of bounded
linear operators from a Banach lattice $E$ into itself. From results by Sa washima
[20] and Marek [18], we can state the follow $\mathrm{i}\mathrm{n}\mathrm{g}$ :

Proposition 3. 4 Let E be a Banach lattice and let T $\in B(E)$ be compact and
nonsupporting. Then the following holds:

(1) $r(T)$ $\in P_{\sigma}(T)\backslash \{0\}$ and $r(T)$ is a simple pole of the resolvent, that is, $r(T)$

is an algebraically simple eigenvalue of $T$ .

(2) The eigenspace corresponding to $r(T)$ is one-dimensional and the corre-
sponding eigenvector $\psi\in E_{+}$ is a quasi-interior point The relation $T\phi=$

$\mu\phi$ with $\phi\in E_{+}$ implies that $\phi=c\psi$ for some constant $c$ .

(2) The eigenspace of $T^{*}$ corresponding to $r(T)$ is also one-dimensional sub-
space of $E^{*}$ spanned by a strictly positive functional $f\in E_{+}^{*}$ .

(4) Let $S$, $T\in B(E)$ be compact and nonsupporting. Then $S\leq T$ , $S\neq T$ and
$r(T)$ $\neq 0$ implies $r(S)$ $<r(T)$ .

Roughly speaking, we can expect that even for positive operators in the
ordered Banach space, the Perron-Frobenius properties hold just like the case
of positive irreducible matrices.

Lemma 3. 5 For z $\in \mathrm{R}$ , $T(z)$ is compact and nonsupporting.

By using the above results, we can relate the Malthusisan parameter of the
infected population to the next generation operator and its spectral radiu$\mathrm{s}$ :
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Proposition 3. 6 Let $\Sigma:=\{z\in \mathrm{C} : 1\in P_{\sigma}(T(z))\}$ . There exists a unique
$z_{0}\in \mathrm{R}\cap\Sigma$ such that $r(T(z_{0}))=1$ and $z_{0}>0$ if $r(T(0))>1;z_{0}=0$ if $r(T(0))=$
$1\mathrm{i}z_{0}<0$ if $r(T(0))<1$ , and it is the dominant characteristic root as

$\omega(A_{0}+F_{0})=z_{0}>\sup\{{\rm Re} z : z\in\Sigma\backslash \{z_{0}\}\}$ . (3.12)

Rom the above result, we can state the threshold criterion as follow s:

Proposition 3. 7 Let $R_{0}=r(T(0))$ . If $R_{0}<1$ , the disease-free steady state
is globally asymptotically stable, while it is unstable if $R_{0}>1$ .

As an important special case, we briefly consider the proportionate mixing
assumption (in the following, we call it a PMA), that is, the transmission rate
$\beta$ can be written as $\beta(a, \sigma)=\beta_{1}(a)\beta_{2}(\sigma)$ . In this case we can calculate the
threshold condition explicitly:

Proposition 3. 3 Suppose that $\beta$ cart be $f\dot{a}ctor\mathrm{i}zed$ as $\beta(a_{7}\sigma)=\beta_{1}(a)\beta_{2}(\sigma)$ ,
where $\beta_{1}$ and $\beta_{1}$ are assumed to be nonnegative essentially bound $ed$ functions.
Let $R$ be a reproduction rrrvmber defined by

$R:=q \frac{\int_{0}^{\omega}\pi(a)\int_{0}^{a}\frac{\Gamma(a)}{\Gamma(\sigma)}\Theta(\sigma)\beta_{1}(\sigma)d\sigma da}{1-q<\pi,\Gamma>}\int_{0}^{\omega}\beta_{2}(\sigma)\psi(\sigma)\Gamma(\sigma)d\sigma$ (3.13)

$+ \int_{0}^{\omega}\beta_{2}(\sigma)\psi(\sigma)\oint_{0}^{\sigma}\frac{\Gamma(\sigma)}{\Gamma(\eta)}\mathrm{O}-(\eta)\beta_{1}(\eta)d\eta d\sigma$.

Then $R_{0}>1$ if $R>1$ , $R_{0}=1$ if $R=1$ and $R_{0}<1$ if $R<1$ .

From the above proposition, we know that the reproduction number $R$ can
be seen as the basic reproduction ratio for the PMA case.

4 Existence and bifurcation of endemic steady
states

We have so far show $\mathrm{n}$ that there is no endemic steady state if $R_{0}<1$ . In this
section, we consider the existence of endemic steady states and their bifurcation
from the disease-free steady state at $R_{0}=1$ .

Let ( $s^{*}$ , a* , $r^{*}$ ) be the density vector at the endemic steady state, then it

must satisfy the follow ing system:

$\ovalbox{\tt\small REJECT}\frac{d}{\frac{dad}{\frac{dad}{r\mathrm{i}s^{*}\lambda da}}}*(s^{*}(a)**0)=q,\int_{(a)=\lambda[a|\mathrm{i}^{*}}^{=\theta(a}(0)=1-q\int_{].=\int_{0}^{\omega}\beta(a}^{)s^{*}(a)+\gamma(a)\mathrm{i}^{*}(a)}(0)=0\mathrm{i}^{*}(a)r^{*}(a)=\lambda^{*}(a=-(\theta 0\omega\pi(a.)\mathrm{i}^{*}(a)da(a)+\lambda^{*}(a,),)s^{*}(a)0^{\pi(a)\mathrm{i}^{*}(a)da=1’-\mathrm{i}^{*}(\mathrm{O})})s^{*}(a)-\gamma(a)\mathrm{i}^{*}(a’)\omega\sigma)\psi(\sigma’)\mathrm{i}‘(\sigma)d\sigma’$

.

(4.1)
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By formal integration, we obtain the following expression:

$s^{*}(a)=(1-\mathrm{i}^{*}(0))e^{-\int_{0}^{a}\lambda^{*}(\sigma)d\sigma}\Theta(a)$ . (4.2)

$\mathrm{i}^{*}(a)=\mathrm{i}^{*}(0)\Gamma(a)+(1-\mathrm{i}^{*}(0))l^{a}\frac{\Gamma(a)}{\Gamma(\sigma)}\Theta(\sigma)\lambda^{*}(\sigma)e^{-\int_{0}^{\sigma}\lambda^{*}(z)dz}d\sigma$. (4.3)

Applying $\pi$ to the both sides of (4.2) and integrating from 0 to $\omega$ , we obtain

$<\pi$ , $\mathrm{i}^{*}>=\mathrm{i}^{*}(0)<\pi$ , $\Gamma>+(1-i^{*}(0))\int_{0}^{\omega}\pi(a)\oint_{0}^{a}\frac{\Gamma(a)}{\Gamma(\sigma)}\Theta(\sigma)\lambda^{*}(\sigma)e^{-\mathrm{J}_{0}^{\sigma}\lambda^{*}(z)dz}.d\sigma da$ ,

where $<\pi$ , $\mathrm{i}^{*}>:=\int_{0}^{\omega}.\pi(a)\mathrm{i}^{*}(a)da$ .
Then we know that $\mathrm{i}^{*}(\mathrm{O})=q<\pi$ , $\Gamma>$ is given by the functional $G$ as

$i^{*}( \mathrm{O})=G(\lambda^{*}):=.\frac{q\int_{0}^{\omega}\pi(a)\int_{0}^{a}\frac{\Gamma(a)}{\Gamma(\sigma)}\Theta(\sigma)\lambda^{*}(\sigma)e^{-\int_{0}^{\sigma}\lambda^{*}(\zeta\}d\zeta}d\sigma da}{1-q<\pi,\mathrm{F}>+q\int_{0}^{\omega}\pi(a)\int_{0}^{a}\frac{\Gamma(a\rangle}{\Gamma(\sigma)}\Theta(\sigma)\lambda^{*}(\sigma)e^{-\int_{0}^{\sigma}\lambda^{*}(\zeta)d\zeta}d\sigma da}$ .

Inserting (4.3) into the expression of A in (4.1) and using the functional $G$ , we
have

$\lambda^{*}(a)=G(\lambda^{*})\int_{0}^{\omega}\beta(a, \sigma)\psi(\sigma)\Gamma(\sigma)d\sigma$ (4.4)

$+(1-G( \lambda^{*}),)\oint_{0}^{\omega}\beta(a, \sigma)\psi(\sigma)\int_{0}^{\sigma}\frac{\Gamma(\sigma)}{\Gamma(\zeta)}\Theta(\zeta)\lambda^{*}(\zeta)e^{-\int_{0}^{s}\lambda^{*}(\eta)d\eta}d\zeta d\sigma$ .

Let us define a positive operator $H$ : $L_{+}^{1}arrow L_{+}^{1}\cap L^{\infty}$ by

$H( \lambda)(a):=G(\lambda)\oint_{0}^{\omega}\beta(a, \sigma)\psi(\sigma)\Gamma(\sigma)d\sigma$ (4.5)

$+(1-G( \lambda))\oint_{0}^{\omega}\beta(a, \sigma)\psi(\sigma)\oint_{0}^{\sigma}\frac{\Gamma(\sigma)}{\Gamma(\zeta)}\Theta(\zeta)\lambda(\zeta)e^{-f_{0}^{s}}.d\zeta d\sigma\lambda(\eta)d\eta$.

for A $\in L^{1}(0, \omega)$ . Then from (4.5) we know that the force of infection at the
endemic steady state $\lambda^{*}$ is given by positive solutions of fixed point equation:

$\lambda^{*}(a)=H(\lambda^{*})(a)$ . (4.6)

Prom our basic assumption 3.1, the operator $H$ is a compact operator from
$L^{1}(0, \omega)$ into itself. Then we know that the endemic steady state exists if and
only if $H$ has a positive fixed point.

Proposition 4. 1 If $R_{0}>1$ , there exists at least one endemic steady state,
while there is no endemic steady state if $R_{0}\leq 1$ .
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Proof. First we can observe that the Prechet derivative $W_{0}:=\partial H[\mathrm{O}]$ of the
operator $H$ at the origin is given by

$(W_{0} \lambda)(a)=\int_{0}^{\omega}\beta(a, \sigma)\psi(\sigma)\int_{0}^{\sigma}\frac{\Gamma(\sigma)}{\Gamma(\zeta)}\Theta(\zeta)\lambda(\zeta)d\zeta d\sigma$ (4.7)

$+ \frac{q\int_{0}^{\omega}\pi(a)\int_{0}^{a}\frac{\Gamma(a)}{\Gamma(\sigma)}\Theta(\sigma)\lambda(\sigma)d\sigma da}{1-q<\pi,\Gamma>}\oint_{0}^{\omega}\beta(a, \sigma)\psi(\sigma)\Gamma(\sigma)d\sigma$ .

Since $W_{0}$ is also compact and nonsupporting, it has a unique positive eigenvector
corresponding to its spectral radius $r(W_{0})$ . On the other hand, it is easy to see
that the strong asymptotic derivative of $H$ is zero; $\partial H[\infty]=0$ . Therefore, we
can apply the Krasnoselski’s fixed point theorem ([17], p. 135, Theorem 4.11)
to conclude that $H$ has at least one non-zero fixed point in the positive cone of
$L_{+}^{1}$ if $r(W_{0})>1$ . Next we show that $R_{0}>1$ if and only if $r(W_{0})>1$ . Observe
that for $z\geq 0$ , (3.6) and (3.8) can be written as

$v( \mathrm{O})=\frac{<a_{12}(z),w>}{1-a_{11}(z)}+\frac{\chi_{1}(u)}{1-a_{11}(z)}$ .

Inserting the above expression into (3.8) and define an operator $\Psi(z)$ as

$( \Psi(z)w)(a):=\Theta(a)\oint_{0}^{\omega}e^{-z\sigma}\beta(a, \sigma)\psi(\sigma)\Gamma(\sigma)d\sigma\frac{<a_{12}(z),w>}{1-a_{11}(z)}$ (4.8)

$+ \Theta(a)\int_{0}^{\omega}\beta(a, \sigma)\psi(\sigma\grave{)}\int_{0}^{\sigma}e^{-z(\sigma-\eta)}\frac{\Gamma(\sigma)}{\Gamma(\eta)}w(\eta)d\eta d\sigma$ ,

then (3.8) can be written as follows;

$w_{z}= \Psi(z)w_{z}+\chi_{2}+\frac{\chi_{1}\Theta(a)\int_{0}^{\omega}e^{-z\sigma}\beta(a,\sigma)\psi(\sigma)\Gamma(\sigma)d\sigma}{1-a_{11}(z)}$. (4.9)

which means that for $z\geq 0$ , $z\in\Sigma$ if and only if $1\in P_{\sigma}(\Psi(z))$ . Define an
operator $L$ such that $(L\phi)(a)=\Theta(a)\phi(a)$ , then we obtain that $\Psi(0)=LW_{0}L^{-1}$ ,
hence $r(\Psi(0))=r(W_{0})$ . Suppose that $r(W_{0})>1$ , then we have $r(\Psi(0))>1$ .
Since $\Psi(z)$ , $z\geq 0$ is compact and nonsupporting and it is monotone decreasing

with respect to $z\geq 0$ , then there exists a unique $z_{0}>0$ such that $r(\Psi(z_{0}))=$

$1$ . Thus $z_{0}\in\Sigma$ and $R_{0}=r(T(\mathrm{O}))>1$ (see Prop. 4.6). Conversely if $R_{0}=$

$r(T(0))>1$ , there exists a positive $z_{0}\in\Sigma$ such that $r(T(z_{0}))=1$ and there

exists a positive vector $(x, f)$ satisfyin

$T(z_{0})\ovalbox{\tt\small REJECT}^{X}f\ovalbox{\tt\small REJECT}$ $=||_{f}^{X}\ovalbox{\tt\small REJECT}$ ,
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which implies that $\Psi(z_{0})$ has a positive eigenvector $f$ corresponding to the
eigenvalue one. Since $\Psi(z_{0})$ is compact and nonsupporting, it has unique pos-
itive eigenvector corresponding to its spectral radius, hence we conclude that
$r(\Psi(z_{0}))=1$ . Since $r(\Psi(z))$ is monotone decreeing for $z\geq 0$ , we have $r(\Psi(0))=$

$r(W_{0})>1$ . Therefore $R_{0}>1$ if and only if $r(W_{0})>1$ and there exists at
least one endemic steady state if $R_{0}>1$ . Next suppose that $R_{0}\leq 1$ , that
is, $r(\Psi(0))=r(W_{0})\leq 1$ . If there exists a positive fixed point $\lambda^{*}$ of $H$ , we
$\mathrm{h}\mathrm{a}\mathrm{v}\mathrm{e}\lambda^{*}$ $=H(\lambda^{*})\leq W_{0}\lambda^{*}$ . Let $F_{0}$ be the adjoint eigenvector of $W_{0}$ correspond-
ing to $r(W_{0})$ . Taking the duality pairing, we find that $<F_{0}$ , $W_{0}\lambda^{*}-\lambda^{*}>=$

$(r(W_{0})-1)$ $<F_{0}$ , $\lambda‘>>0$ , because $W_{0}\lambda^{*}-\lambda^{*}\in L_{+}^{1}\backslash \{0\}$ and $F_{0}$ is a strictly
positive eigenfunctional. Then we have $r(W_{0})>1$ , which contradicts our as-
sumption. Therefore there is no endemic steady state if $R_{0}\leq 1$ . $\square$

From the above proof, we know that $r(W_{0})>1$ if $R_{0}>1$ , $r(W_{0})=1$ if $R\circ=$

$1$ and $r(W_{0})<1$ if $R_{0}<1$ . Then we know that $r(W_{0})$ is acting as a threshold
value, so in the following we define $R_{*}:=r(W_{0})$ as a basic reproduction ratio.

If we can adopt the proportionate mixing assumption, that is, the transmis-
sion rate can be factorized as $\beta(a, \sigma)$ $=\beta_{1}(a)\beta_{2}(\sigma)$ , the force of infection at the
endemic steady state $\lambda^{*}$ is given as $\lambda^{*}(a)=c\beta_{1}(a)$ with a positive number $c$ .
Then the fixed point equation (4.6) is reduced to the following characteristic
equation for unknown number $c$ as

$1= \mathrm{H}(\mathrm{c}):=\frac{G(c\beta_{1})}{c}f_{0}^{\omega}\beta_{2}(\sigma)\psi(\sigma)\Gamma(\sigma)d\sigma$ (4.10)

$+(1-qG(c \beta_{1}))\int_{0}^{\omega}\beta_{2}(\sigma)\psi(\sigma)\int_{0}^{\sigma}\frac{\Gamma(\sigma)}{\Gamma(()}\Theta(\zeta)\beta_{1}(\zeta)e^{-c\int_{0}^{\zeta}\beta_{1}(\eta)d\eta}d\zeta d\sigma$.

Since $Pt(\mathrm{O})=R_{*}$ and }$\mathrm{f}(\infty)=0$ , we can again confirm that there exists at least
one endem ic steady state if $R_{*}>1$ (equivalently if $R>1$ in (3.13)).

If $/H$ becomes a monotone function under some additional conditions, we can
prove the uniqueness of the endem ic steady state. For example, if we assume
that there exists an age $A\in(0, \omega)$ such that $\beta_{2}(a)=0$ for $a>A$ and $\beta_{1}(a)=$

$0$ for $a<A$ , then the second term of $H$ in (4.10) becomes zero and $H(c)$ is
monotone. However, such additional assumptions to guarantee the monotonic-
ity of 7# are usually very restrictive, so far we have no biologically reasonable
one. Though here we do not examine such additional conditions to guarantee
the uniqueness of endemic steady state, the readers who are interested in the
uniqueness problem may refer to Cha, et $al$ $[5]$ , [6].

More important basic observation is that the endemic steady states are given
by forward bifurcation from the disease-free steady state. In fact, this is intu-
itively clear for the PMA case; since $\mathcal{H}’(0)<0$ . Here we give a proof for the
general transmission case by using a bifurcation scenario as follow$\mathrm{s}$ :
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Assumption 4. 2 The transmission rate 5 is given by $\epsilon\beta \mathrm{o}(a, \sigma)$ where $\epsilon$ is

a bifurcation parameter and $\beta 0$ is a given standard schedule such that $R_{*}=$

$r(\partial H_{0}[0])=1$ .

Proposition 4. 3 Under the assumption 4.2, the end emic steady states are
forwardly bifurcated from the disease-free steady state at $R_{*}=1$ .

Proof. Under the assumption 4.2, the fixed point equation (4.6) is written as
A $=\epsilon H_{0}(\lambda)$ . Define a mapping $F:\mathrm{R}\mathrm{x}$ $L^{1}arrow L^{1}$ as $F(\lambda, \epsilon):=\epsilon H_{0}(\lambda)-$ A and
assume that $F(\lambda, \epsilon)$ is analytic with respect to $(\lambda, \epsilon)\mathrm{J}$ Now we are interested
in the structure of solution set $F^{-1}(\mathrm{O}):=\{(\lambda, \epsilon)\in L^{1}(0, \omega)\mathrm{X}$ $\mathrm{R}+$ : $F(\lambda, \epsilon)=$

$0$ . From the Implicit Function Theorem, we can expect a bifurcation from the
trivial branch $(0, \epsilon)$ only for those values 6 such that the linear mapping

$L(\epsilon):=D_{1}F(0, \epsilon)=\epsilon\partial H_{0}[0]$ $-I$ ,

is not boundedly invertible, where $D_{1}$ denotes the Frechet derivative for the
first element and I is the identity operator. It follows from our assumption that
$\partial H_{0}[0]$ has a unique positive eigenvalue $r(\partial H_{0}[0])=1$ , since $\partial H_{0}[0]$ is compact
and nonsupporting. Then the only possible bifurcation from the trivial branch
can occur at $\epsilon=1$ . Let $\sigma(\epsilon)$ be the simple real strictly dominant eigenvalue
of $L(\epsilon)$ , $\phi(\epsilon)$ the eigenvector of $L(\epsilon)$ and $\phi^{*}(\epsilon)$ the eigenvector of $L’(\epsilon)$ (the
adjoint operator of $L(\epsilon))$ associated with $\sigma(\epsilon)$ such that $<\phi(\epsilon)$ , $\phi^{*}(\epsilon)>=1$ ,
where $<\phi$ , $\phi^{*}>$ is the value of $\phi^{*}$ at $\phi$ . Since $\phi(1)$ is the From enius eigenvector
of the nonsupporting operator $\partial H_{0}[0]$ corresponding to the eigenvalue one, there
exist a projection to the one-dimensional eigenspace spanned by $\phi(1)$ . Then we
can apply the standard argument of Lyapunov-Schmidt method ([21], Chapter
VII) to conclude that the bifurcation at $(0, 1)$ is subcritical if $\tau_{1}<0$ , and it is
supercritica if $\tau_{1}>0$ , where the parameter $\tau_{1}$ is given by

$\tau_{1}=-\frac{1}{2}<D_{1}^{2}F(0,1)(\phi(1), \phi(1))$ , $\phi^{*}(1)>$ , (4.11)

where $D_{1}^{2}$ denotes the second derivative with respect to the first element. It is
easy to see that

$\tau_{1}=-\frac{\partial^{2}H_{0}((h+k)\phi(1))}{\partial h\partial k}|_{(b,k)=(0,0)}>0$ .

Therefore we conclude that the bifurcation at $R_{*}=1$ is supercritical. $\square$

Finally note that we can define a next generation operator at the endemic
steady state. From the variation of constants formula, it follows from (4.1) that

$\mathrm{i}^{*}(a)=\mathrm{i}^{*}(0)\Gamma(a)+\int_{0}^{a}\frac{\Gamma(a)}{\Gamma(\sigma)}\lambda^{*}(\sigma)s^{*}(\sigma)d\sigma$. (4.12)
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Applying $q\pi$ to the both sides of (4.12) and integration from zero to $\omega$ , we obtain
an expression:

$\mathrm{i}^{*}(0)=\mathrm{i}^{*}(0)q<\pi$ , $\Gamma>+\oint_{0}^{\omega}\pi(a)\oint_{0}^{a}\frac{\Gamma(a)}{\Gamma(\sigma)}\lambda^{*}(\sigma)s^{*}(\sigma)d\sigma da$ . (4.13)

Again applying $s^{*}(a)\beta(a, \sigma)\psi(\sigma)$ to the both sides of (4.12) and integrating
from 0 to $\omega$ with respect to a and multiplying $s^{*}$ , we obtain the following
expression:

$s^{*}(a)\lambda^{*}(a)=\mathrm{i}^{*}(0)s’(a)$ $\int_{0}^{\omega}\beta(a, \sigma)\psi(\sigma)\Gamma(\sigma)d\sigma$ (4.14)

$+s^{*}(a) \int_{0}^{\omega}\beta(a, \sigma)\psi(\sigma)\int_{0}^{\sigma}\frac{\Gamma(\sigma)}{\Gamma(\eta)}s^{*}(\eta)\lambda^{*}(\eta)d\eta d\sigma$.

Now let us define a positive linear operator $T^{*}$ from $\mathrm{R}\cross$ $L^{1}(0, \omega)$ into itself
as

$T^{*}\ovalbox{\tt\small REJECT}$ $fx\ovalbox{\tt\small REJECT}$ $=\{$

$q<\pi$ , $\Gamma>x+qf_{0}^{\omega}.\pi(a)\int_{0}^{a}\frac{\Gamma(a)}{\Gamma(\sigma)}f(\sigma)d\sigma da$

$s^{*}(a) \int_{0}^{\omega}\beta(a, \sigma)\psi(\sigma)\Gamma(\sigma)d\sigma+s^{*}(a)\int_{0}^{\omega}\beta(a, \sigma)\psi(\sigma)\int_{0}^{\sigma}.\frac{\Gamma(\sigma)}{\Gamma(\eta)}f(\eta)d\eta d\sigma]$

Then from (413)-(4.14), the newly infected population $(i^{*}(0), s^{*}(a)\lambda^{*}(a))$ can
be formally seen as the eigenvector of the operator $T^{*}$ corresponding to the
eigenvalue one:

$||_{s^{*}\lambda^{*\ovalbox{\tt\small REJECT}}}^{\mathrm{i}^{*}(0)}=T^{*}||_{s^{*}\lambda^{*\ovalbox{\tt\small REJECT}}}^{\mathrm{i}^{*}(0)}$ . (4.15)

The equation (4.15) implies that at the endemic steady state the infected
population simply reproduce itself. Therefore we can call $T^{*}$ as the next gener-
ation operator at the endemic steady state. This fact will be used to show the
stability of the endemic steady state (see [15]), and this formulation could pro-
vide an intuitive understanding about whether multiple endemic steady states
can occur (see [16]).
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