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1 Introductioh

We consider the following degenerate quasi-linear parabolic system:

utzv-(Vum—uq‘l~Vv>, zeRY, t>0,
(KS) T =Av—-v+u, zeRY, t>0,
u(z,0) = uo(z), 7v(x,0) =Tvo(z), =€ RY,

where m > 1,¢ > 2,7 =0 or 1, and N > 1. The initial data (up,vo) is a non-negative function and in
' A Lo@Y) x L n HE n Whe(RY), uf € H'RY). This equation is often called as the Keller-Segel
model describing the motion of the chemotaxis molds.

Our aim of this paper is to prove the existence of a global weak solution of (KS) under some appropriate
conditions without any restriction on the size of the initial data. Specifically, we show that a solution
(u,v) of (KS) exists globally in time either
(i) ¢ <m for alarge initial data or (i) 1<m <g— # for a small initial data.

Our results are the expansions of our previous work [9], which deals with the case of ¢ = 2.

Definition 1 For m > 1, non-negative functions (u,v) defined in [0, 00) x RY are said to be a weak
solution of (KS) for uo € L N I®(RY), uft € HY(RY) and vy € L' 0 H N W= (R¥) if

) we L®(0,00; L2(RY)), w™ € L*(0, o0; H* (RY)),
i) v e L®(0,00; HH{RY)),
iii) (u,v) satisfies the equations in the sense of distribution: i.e.
o0
/ (Vo™ Vo —ud™'Vu-Vo—u- o) dedt = f uo(2) - ¢(z,0) dz,
o JRN BV

o
/ / (Vo -Vo+v-p—u-p—70- @) dedl :f vo(z) - (2, 0) dz,
0 RN RV

for every smooth test function ¢ which vanishes for all || and t large enough.

The first theorem gives the existence of a time global weak solution to (KS) with 7 = 1 and the
uniform bound of the solution when ug € L'NL®(RY) and vo € L'NH" AWLe (RY). The first theorem
also ensures the weak solution obtained here neither blows up nor grows up. We note that the initial
data is not assumed to be small.

Theorem 1.1 (time global existence of 7= 1 case) Let r = 1, ¢ > 2,m > g and suppose that

ug and vy are non-negative everywhere. Then (KS) has a global weak solution (u,v). Moreover, u™ €

C((0, 00); L*(RY)) and (u, v) satisfies a uniform estimate, i.¢., that there exists a constant Ky = K (Jluollz: &y,
llo]{ o (r ) lvollze vy, lvoll s vy llvollws.co m), ™5 s N) > 0 such that

1) sup (I®llrn + [0l SKn - for all r &11,00]
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In addition, there exists a positive constant Ky = Ko([uo||1mwys |[wollLm @), lvolla: gy, m. ¢, V),
(1.2) loellL2o,005L2®My) + sipffo()llazry < Ka.

We next consider the case when 7 = 0 and m > 1, which corresponds to a degenerate version of “the
Nagai model” for the semi-linear Keller-Segel system [1}, [3] -[6].

Theorem 1.2 (time global existence of 7 =0 case) Let 7 = 0, ¢ > 2 and suppose that uo is non-
negative. Then

(i) when m > ¢, (KS) has a global weak solution (u,v).

(i) When1 < m < g—+#, we also assume that the initial data is sufficiently small, i.e., HUOHLN(g—m) <<

T (RY)
1, then (KS) has a global weak solution (u,v).
Moreover it satisfies a uniform estimate, i.e., that in both cases (i) and (ii), there ewists K; =

KI(HUDHL'(RN):
m, g, N} such that

(13) sup ([lu@)llor ) +IvOlory) < Ko or all 7 &[1,00)

In addition, in both cases (i) and (ii), there exists a positive constant Ky = Ka(||uo|l2(r~),m, ¢, N),
(14) f‘)llg””(t)Hm(RN) < K.

Finally we present the decay for the solution of (KS) in the 7 = 0 case under the smallness assumption

on ]|u0|[LNgq_m; 'Y)’

2
Theorem 1.3 Let 7 = 0, ¢ > 2 and 1 < m < ¢ — — and suppose that the initial data ugy is non-
negative everywhere. We also assume that ||uBHL Mz o << 1, then the weak solution (u,v) obtained
2
in Theorem 1.2, satisfies

(15) sup(L+1)* - (Ju(t) L=y + o @)flruy) <00 for v [M—q—g—’-’-’l o).

where v .
d:—(l——-), U:N(m—-l)+2.
- r

We will use the simplified notations:
1) Qr =(0,T) x RY,

2) When the weak derivatives Vu, D?u and u; are in LP(Qr) for some p > 1, we say that u € W2 (Qr),
e,

W) = {ue P, T, W (RY) AW (0, T; I (RY));

lullwzs (@ry = llullze(@r) + | VullLoery + 1D?uliLs(r) + Jlutller(@r) < 00}-

2 Approximated Problem

The first equation of (KS) is a quasi-linear parabolic equation of degenerate type. Therefore we can
not expect the system (KS) to have a classical solution at the point where the first solution u vanishes.
In order to justify all the formal arguments, we need to introduce the following approximated equation

of (KS):
uet(z,t) = V- (V(u; +&)™ — (u, +€)9 2y, 'Vve), (z,t) e RN x (0, T), -+ (1),
(KS). TUe(@,t) = Av — v + U, (z,¢) e RN x (0,T), 0 (2),

w(2,0) = uoe(), Tve(2,0) = rooe(a), z RV,
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where ¢ is a positive parameter and (uge,voe) is an approximation for the initial data (ug,vo) such that
(A1) 0< ug € W2P(RY), 0< 7vge € w32 (RY) for all p € [1,00], foralle € (0,1],

(A.2) |luoe|lze < lluollLes  Tllvoellwrr < Tilvollwae for all p € [1,00], for alle € (0, 1],

(A.3) |[Vugellz2 < [[Vuolr2, for all e € (0, 1],

(A.4) uge = up, Tuvge = Tvo strongly in L? (]RN) as € — 0, for some p > max{2,N}.

We call (., v.) a strong solution of (KS). if it belongs to W2 x Wy*(Qr) for some p > 1 and the
equations (1),(2) in (KS). are satisfied almost everywhere.

The strong solution u, coincides with the mild solution defined in Definition 2 if u. € L*(0,T; IP(RY))
with p > 1.

Firstly, we construct the strong solution of (KS)., To do this, we prepare the following two propositions:

Proposition 2.1 Let (ue,v.) be a non-negative strong solution of (KS). in W2 Qr) with max{2, N} <
p < oo and suppose that (A.1) and (A.2) are satisfied. Then, u. and v, become non-negative and

(2.1) sug]]us(t)llLr(RN) < My, for all r € [1, 00
t>

i) whent=1 ¢>1, m>2-1,
(i) when =0, ¢>1, m >max{l,g — %},
(iii) when 7=0, ¢>1, 1<m<g—#%, and [EuoHLngg;m) is small.

Proposition 2.2 Let ¢ > 1, m > 1, maz{2, N} < p < co and suppose that (A.1) is satisfied and assume
that u. in the first equation of (KS). satisfies the estimate

(22) sup_|jue (t)[|zo @) < Mu,c0,

0<t<T
for some constant My . Then, (KS). has a non-negative strong solution (ue,ve) uniquely belonging to
WZ?Yl X W‘f’l(QT).

By combining Proposition 2.1 with 2.2, the time global strong solution (ue,ve) is obtained. As for the
proof of Proposition 2.2 and 2.1, we refer to [9].

3 Proof of Theorem 1.1 and 1.2

In this section, we give a proof of Theorem 1.1 and 1.2.
Let us recall (2.1) in Proposition 2.1.

We can extract a subsequence {u._} such that

(3.1) ue, —u  weakly in L2(0, T; L*(RM)).

n

Moreover, we obtain a subsequence, still denoted by {u,,} such that

(3.2) upr =’ strongly  in C((0, T); L2 (RM)),
(3.3) Vu? = Vu™ weakly in L2(0, T L*(RM)).

The above (3.2) and (3.3) are shown as follows.

B(us + €)™

Er and integrate with respect to the space variable over RY. Then

We multiply (1) in (KS)e by
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we get
m+1 /l(uf"” 2)[ dz
= —= —/[Vug+6) lzdw—i-( +1)2/[ us+5) I dz
+ 4—(?7%—1—)—-2)-—- IVoe|fee - (My oo + )% 4/N’(ue+£) *12 dz
(3.4) + mf(ue-l—a)m'*'zq'a-lAvs[z dz.

By integrating with respect to time variable,

/ /l (ue +¢) = | da:dt+—-- sup /!V(usﬁ-s)mfzd“’
m+1 2 oct<T

= 1 /}V tge + €)™ * dz

4
?1(4_ 1)_) [EVUGHLW(DTLW) (Mu oo + g)zq 4[ /lv Ue +8) [2 dedt
(3.5) + m{My 00 +5)m+2q-3f /}A”elz dedt.
0

On the other hand, by the multiplication (1) in (KS). by u, and the integration with respect to ¢ and ¢,
we have

T
f / V(e + )5 dods
0
2
< m“ f/qua:dt—i- 7 /fﬂq-ﬁdxdtw/ f]Avsfzdmdt
=

(35) + (ﬂsjn—l)wuuognm.

From (3.5) and (3.6), we see that for ¢ > 2 there exists a positive constant C' (which is independent of ),

/ /l )e? dzdt + P /qu 1 dz

< / f’ (ue + &)™ l dzdt + sup /lV(ug+s)m12 dz
0<t<T
Am? My +e)™" 1[ /] ue +€) = I dzdt + sup flV(UE+E)m[2 dz
= (m+1)2 0<t<T
37 < C.

Thus we find that « € L®(0,T; HY(RY)) n H1(0,T; L2(R")). Hence, we can extract a subsequence
such that

(3.8) ull =& strongly in C((0,T); L*(RY)).
This gives

ul® (z,t) — &=, t) aa zeRY, te(0,T).
A function g(u) = u= is continuous with respect to u.
Thus, we see that

(3.9) e, (2,t) = &% (,1) aa zeRY, te(0,T),
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Since the sequence {u.,} is bounded in L%(0,T; L2(R")), we conclude by Lions’s Lemma that
(3.10) u,, —EF weakly in L*(0,T; L*(RY)).

By (3.1), (3.8) and (3.10),

(3.11) ul> = u™ strongly in C((0, T); LARY)),

which prove (3.2).
Next, we multiply (1) in (KS)e by v and integrate with respect to the space variable over RY. Then
we get

1 1 1 2(g—~1
(8.12) prora i Pt dz < —5/[V(u€+e)"‘12 dw+§~l[uz+e||,,(i )-Kilvmllig.

Integrating (3.12) with respect to ¢, by (2.1) in Proposition 2.1 and (A.3), we have

L um+ da:-é--l—‘[T/]Vu”‘[z dzdt
m+1/ ° 2 Jo €

1 1 -
(3.13) < = / ugpt de + llue + e300, IVl < O

From (3.2) and (3.13), we obtain (3.3).

By the standard argument, in both cases 7 = 0 and 7 = 1, we see that there exists a positive constant C
which is independent of ¢,

T
(3.14) f f[(vs)tﬁ dzdt + sup /{vm}? de < C.
0 octLT
Hence, we can extract a subsequence {v,, } such that
(3.15) ve, = v strongly in C((0,T); L*(R™)),
(3.16) Vv, = x = Vv weakly in L(0,T; LY(RY)).

By the standard argument, we complete the proof of Theorem 1.1 and 1.2.

4 Proof of Theorem 1.3

As for the proof of Theorem 1.3, we refer to [9].
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