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On a connection problem of simple
pole type operators of second order in
exact WKB analysis

TR R E AR /M EH  (KOIKE, Tatsuya)
Department of Mathematics, Kyoto University

§0. Introduction

In our exact WKB theoretic study of simple pole type operators ([AKKT2]),
we announced that the connection problem for WKB solutions of any simple
pole type operators can be reduced to that of a second order equation of the
form

01) (- + Vi) =0

Cda?
where 77 denotes a large parameter,

%($)+n_1v1($) +n—2w+zn—jm
x2 z

(02)  Vl(gn)=— =

j23

{V;} are holomorphic functions near the origin, and Vo(0) # 0. Actually, this
equation is obtained if we eliminate the first order term of simple pole type
operator of the second order by changing the unknown functions.

In [K1] and [K2] the case where V3 = 0 and V; = 0 for j = 3 was
considered. There it was shown that although the origin is a regular singular
point of (0.1), it plays the same role as a turning point. For example the
logarithmic derivative S(z,n) = nS_1 + So + n18; + -+ of WKB solutions
behaves like S; = O(z~7/271) near the origin. That is, the order of singularity
of S; becomes worse and worse as j increases. This is a typical feature of the
Jogarithmic derivative of WKB solutions near turning points. This situation
is also observed for (0.1) and we expect that the origin also plays the same
role as a turning point. This expectation has been validated in [K1] and
[K2], by analyzing the singularity structure of the Borel transform of WKB
solutions of (0.1) when V; = 0 and V; = 0 for j > 3. In this paper we extend
the analysis of [K1] and [K2] to a more general potential as given in (0.2).



81. Connection formulas for simple pole type
operators of second order

We consider

@
where 77 denotes a large parameter, and
z x @iz
(1.2 Qe n) = 2 4 @) | 5 QD)
j22

with {Q,} satisfying the conditions (A.1), (A.2) and (A.3) below:

(A.1) Each Q; are holomorphic in a neighborhood U C C of the origin, and
Qo(0) # 0.

(A.2) {Q;} is pre-Borel summable in U, ie., for any compact set K in U,
there exist constants Ax, Cx > 0 for which

(1.3) sup |Q;(x)| < AxCkj!
e K

holds for any 7 > 0.
(A.3) Q;(0)=0forj>3.

We study the analytic structure of Borel transform of WKB solutions of
(1.1). We note that the equation (1.1) has a slightly different form from
(0.1); instead we assume (A.3). This is for a notational simplicity.

For this equation we can construct WKB solutions of the form

(1.4) Py = ——L—’mexp (i /0 ’ Soda(, n)d:c) :

Sodd

where

(1L5)  Seaalwm) = (5%(z,7) - 57 (z,1))/2
NS0dd,~1(Z) + Soado(®) + 1 *Soaar(z) + - -
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with Seaq,-1(2) = +/Qo(z)/z, and
(1.6) S*(z,n) = 5%, (z) + SF(z) + 7 1SE(x) + - -

with S% (z) = ++/Qo(z)/z are two formal solutions of the Riccati equation
as
1.7 S*+ — =7

associated to (1.1). We call WKB solutions of (1.1) normalized as (1.4) as
WKB solutions normalized at the origin.
WKB solutions (1.4) have the following expansion:

[oe]
(1.8) Yy ==Y "ghyi(z)n I,
j=0

where

(1.9) s(z) = [0 a:Sodd,_l(a:)dz: /0 ) \/@dm

Then the Borel transform of WKB solutions (1.4) are defined to be
(1.10) Y 5(T, ) Z Yusl@) + s(z)) V2
«T(j+1 /2

Concerning the analyticity of the Borel transform . g of the WKB solutions
we obtain

Theorem 1. We assume conditions (A.1), (A.2) and (A.3). Then for the
Borel transform (1.10) of WKB solutions of (1.1), we can find a positive
constant ro for which the following hold: '

(1) (y+s(2))%p, p and (y—s(x))?p_ g converge and define holomorphic
functions in W, (ry) and W_(rg) respectively, where

(1.11)  Walre) = {(z,y) € C;0 < |z| < ro, ly £ s(z)| < 2|s(z)|}.
(i) %5 and Y- p can be analytically continued and define multi-valued

analytic functions in W_(ro) \ {y = s(z)} and W, (ro) \ {y = —s(z)},
respectively.
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(i) The discontinuity of v p(z,y) (resp. Y- p) along the cut
(1.12) {(z,y) € C;Imy = Ims(z), Rey > Res(z)}

(1.13) (resp. {(z,y) € C*;Imy = Im{(—s(z)), Rey > Re(—s(z))})
comncides with

(1.14) 2icos(my/1 + 4Q2(0))y_ 5(z,y)
(1.15) (resp.  2icos(ma/1+ 4Q2(0))v_ s(z,y)).

Here we note that /1 +4Q1(0) is a difference value of two characteristic
exponents of (1.1} at the regular singular point z = 0.

If we assume endless continuability and some appropriate growth con-
ditions on 9. g(z,y) (See [DP]. See also [V] and [DDP].), we obtain the
following connection formulas of Borel sum of WKB solutions from Theorem
thm:main: first, in view of singularity structure of ¢4 5, we define the Stokes
curve 7y

(1.16) Im(s{z)) =Im(—s(z)) < Im /Oz 1/ %(f?—dx =0.

Then when we cross «y in a counterclockwise manner with a center the origin,
we obtain

(1.17) P = Yy + 2icos(my/1 +4Q2(0))v_,
(118) /Qb— = 'éb—,
if Re /z V' Qo(z)/xdz > 0 holds along v, or
0
(1.19) e o b,
(1.20) Yo = Yo+ 2icos(my/1+4Q2(0)¢y,

if Re / v Qolz)/xdx < 0 holds along 7.
0

Remark. The Stokes multiplier 2 cos(my/1 + 4Q2(0)) depends on the sub-
leading terms Q2(x) of the potential Q(x,n). This fact was essential in the
argument discussed in [AKKT2].



§2. Sketch of the proof of the connection for-
mulas
To prove Theorem 1, we first transform (1.1) to a canonical equation

1

(2.1) (_355 + 0P (=

A
_2—-- sy
~+7 xz)) Y =0,

where A = Ag+77 A +--- with X; € C. Here, to distinguish the independent
variable and the unknown functions of (1.1) from (2.1), we use £ and U as
the independent variable and the unknown functions of (1.1) respectively. In
fact we can prove the following:

Proposition 2. Assume (A.1) and (A.2). Then we can find a neighborhood
VofZ=0and

(2:2) z = z(&,7) = 2o(&) + 7'z (E) + -+

where {z;(2)};0 are holomorphic functions in some open neighborhood V. C
U, and satisfy the following:

(i) zo(0) =0, (d=zo/dZ)(0) # 0.
(ii) z;(0) =0 for j > L.
(iti) there eist positive constants A, C for which the following holds in V:
(23) l2,(&)] < ACTHj1

(iv) The following relation holds degree by degree with respect to n:

(2.4) 2
0@ =(2) (o smp) ~37 @,

where A = Mg+ 0" A1+ - is given by A; = Q;42(0). (Hence A; =0 for
j > 14f (A.3) holds.) Here {x,%} denotes the Schwarzian derivative,
1.€.,

_ " 3 [z 2
25 a=5-3(Z)

where ! denotes the differentiation with respect to T.

13
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(v) The following relation holds among the WKB solutions Vi of (1.1)
normalized at the origin, and Yy of (2.1):

B 7\ /2
(26) b= (5)  vel@nm,

Proof of this Proposition 2 will be given in the subsequent sections.

Once this proposition is proved, then we can prove Theorem 1 in the same
manner as in [K2]. In fact, by considering the Borel transform of (2.6), we
obtain

(2.7) b B(%,Y) = (Prayz¥le,5(%,Y))omao)s
where
(2.8)
g 0
Pyo (.’,C, 5_’ (_95)

I'n+1/2
2 (‘1)nré1/;n{!2z

N 0 ptvdmtn=N pi+-+tun=p
w20 vyt tvn=v

m,n>0 Kis J>O

a m 8 ~N
X &, 41(%) Byt 1(2)Z, 41 (7) -+ B (2 )<3—$> (%) ’
%o

and
(2.9) (2o(@) 72 = J(20(2)), (%) = Tj(z0(E)).

(See [K2] for the definition of (8/ dy)7.Y.) In [K2] we study the analyticity
of the right-hand side of (2.7) by using the explicit description of ¥ p(z, ),
which are expressed by Gauss hypergeometric functions {(Here we note that
A = Ag since we assume (A.3) in Theorem 1.):

¢+’B($7y)=\/%s~—l/2 (O‘—_aﬁ 1 1 )

gLt
et
1 1 11
IP—,B(%Z/): (1_8)_1/2F oz-—,ﬂ—*,—;l—s )
s=q/zT13

where o and f are constants satisfying o+ f = 2 and aff = —4)g. There we
have only used the properties in Proposition 2. Hence once Proposition 2 is
proven, then we can use the same argument to obtain Theorem 1.



§3. Formal coordinate transformation to a canon-
ical equation

In this section we construct the transformation function {z;(Z)} so that
it satisfies (2.4), and then this {z,} satisfies the properties (i), (i), (iv) and
(v) in Proposition 2. The proof of Proposition 2 (iii) will be given in §4.

By comparing (2.4) degree by degree with respect to 7, we obtain

(@d_)_l_ Q(#) (3.1.0)

o z

for n > 1 (we set A_; = 0 for the convenience). Here

52 R@ = 2
5 12 ’ 2 I,
(33) FR(z) = Q;(f) - % - (%—?) + %%ﬁ—s- -;—{sco;i},
and
(3.4)

Fn(i’) = Qt(w) + Z Z (—l)ldklxiflx’uza;—uiﬁfﬂt&
pAvl=n prteetep=e T

vyt
0Ly Sn—2

z
f Y x R A

v lth=n—2 pyt+--+pp=p
k#En—2 vi+vo=v

1 Tyt Tyt
_{_5 Z Z ( )l m(x) #1 ngl Hy

plth=n—2 g+t =p

3 +1 u+1 $L+1
*1 > >, o l“"l)xvixuﬂ—l’—ﬁﬁ_l"'

bl tk=n—2 p1+tp=p Lo
vitwg=v

We will now solve (3.1.n) for n > 0 step by step. First we obtain

(3.5) 20(5) = (% /0 ’ \/@—%——7)(13%) "
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from (3.1.0). Then we easily confirm that (i) is satisfied since z¢(Z) can be
expanded as

(3.6) zo(Z) = /Qo(0)Z + O(7%)

near the origin, and Qo(0) # 0 by our assumption (A.1). We take the
neighborhood Uy C U of the origin so that zo is holomorphic in Uy and
x!, does not vanish in Uy. The holomorphic solution (3.1.1) is obtained by

(3.7) 21(Z) = Vo (@) /O ¢ \/2;0(%) Fi(7)dz

since F}(Z) has a simple pole at the origin (See (3.2).). This x; is holomorphic
in Up and vanish at the origin. Now we solve (3.1.2). We first observe that

(3.8) | = /(%) \/;0_—( 5 (%) (59)2,\(9 di

2z4(Z) 0

give a holomorphic solution of (3.1.2). Then we choose

(3.9) Mo = (—,)2@(@)

to ensure that this solution vanish at the origin.

Remark. At the leveln = 2, we can obtain a holomorphic solution of (3.1.n)
even if we do not assume the condition (3.9). However, the resulting solution
zo(%) does not vanish at the origin. Hence F,(%) would have higher order
(> 2) poles at the origin by its definition, in general. Thus we can not expect
a holomorphic solution of (3.1.n) near the origin. We can obtain holomorphic
solution of (3.1.2) without the condition (3.9).

We now inductively determine z,,(Z) for n > 3. We first note that F,(Z) have
a double pole at the origin by our induction hypothesis. Then we choose A,_3
as

(3.10) Aoz = (%)2&(5)




By this choice of the constant A,_2, we obtain a holomorphic solution

(3.11) = /2o(%) \/—7( W(E) — (%Y)\o)di

o 2z0(Z Zo

of (3.1.n), which vanishes at the origin. This z,(&) is holomorphic in Up
Hence our induction runs and the construction of {z;(Z)} has been com-
pleted.

We then prove A = Qj42(0) for 7 > 0. Multiplying (2.4) by 7%, and
taking the limit tends to zero, we obtain

oz 72
3.12 im #°Q(% 2 —=
(3.12) chl_l}%x QE,n) =n"°A lim (63&) G
The right-hand side of (3.12) becomes
(3.13) 772(Q2(0) + 7' Q5(0) +-++)

while the lefthand side of (3.12) becomes 172X because z;(0) = 0 for all j.
Hence we obtain

(3.14) A= Q2(0) + 17 Qs(0) +

Since (v) is a direct consequence of (2.4), the remaining part of the proof
of Proposition 2 is (ii), the pre-Borel summability of the transformation
function z(%,n). We prove this pre-Borel summability in the next section.

§4. Pre-Borel summability of the transforma-
tion function.

In this section we prove Proposition 2 (iii). We can assume that there
exist positive constants B, D and R so that following hold:

(a) z(%) is holomorphic in {z; |2 < R}.
(b) z¢(%) is holomorphic in {z; |z| < R}.

Ok

(c) For every n,

< n!BD™

(4.1) ‘sup
lz/<R

17
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Then we can find a positive constant (] so that

(4.2) sup |zo(z)] £ Cy and 1 < sup |zy(z)| £ Ch.
lel<R C1 7 |z<r

Furthermore, as we have shown in the previous section, z;(Z) for j > 1 is
holomorphic in {z;|z| < R}.

The pre-Borel summability of {z;(Z)} near the origin is a consequence of
the following:

Lemma 3. We can find positive constants A and C so that the following
inequalities hold for any sufficiently small € > 0 and n > 1:

([ sup |3,(%)| < nlAC™ e,
|£|<R—e¢
su "(A)] < nlAC™ e,
(4.3) $ e o8]l < 7 :
sup z"(?) < nlAC™ e ™.
\ l51<R-e | To(E)

To prove this lemma we prepare the following:

Lemma 4. ([K1, Lemma 2.3]) Let R’ be a positive number, v(t) a holomor-
phic function on {t € C;|t| < R'} satisfying v(0) = 0. Then the differential
equation

(4.4) (t% - %) u(t) = v(t)

has a unique holomorphic solution on {t € C;|t| < R'}, which satisfies the
following inequalities for any positive R" < R':

(4.5) sup |u(t)| <2 sup |v(t)],
[tI<R" [t{<R"
2
(4.6) sup [u'(t)] < = sup [v(t)],
{tl<Rr" <RI
u(t)‘ 2
4.7 sup | —~| < — sup |v(t

See [K1, pp.43-44] for the proof of Lemma 4.



By changing a local coordinate through ¢t = z,(%) in (3.1), we obtain

(4.8) (t% - %) Ty = -;- { (z_g)an . An_z} .

Since we choose A, as {3.10), the right-hand side of (4.8) have a zero at-the
origin. Hence by Lemma 4, we find a positive constant C; such that for any
sufficiently small positive ¢,

~ - T2
(4.9) sup |z,(%)], sup |zl (%)] and  sup “(~>
|#|< R—e |Z{<R—e |&|<R—¢ 330(%)
are dominated by
2o\ 2
(4.10) Cy sup (—?) Fo— Ap_a) .
|Z|<hR—e} \ 0
To give the estimation of (4.10) we decompose F, as
(4.11) F.(Z Q"< ) F, F,
. R () = + Foi+ P+ Fom + Fov,
where
I+1 Tpy+1 " Ty +1
B o= 3, Y, ()Ml et
ptv+l=n piteto=p 0
vytrg=v
0<;LJ <n—2
O<Vj<n—
Fot = Y ST (D) D)z, e T
I = Lo +2
prv+ldk=n=2 py+-Fpp=p
k#n—2 vi+vg=v
1 l m xu +1"'x!m+1
=) Y Y nmemiee
pltk=n—2 1+t =p 0
3 l+1 "ol x;u-%—l B 'x:zz+l
Fogv = 1 Z Z ((+1)z), T T ST
0

ptvHl=n—2 p1t- By el ]
viFva=vy

In the following we give the estimation of Fy 1, Fnu, Frur and Fy v respec-
tively. Without loss of generality, we can assume that C' is so large that

(4.12) D<C and e<1

19
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holds.

N . . . . 1 (2
1°) To give the estimation of F, 1, we write F,; = F( ) ¢ 2F ) F(I) with
v _ l+1 por Tl T4l
(413) Fn,l - Z ZToLo .’Eol+l s
et
pt=n uol u,<l:tl Qu
@ = 1)) g Tkl L Dkl
(4'14) Fn,l - Z Taltl )
0
ptktl=n pyte- +#l—u
1<k<n—1 0<p <n—2
3 _ 1410 s Tug+1 T+l
@15y FY o= > 3 (-, i
ptyl=n pyttu=u 0
vy+rg=v
0<p;<n—2
1<vj<n~—1
. 1 .
We fist estimate FH We obtain
2 2 Pt
(4 16) _x_o F(l) < 1560! Z Z I'Z'OH:EO‘ Luti Ly+1
' x} mlo = g2 lzo] | o Zo
0 00 = n eyt
u.J<n 2
Lyt Tyt
= |z E E ol ekl B bad a8 Y
Zo - Zo

pHl= nu1+ +M"u
0L, <n—2

By using (4.2) and (4.3) we find that !(3:0/330)2}7(1 | is dominated by
(417)  C1 Y. > AC* e Huw + 1)1 (u+1)!

pHl=n w1+ tup=p
0Lp;<n~2

n {
c oA T e

[=2 pyteetug=n—l
0<pj<n—2

Then we use the formula

(4.18) Z nileomyl < nl

ny+ngtdnp=n

n;21
to obtain
To 2 () n A {
1 n _—n
(4.19) (:c_b) FY < nlCiCme 2(5)
< plAC™ e AC:

Ol = A/C)’
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In a similar manner we can give the estimation of F,Ei) and F,EP’I) as follows:

(4.20)

2
(2)rg <o ¥ § avowen

ptktl=n pgtetup=p
1<kgin—1 0Lu;<n~-2

xvi(pg + 1)1 (g + 1)

n 14
S e 91 € BEND SR PR RN AR

=1 pytetpptk=n—l
OSuanm2,1SkSn—~1
n A 1
< nlACIC™Re ™y (5)
=1
(72
< !Acnul —-n 1 ;
=" ¢ CO-A4/C)
(4.21)
2
(Eg) FTS? < c‘i’» Z Z Al—}-?cu+v€—u—-u-—l
Lo ptv+l=n pr+o-tep=p
vytrvg=v
OSp;Sn=2
1<y;<n—1
XVﬂ}/g!(lul <+ 1)' R ([1,; -+ 1)'
n A 4
< AR (5) > vilvg!(p + 1)1+ (i + 1)1
{=0 wytotpuptritro=n—i
vy,wve21
§ AC?

! n—-1_-n ]
nlAC™ e MO(I-—A/C’)
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O 3)

2°) We give the estimation of F;, ;1. We first write Fp i = Fy q Fn i+
with

(4.22)
Qo= X 3 b1 ot Tl Bkt
Fon = (=17 + Ddezozg ro2 ’
P+l+’°~n“2 =g
2 _ I+1 ’ lx.u1+1 s Lyl
Fon = E : (=1 (U + DAz ___$0l+2 5
dvtithk=n—2
i‘k;n 2 ;’Z Babeetpr=p
9= 3 3 +1 1 Tt Tl
Fon = (1™ + D)z, 7, T +2 :
ptvHlthk=n—2 pyt-otup=p
k#En—2 vi+vop=v
v1,vg#0

We first note that we obtain
(4.23) |\e| <K!'B'DF (k> 0)

for some positive constant B’ since Ay = Qx{0) and (4.1). By using the
similar argument as 1°), we find

To W ) 2n 2 A {n—-2 De k .

. < BIC e —_ Hn—2—k).
(4.24) (%)FRH B'C Z(c) ; (0) k(n k)
Since we assume (4.12), we obtain

n—{—2 D€ k n—{—2
(4.25) Z (6—) kln—-2-k)! < Z kli(n—2-k)! <3(n-2).
k=0 k=0
Hence we conclude that
2 1
Lo ( ) n—1 —n 3B

4.2 — 2! =
wl|(3) A < 2o 40T~ 4/0)

In a similar manner we obtain

Zo (2) n—1_—n 3B’Cl€2
4.27 — | F < —2)! et A
@ |(3)R] < o-ue Co(i ~ 4]0

Zo (3) n—1_—n SAB,OL%GQ
4.28 il < (n—2) oL e
(4.28) (%> F3 < (n—2)140™ Ga—AC




3°) We give the estimation of F,, 1. As in the previous estimation we write
Fom = F, 75,11)11 + F, (21)11 with

!
1 +17 T4
(429) Fijn = Z > (V@) S LI -
Zy

u+l—n—2 Hiteotp =g

2 Ty Tyt
(430) Fiyo= 5 > Y (VEE@

P+‘+’;‘n”2 st =t 0

By a straightforward computation we obtain

%
2AC(1 — AC;/C)’

2
(431) (i—?) Fn,HI—l S (n - 2)5Acm--le—n
0 )

9 3 &
% ] - e’ ACY
‘ F < nl '
(4.32) ( n ) na2| < nlAC™ e 202(1 — AC/C)

0

Here we have used the inequality

dk.’ll'o
X R <O n—1
(4.33) iﬁl&;ll}};E g | S e
and
k
(4.34) sup igk” < (n+k)AC™T e ReE (n > 1).
|Z|<R—e

In fact, (4.33) follows from

dF g 1 IO(C)
(4.35) dik  2mi ﬁ (e (= %
and (4.34) can be obtained inductively by using
d*zn 1 2l 1)(C)
(4.56) @& :oz;j{ P =l

T4l

23



24

4°) We give the estimation of F, rv. We write Fy v = F vt 9Ft I)V + FSI)V
with

(4.37)
3 z
Fé,lI)V — Z: Z Z 1)E+1 Z+1) " n 11‘1+1’H_1 HH—l’
pHl=n—2 prtt= Zg
(4.38)
3 z!
FrS,QI)V = 1 Z Z (- l)l+l(l+l) " u_,til’_l__ﬁ_;ﬂ-f-_l,
pFltr=n—2, g p=p Ty
v#1
(4.39)
3 TR
Fh =5 3 X (UM Dl e
0

pA-l+try=n—2 pi+tup=u
vi+rg=v

v1,v9#0

We then obtain

) 7

2 o ot Al n 3C e

(4.40) (m{)) Fiivl £ (n—2)IAC™ ¢ 4AC(1 - A/C)?
n o | - gt n 3eC?

(4.41) (m{)) Forv| < (n=1)IAC™ e 4C%(1 - AC,/C)Y

2 2ACE

5 ® | < oisomein e? ACH

(4.42) (xo) Foiv| = nldC" e 4C3(1 - AC,/CY

Summing up, we conclude that (4.10) is dominated by

(4.43)

T?,!Acn_lﬁn_l X 0203,



where

(4.44)
C; =

BD ( AC 202 ACS )

1 T\ea=a/c) Tea-4j0) T ca-450)
( 3B 6B'C, 34B'C?
A0 - 4/0) T ern = 4j0) T oI - A/C))

) ( cs BACS ))

SAC(L— ACL/C)  2C%(1 = AC,/C
307 609 2 ACH )

* <4AC(1 —AJC7 T ACH 1= ACL/C)E T 4CP(1 = AC,/C)

Hence we first choose A so that BD < A and (4.3) holds for n = 1. Then
we chose C so large that D < C and CoC3 < 1. Then then our induction
proceeds. This prove Lemma 4.3.
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