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1 INTRODUCTION

In 1992, Rubinstein & Sternberg proposed in [9] the following scalar bistable
reaction-diffusion equation with a nonlocal term:

(NL) $\{$

$u_{t}^{\epsilon}= \epsilon^{2}\triangle u^{\epsilon}+f(u^{\epsilon})-\frac{1}{|\Omega|}\int_{\Omega}f(u^{\epsilon})dx$ ,

$\partial u^{\epsilon}/\partial \mathrm{n}=0$ ,

$t>0$ , $x\in\Omega$ ,

t>0ラ $x\in\partial\Omega$ .

Here, 0 is a smooth bounded domain in $\mathbb{R}^{N}(N\geq 2)$ with volume $|\Omega|$ and the outward
unit normal $\mathrm{n}$ on the boundary $\partial\Omega$ , $\epsilon>0$ is a small parameter, and $f$ is a function
derived from a double-well potential, a typical example being $f(u)=u-u^{3}$ .

It is known that the dynamics of solutions for (NL) with $\epsilon<<1$ consists of several
stages, and is roughly summarized as follows.

(51) Generation of transition layers [9]:
The solution with an appropriate initial condition generates sharp transition
layer near an interface. Such a solution is referred to as a layer solution.

(52) Motion of interfaces (i) [9]:
The layer solution begins to evolve so that the corresponding interface is driven
according to a certain motion law, called an interface equation. The interface
equation is given by (2.15) in [9].

(53) Motion of interfaces (ii) [9]:
The layer solution then comes to evolve so that the corresponding interface is
governed by another interface equation, which is well-know $\mathrm{n}$ as the volume
preserving mean curvature flow (cf. [5, 6, 7]). The interface is driven in such
a way that the volume enclosed by the interface is preserved and the area of
the interface decreases. After a coarsening process, the interface evolves into a
single sphere. The layer solution with spherical shape is referred to as the bubble
solution.

(54) Motion of bubbles (i) [1, 3, 11, 12]:
The bubble solution drifts with exponentially slow speed without changing shape
toward the closest point on an from the center of the corresponding sphere.

(55) Motion of bubbles (ii) $[2, 12]$ :
Once the bubble solution attaches to an, it intersects perpendicularly to an and
evolves along $\partial\Omega$ by a geometric information of an.
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The dynamics in $(\mathrm{S}1)-(\mathrm{S}3)$ was formally discussed in [9] by employing asymptotic
analysis. For (S4), the existence of such bubble motions was established by Alikakos
et al. [1]. Ward gave in [11] an explicit asymptotic ordinary differential equation for
the distance between the center of the bubble and the closest point on af (see also
[12] $)$ . Alikakos et al. derived in [3] such an equation for the Cahn-Hilliard equation
and compared the bubble motions for the Cahn-Hilliard equation with those for the
nonlocal equation (NL). The dynamics in (S5) was studied by Alikakos et al. [2].

Our concern in this paper is the dynamics occurring in the intermediate stage (S2),
i.e., after the formation of layers and before the volume-preserving mean curvature
flow is effective. The corresponding interface equation was earlier given by Rubinstein
& Sternberg as (2.15) in [9]. The form, however, was implicit and unsuitable for
the circumstantial examination from interfacial approach. We will present below an
explicit formulation of the interface equation, and discuss the dynamics and asymptotic
behavior of solutions for the interface equation. Throughout the remaining of this
paper, an “interface” means a smooth, closed, $(N-1)$-dimensional hypersurface $\Gamma$

embedded in $\Omega\subseteq \mathbb{R}^{N}$ staying uniformly away from an. We denote by $\Omega^{\pm}$ subdomains
in $\Omega$ separated by an interface $\Gamma$ such as

$\Omega=\Omega^{-}\cup\Gamma\cup\Omega^{+}$ , an- $=\Gamma$ , $\partial\Omega^{+}=\partial\Omega\cup\Gamma$ ,

and by $\nu(x;\Gamma)$ the unit normal vector on $\Gamma$ at $x\in\Gamma$ pointing toward the interior of
the subdomain $\Omega^{+}$ (cf. FIGURE 1).

Let $\{\Gamma(t)\}_{t\geq 0}$ be a family of interfaces parameterized by time $t\geq 0$ , with each
interface $\Gamma(t)$ satisfying the conditions above. The interface equation associated with
the intermediate stage (S2) is explicitly given as follows (cf. [8]):

(IE-a) $\mathrm{v}(x;\Gamma(t))=c(v(t))$ , $t>0_{;}x\in\Gamma(t)$ ,

(IE-b) $\dot{v}(t)=\frac{h^{+}(v(t))-h^{-}(v(t))}{h_{\overline{v}}(v(t))|\Omega^{-}(t)|+h_{v}^{+}(v(t))|\Omega^{+}(t)|}c(v(t))|\Gamma(t)|$, t $>0$ ,

(IE-c) $\Gamma(0)=\Gamma_{0}$ , $v(0)=v_{0}$ .

Here, $\mathrm{v}(x;\Gamma(t))$ denotes the normal velocity of $\Gamma(t)$ at $x\in\Gamma(t)$ in $\nu$-direction, the
symbols $|\Gamma(t)|$ and $|\Omega^{\pm}(t)|$ stand for the surface area of $\Gamma(t)$ and the volumes of $\Omega^{\pm}(t)$ ,
respectively, $c(v)$ and $h^{\pm}(v)$ are some functions defined in a neighborhood of $v=0$
satisfying

(1.1) $c(0)=0$ , $c’(0)>0$ ; $h^{-}(v)<0<h^{+}(v)$ , $h_{v}^{\pm}(v)<0$ .
The interface equaiton (IE) is derived in [8] as a singular limit of the following

problem

(RD) $\{$

$\epsilon u_{t}^{\epsilon}=e^{2}\Delta u^{\epsilon}+f(u^{\mathrm{e}})-v^{e}$ , $t>0$ , $x\in\Omega$ ,

$v^{\epsilon}=$ $\frac{1}{|\Omega|}\int_{\Omega}f(u^{\epsilon})dx$ , $t\geq 0$ ,

$\partial u^{\epsilon}/\partial \mathrm{n}=0$ , $t>0$ , $x\in\partial\Omega$
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as $\epsilonarrow 0$ , where the problem (RD) is obtained by rescaling the time $t$ in (NL) as
$t\vdasharrow\epsilon^{-1}t$ and introducing an auxiliary variable for the nonlocal term. In this situation,
the functions $\mathrm{I}^{\pm}(v)$ , $c(v)$ in (IE) satisfying (1.1) are determined by the the nonlinearity
$f(u)-v$ in (RD). We should also mention that $\Gamma(t)$ and $v(t)$ in (IE) correspond to
limits of the level-set interface $\Gamma^{\epsilon}(t):=\{x\in\Omega|u^{\epsilon}(t, x)=0\}$ and the nonlocal term
$v^{\epsilon}(t)$ in (RD) as $\epsilonarrow 0$, respectively, and that $u^{\epsilon}$ with $\epsilon\ll 1$ has a sharp layer structure
near $\Gamma(t)$ such as

$u^{\epsilon}(t, x)\approx h^{\pm}(v(t))$ , $t>0$ , $x\in\Omega^{\pm}(t)$ .

By virtue of the precise formulations as (RD) and (IE), the unique existence of
time local and global solutions to (IE) and the convergence of solutions for (RD) to
those for (IE) have been successfully established in [8]. In paticular, the convergence
result guarantees that the dynamics of solutions for (IE) does approximate that for
(NL) in the intermediate stage (S2). In this sense, it is of crucial importance to
ex amine the dynamics and asymptotic behavior of solutions to (IE) for understanding
the dynamics occurring in (S2).

2 INTERFACE DYNAMICS

By the conditions in (1.1), it is easily verified that the dynamics of $(\Gamma(t), v(t))$ is
as follows:

(i) $v$ $>0$ $\Rightarrow$ $\mathrm{v}>0,\dot{v}<0$ ;
$\Gamma(t)$ evolves in such a way that $\Omega^{-}(t)$ grows (or $\Omega^{+}(t)$ shrinks) and $v(t)$ decreases.

(ii) $v<0$ $\Rightarrow$ $\mathrm{v}<0,\dot{v}>0$ ;
$\Gamma(t)$ evolves in such a way that $\Omega^{-}(t)$ shrinks (or $\Omega^{+}(t)$ grows) and $v(t)$ increases.

(iii) $v=0$ $\Rightarrow$ $\mathrm{v}=0,\dot{v}=0$ ;
$\Gamma(t)$ and $v(t)$ do not evolve.

The description above is the same as that in [9]. To examine the asymptotic behavior
of solutions for (IE), we will recast (IE) as an equivalent problem.

2.1 Preliminaries. Before moving on, we prepare in this subsection notations and
tools needed later.

For $t\geq 0$ , we express $\Gamma(t)$ as a smooth embedding from a fixed $(N-1)$-dimensional
reference manifold $\mathcal{M}$ to $\mathbb{R}^{N}$ :

(2.1) $\gamma(t, \cdot)$ : $Marrow\Gamma(t)$ , $M$ $\ni y\vdash\Rightarrow x=\gamma(t, y)\in\Gamma(t)$ .

Let $\nu(t, y)\in \mathbb{R}^{N}$ be the unit normal vector $\nu(x;\Gamma(t))$ on $\Gamma(t)=\gamma(t, M)$ at $x=\gamma(t, y)$ .
We normalize the parametrization (2.1) so that $\gamma_{t}$ is always parallel to $\nu$ . This yields
that $\gamma_{t}=\mathrm{v}\mathrm{v}$ . We simply denote by $\varphi(y)$ and $n(y)$ instead of $\gamma(0, y)$ and $\nu(0, y)$ ,
respectively. For sufficient small $|r|$ , we define the embedding $F(r$, $\cdot$ $)$ : $M$ $arrow\Omega$ as

$F(r, \cdot)$ : $y\vdash+F(r, y)$ $=\varphi(y)+rn(y)$ .
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Then the hypersurface defined by

(2.2) $\Gamma_{r}:=F(r, M)=\{x\in\Omega|x=\varphi(y)+rn(y), y\in.M\}$

is smooth for small $|r|$ . Let $dS_{y}^{f}$ be the volume element on $M$ induced from the surface
element on $\Gamma_{f}=F$ ( $r$ , A4) at $x=F(r, y)$ by the embedding $F(r$ , $\cdot$ $)$ . Note that $dS_{y}^{r}$ has
the following expressions:

$dS_{y}^{r}$ $=$ $\prod_{j=1}^{N-1}(1+r\kappa_{j}(y))dS_{y}^{0}$

$=$ : $\sum_{j=0}^{N-1}H_{j}(y)r^{j}dS_{y}^{0}$.

Here, $\kappa_{j}(y)(j=1, \cdots : N-1)$ stand for the principal cuvatures of $\Gamma_{0}=\varphi(M)$ at
$x=\varphi(y)$ and $H_{j}(y)(j=0, \cdots : N-1)$ are the fundamental symmetric functions of
$\kappa_{1}(y)$ , $\cdot$ . . , $\kappa_{N-1}(y)$ :

$H_{0}(y)$ $\equiv$ 1,
$H_{1}(y)$ $=$ $\kappa_{1}(y)+\cdots+\kappa_{N-1}(y)$ ,

.$\cdot$.
$H_{N-1}(y)$ $=$ $\kappa_{1}(y)\cdots\kappa_{N-1}(y)$ .

The surface area $|\Gamma,|$ is denoted by $g(r)$ . Then $g(r)$ is explicitly given by

(2.3) $g(r)= \sum_{i=0}^{N-1}(\oint_{\mathcal{M}}H_{i}(y)dS_{y}^{0})r^{j}$ .

2.2 Asymptotic behavior of solutions. Let us now recast (IE) as an equivalent
problem.

For a given initial interface $\Gamma_{0}$ , we express the interface $\Gamma(t)$ as the graph of a
function $r(t,$y) over $\Gamma_{0}$ :

(2.4) $\Gamma(t)=$ {x $\in\Omega|x=\gamma(t, y)=\varphi(y)+r(t, y)n(y),$y $\in M\}$ .

A simple computation implies that $\nu(t,$y) is independent of t $>0$ :

(2.5) $\nu(t, y)\equiv n(y)$ .

From (2.4), (2.5) and v $=\gamma_{\mathrm{t}}\cdot$
$\nu$ , the equation in (IE-a) now turns out to be expressed

as $r_{t}(t, y)=c(v(t))$ . The initial condition for $\mathrm{T}(\mathrm{t})$ in (IE-c) is recast in terms of r as
$r(0, y)=0$. Then the equation for $a(t,y):=\nabla_{y}r(t,$y) becomes

$a_{t}(t, y)=0$ , $a(0, y)=0$ ,

from which it follows $a(t, y)\equiv 0$ , i.e., $r(t,$y) is independent of y $\in \mathcal{M}$ :

(2.2) $r(t, y)\equiv r(t)$ .
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Therefore, the equation in (IE-a) with the initial condition in (IE-c) is recast as

$\dot{r}(t)=c(v(t))$ , $r(0)=0$.

By (2.4) and (2.6), the interface $\Gamma(t)$ is expressed as

$\Gamma(t)=\{x\in\Omega|x=\varphi(y)+r(t)n(y), y\in\Lambda \mathit{4}\}$ $=\Gamma_{f(t)}$ ,

while the surface area $|\Gamma_{r}|$ is given by (2.3), Thus we have $|\Gamma(t)|=g(r(t))$ .
On the other hand, the following identities are valid:

$\frac{d}{dt}|\Omega^{-}(t)|=-\frac{d}{dt}|\Omega^{+}(t)|=\int_{\Gamma(t)}\mathrm{v}(x;\Gamma(t))dS_{x}^{\Gamma(t)}$ ,

where $dS_{x}^{\Gamma(t)}$ stands for the surface element on $\Gamma(t)$ at $x\in\Gamma(t)$ . Thanks to the
relations above, it is easy to verify that the problem (IE) gives rise to

$\frac{d}{dt}[h^{-}(v(t))\frac{|\Omega^{-}(t)|}{|\Omega|}+h^{+}(v(t))\frac{|\Omega^{+}(t)|}{|\Omega|}]\equiv 0$ .

Therefore, we obtain the conservation property

$h^{-}(v(t)) \frac{|\Omega^{-}(t)|}{|\Omega|}+h^{+}(v(t))\frac{|\Omega^{+}(t)|}{|\Omega|}\equiv m$ , $t>0$ .

This, together with $|\Omega^{-}(t)|+|\Omega^{+}(t)|\equiv|\Omega|$ , implies that the first term on the right
hand side of (IE-b) is rewritten as a function of $v(t)$ alone, say $h(v(t))$ . Thus the
problem (IE) is recast as

(ODE) $\{$

$\dot{r}(t)$ $=$ $c(v(t))$ , $t>0$ ,

$\dot{v}(t)$ $=$ $h(v(t))c(v(t))g(r(t))$ , $t>0$ ,

$r(0)$ $=$ $0$ , $v(0)=v_{0}$ ,

in which the functions $c(v)$ , $h(v)$ and $g(r)$ satisfy the following in a neighborhood of
$(r, v)=(0, 0)$ :

(2.7) $c(0)=0$ , $c’(0)=0$, $h(v)<0$ , $g(r)>0$ .

By using (2.7), it is proved [8] that the problem (ODE) has a time global solution
$(r(t), v(t))$ which converges to $(r^{*}, 0)$ monotonously as $tarrow$ $\infty$ , where $r^{*}$ is a constant
(the phase portrait for (ODE) is as FIGURE 2). This immediately yields that (IE) has
a time global solution $(\Gamma(t), v(t))$ such that $v(t)arrow 0$ and $\Gamma(t)=\mathrm{r}(\mathrm{t})$ aproaches an
equilibrium interface $\Gamma^{*}=\Gamma_{r^{\mathrm{r}}}$ monotonously as $tarrow\infty$ .
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3 CENTER-OF-MASS follows

Using the ODE expression (ODE) for (IE), we can discuss the center-of-mass
motion for the interfaces governed by (IE). For each interface $\Gamma$ , its center of mass
$p\in \mathbb{R}^{N}$ i $\mathrm{s}$ defined by

(3.1) $p:= \frac{1}{|\Gamma|}\int_{\Gamma}xdS_{x}^{\Gamma}$ .

Our question is:

How does the center of mass $p(t)$ evolve when the interface $\Gamma(t)$ is driven
by the interface equation (IE)?

We work under the following convention for the initial interface $\Gamma_{0}$ :

Whenever an initial interface $\Gamma_{0}$ is given, we identify its center of mass $p\mathrm{O}$

as the origin $0\in \mathbb{R}^{N}$ by an appropriate translation.

We examine the center of mass $p_{r}$ for the interface $\Gamma_{r}$ instead of $p(t)$ for $\Gamma(t)$ since
the interface $\Gamma(t)$ driven by (IE) is characterized as $\Gamma(t)=\Gamma_{f(\ell\}}$ . The center of mass
$p_{r}$ is computed, by employing the symbols in \S 2.1, as

$p$, $=$ $\frac{1}{|\Gamma_{r}|}\oint_{\Gamma_{f}}xdS_{x^{r}}^{\Gamma}$

$=$ $\frac{1}{g(r)}\int_{\mathrm{A}l}(\varphi(y)+rn(y))dS_{y}^{t}$

$=$ $\frac{1}{g(r)}\int_{\mathcal{M}}(\varphi(y)+rn(y))\sum_{j=0}^{N-1}Hj(y)r^{j}dS_{y}^{0}$

$=$ $\frac{1}{g(r)}\sum_{j=0}^{N-1}[r^{j}\int_{\lambda^{l}\mathrm{t}}Hj(y)\varphi(y)dS_{y}^{0}+r^{j+1}\int_{\lambda 4}Hj(y)n(y)dS_{y}^{0}]$

$=$ $\frac{1}{g(r)}[\int_{\lambda 4}H_{0}(y)\varphi(y)dS_{J}^{0}y+r\int_{\mathcal{M}}H_{0}(y)n(y)dS_{y}^{0}]$

$+ \frac{1}{g(r)}\sum_{\mathrm{i}=1}^{N-1}[r^{j}\int_{\mathrm{A}I}Hj(y)\varphi(y)dS_{y}^{0}+r^{j+1}\oint_{A4}Hj(y)n(y)dS_{y}^{0}]$

$=$ $\frac{1}{g(r)}\sum_{j=1}^{N-1}[r^{j}\int_{\mathrm{A}\mathrm{f}}Hj(y)\varphi(y)dS_{y}^{0}+r^{j+1}\oint_{u}.Hj(y)n(y)dS_{y}^{0}]$ .

The last equality follows from $H_{0}(y)\equiv 1$ (by definition), $\int_{\lambda 4}\mathrm{p}(\mathrm{t})dS_{y}^{0}=p_{0}|\Gamma_{0}|=0$

(by our convention) and $f_{\Lambda 4}n(y)dS_{y}^{0}=0$ (by the Gauss divergence theorem). Since
$\Gamma(t)$ is expressed as $\Gamma(t)=\Gamma_{\tau(t)}$ , we have $p(t)=\mathrm{p}\mathrm{r}(\mathrm{t})$ , i.e.,

(3.2) $p(t)= \frac{1}{g(r(t))}\sum_{j=1}^{N-1}[r(t)^{j}\int_{\Lambda 4}H_{j}(y)\varphi(y)dS_{y}^{0}+r(t)^{j+1}\int_{\lambda 4}H_{j}(y)n(y)dS_{y}^{0}]$ .
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This expression, however, is rather involved and the dynamics of $p(t)$ is not clear.
So we now examine it under the restriction $N=2$. In this case, the expression of $p(t)$

above becomes quite simple. Indeed, by employing

$H_{1}(y)=\kappa(y)$ (the curvature of the initial curve $\Gamma_{0}$ at $\varphi(y)$),

$g(r)=|\Gamma_{0}|+2\pi r$ ,

$\int_{\Lambda\Lambda}\kappa(y)n(y)dS_{y}^{0}=0$ (by Frenet’s formula),

we find from (3.2) that the center of mass $p(t)$ for (IE) with $N=2$ is given by

(3.3) $p(t)=\tau_{0}(r(t))q_{0}$

with

$\tau_{0}(r):=\frac{r}{|\Gamma_{0}|+2\pi r}$ ,

(3.4)

$q_{0}:= \int_{\mathrm{A}l}\kappa(y)\varphi(y)dS_{y}^{0}\in \mathbb{R}^{2}$.

Note that $\tau_{0}(0)=0$ and $\tau_{0}’(0)>0$ . By virtue of the expression as in (3.3) and
the monotonousness of $\tau_{0}(r)$ and $r(t)$-dynamics for (ODE), we immediately find the
following:

(i) The initial curve $\Gamma_{0}$ uniquely determines a direction of center-of-mass motion
as $q_{0}$ in (3.4).

(ii) Suppose that $v_{0}\neq 0$ . If} in addition, $\Gamma_{0}$ is an initial curve satisfying $q\mathit{0}\neq 0$ , then
the center of mass $p(t)$ evolves monotonously in $\pm q_{0}$ direction when $\pm v\mathit{0}>0_{J}$

respectively.

We note that the center of mass for $\Gamma(t)$ does not evolve in a situation where
an initial curve $\Gamma_{0}$ satisfies $q_{0}=0$ . For instance, in the case where $\Gamma_{0}$ is a circle
or an ellipse. Such examples suggest that the vector $q_{0}$ plays a role as an indicator
measuring how much the symmetry of the initial curve $\Gamma_{0}$ is broken over the whole of
$\Gamma_{0}$ , although no precise geometrical characterization of $q_{0}$ have been obtained.

We now illustrate this aspect by presenting a simple example.

EXAMPLE 3.1 (limagon of Pascal). The curve defined by

$\Gamma_{0}:=\{\varphi(y)=(x^{1}(y), x^{2}(y))|y\in \mathcal{M}=[0,2\pi]\}$

with

$\{$

$x^{1}(y):=\cos y\sin y+2\sin y$ ,
$x^{2}(y):= \cos^{2}y+2\cos y-\frac{\pi}{12E(8/9)}$
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is one of the curves called limagon of Pascal. The last term on the right hand side of
$x^{2}$-component is added so that $p_{0}=0$ , $E$ being the usual complete elliptic integral of
2nd kind defined by $E(k^{2}):= \int_{0}^{\pi/2}\sqrt{1-k^{2}\sin^{2}\theta}$dO. By the definition of $q_{0}$ in (3.4),
it yields after some computation that

$q_{0}=(0,$ $\frac{15\pi}{8}-\frac{\pi^{2}}{6E(8/9)})\approx(0, 4.41)$ .

One can see that $q_{0}$ , parallel to the $x^{2}$-axis, precisely coincides with the direction in
which the symmetry of $\Gamma_{0}$ is broken (cf. FIGURE 3). $\square$

Let us now choose $\Gamma_{0}$ above as initial curve and solve the interface equation (IE).
To facilitate computation, we employ the following linear functions for $h^{\pm}(v)$ :

$h^{\pm}(v)=- \frac{1}{2}v\pm 1$ , $-1<v<1$ .

Since the center-of-mass motion for (IE) does not depend on the shape of an, we may
assume, without loss of generality, that $\Omega$ is a disk. We choose and fix the radius so
that $|\Omega|=27\pi\approx$ 84.82, which guarantees that $\Gamma_{0}$ stays uniformly away from an. It
turns out that $\Gamma_{0}$ satisfies the following properties:

$|\Gamma_{0}|=12E(8/9)\approx$ 13.36,

$|\Omega_{0}^{-}|=9\pi/2\approx$ 14.14,

$|\Omega_{0}^{+}|=|\Omega|-|\Omega_{0}^{-}|=45\pi/2\approx$ 70.68.

We also note that the function $\tau_{0}(r)$ turns out to be

$\tau_{0}(r)=\frac{r}{12E(8/9)+2\pi r}$ .

As an initial value $v_{0}$ for (IE), we choose

(3.5) $v_{0}:= \frac{4(\pi+|\Gamma_{0}|)}{|\Omega|}\approx 0.78$.

We now solve (ODE) which is equivalent to (IE). Note that $h(v)\equiv-4/|\Omega|$ and
$g(r)=|\Gamma_{0}|+27\mathrm{r}\mathrm{r}$ . The relation $dv/dr=h(v)g(r)$ implies that the solution curve in
this situation is given by

$\{(r, v)|v=-\frac{4\pi}{|\Omega|}r^{2}-\frac{4|\Gamma_{0}|}{|\Omega|}r+\frac{4(\pi+|\Gamma_{0}|)}{|\Omega|}|$. $r\geq 0$ , $v>0\}$ ,

which implies the existence of a globally-in-time solution $(r(t), v(t))$ which converges
to $(1, 0)$ as $tarrow$ oo (cf. FIGURE 4). The center of mass $p^{*}$ of the limit interface
$\Gamma"=\Gamma_{f}|_{\mathrm{r}=1}$ is given by

$p^{*}=\tau_{0}(1)q_{0}\approx(0,0.22)$ .
Therefore, the center of mass $p(t)$ , with the initial curve $\Gamma_{0}$ being the limagon of Pascal
in EXAMPLE 3.1, evolves monotonouly from $(0, 0)$ along the $x^{2}$-axis to $p^{*}\approx(0,0.22)$

(cf. FIGURE 3).
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FIGURE

FIGURE 1: Interface $\Gamma$ and subdomains $\Omega^{\pm}$ in $\Omega$ .
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$r$

FIGURE 2: Phase portrait for (ODE) in (r,$v)$-plane.
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FIGURE 3: Limac.on of Pascal.
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FIGURE 4: Solution curve arrd asymptotic behavior for $(r(t), v(t))$ .
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FIGURE 5: Interface dynamics and center-of-mass motion


