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Quasi-variational inequalities for phase transitions

FEREXER BAHEHRMY WE #R (Masayasu Aso)
Graduate School of Science and Technology
Chiba University

Abstract. In this paper, we consider a quasi-variational problem for irreversible phase
change with temperature. We propose a mathematical model of a class of irreversible
phase change described by a system of PDEs including a quasi-variational inequality.
One of our interests is an existence of solutions of this system. The existence of solutions
is obtained as a limit of approximate solutions. Our approximate problems are formulated
by using the Moreau-Yosida approximation. The convergence of approximate solutions is
based on some uniform estimates and monotonicity techniques in the nonlinear operator
theory.

1. Introduction

We consider the following system of PDEs:

0; +w, — A0 =h(t,z) inQ:=(0,T)xQ, (1.1)
wy + 0l n(wy) — vAw 3 f(f,w) in Q, (1.2)
subject to the boundary conditions
08 Ow
5;;—-6‘5—0 OTIE.I(O,T)XP (13)

and the initial conditions
8(0,-) =6y, w(0,:)=wy inQ, (1.4)

where ) is a bounded domain in R® with smooth boundary I, T is a finite positive
number, v is a positive constant, 8; and w; are the time derivatives of § and w, A denotes
the Laplace operator in space variable z and 5% denotes the outward normal derivative on
I'; f is a given function on R2, h is a given function on @; 6 and wy are the initial data of
6 and w, respectively; Iy (-} is the indicator function of the interval [¢(8), g(6) + N| with
a non-negative bounded smooth function ¢ on R and a sufficiently large positive number
N;
+oo if wy < g(6) or g(f) + N < wy
Ig n(wy) := . ’
o (1) { 0 if g(6) <w < g(f) +N;

Keywords and phrases : irreversible phase change, quasi-variational inequality, subdifferential
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OIp n(w;) is the subdifferential with respect to w;, namely, it is a set-valued mapping
defined by

0 if wy < g(0) or g(8) + N < wy,

(—00,0] if we = g(h),

{0} if g(8) < we < ¢(8) + N,

[0, +00) if wy = g(8) + N.

For instance, in the context of solidification of multi-composite materials, the un-
knowns # and w of the system (P) := {(1.1)-(1.4)} are explored, respectively, as the tem-
perature and the irreversible solidification parameter. (w is often called a phase change
parameter or an order parameter.) Since the mapping 0y x(-) in (1.2) requires that wy
is within (0 <) g(8) < w; < g(6) + N, our system possibly describes the irreversibility
effect. As for a mathematical treatment of irreversible phase change, there are some re-
lated works [3,6,7,8,13,15,16] and so on, however, in any case the restriction of w; does
not depend on the unknown functions # and w. In our setting, 8Jp n(-) depends on the
unknown function 8, which is one of new aspects of our work.

3Ig,g\i(wt) =

~ In this paper, we give an existence result for the system (P) under some assumptions
on the data f, g, b, 8, wo. Concerning the system (P) we have already discussed the case
when Q is a bounded domain in R? (cf.[3]). In the paper of [3], we used the abstract
quasi-variational evolution inequality established in {2] to get approximate solutions:

Bu( (' (2) + 0¥ (u(t)) 3 G(t,u(t)) in X forae t €(0,T),

where X is a real Hilbert space, ¢, is a proper lower semi-continuous convex function
on X for each u € D(9) := {2 € X;¢(z) < +o0}, ¥ is a proper lower semi-continuous
convex function on X, ¢, and % are their subdifferentials in X, G is a single-valued
operator from X into itself. Since we cannot apply such a procedure to (P), we shall
employ a fixed point argument to construct approximate solutions of (P) and obtain a
solution of (P) by showing their convergence.

Throughout this paper, H denotes the real Hilbert space L%(Q) with the usual inner
product {-,+) and V denotes the Sobolev space H 1(€) and it is a Hilbert space equipped
with the following inner product:

(z,v)y = (2,0) + a(z,v), afz,v):= /Q'Vz(a;) -Vo(z)dz, Vz,veV

and norm 2|y := 4/(z,2)v. We use the notation A, to indicate the operator A with
homogeneous Neumann boundary condition; note here that —/\ is linear, closed, non-
negative and self-adjoint in H; in fact, we have

D(—Ap) = {z € H*(Q); g—z =0 in H%(I‘)}

and
Aoz =—-Az in H, Vzé& D(-Ao).
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Notation | - | stands for various L®-norms, for instance, L>(Q), L=((2) and so on.

Next we recall some basic properties on convex functions and their subdifferentials
in a real Hilbert space; precisely see [4,5,9,12]. Let W be a real Hilbert space with inner
product (-,-)w and norm | - |iy. Let ¢ be a proper lower semi-continuous and convex
function on W. The subset D(¢) = {z € W;¢(z) < +oo} of W is called the effective
domain of ¢. The subdifferential dp of ¢ is a set-valued operator from W into itself
defined by

2% € dp(z) = (%, v —2)w < p(v) —o(2), YveW (1.5)

and its domain is defined by D(0yp) := {z € W;8p(2) # 0}. For each £ > 0, we define

J¢ = (I +e8¢)~" which is called the resolvent of Oy, where I is the identity operator in

W. The Moreau-Yosida approximation ¢, of ¢ and its subdifferential d¢,. are defined by
z—Jfz

— 3 1 2 —
Pe(2) = Ulélpi; {Elz — vl + cp(’u)} ,  Ope(z) = = Vz € W. (1.6)

Concerning the Moreau-Yosida approximation and the resolvent J?, the following facts
are often used in this paper:

1
@e(2) = p(Jf2) + |z = Jzliy, Ve>0, VzeW, (L.7)

P(Jf7) S welz) S 0l2),  limee(e) = ¢l2), Ve >0, VzeW, (1.8)

10w (2)|lw < |[0p(2)| = inf{|w|w;w € 8p(z)}, Ve >0, Yz € D(0y). (1.9)

Especially, in the case that  is a bounded domain with smooth boundary, for every
z € H, define

1 }
o(z) = —Q—a(z,z) if z€V, (1.10)
+00 otherwise.
Then ¢ is a proper lower semi-continuous and convex function on H and dyp = —Ag in

H (ct. [5]).

2. Main result

We make the following assumptions on the data:

(1) £ is a Lipschitz continuous function from R? into R and g is a non-negative function
of C?-class from R into itself such that the derivatives ¢’ and g” are bounded on R.

(2) h e L=(Q), 6, € V N L™(R) and wy € D(—Ay).

Now we give the definition of a solution of (P).

Definition 2.1. A pair of functions {#,w} is called a solution of (P) if it satisfies the
following conditions {al)-(ad):



25

(a1) 6, w € WH(0, T, H) N L=(0, T V) N L*(0, T; H*(%2)).

(a2) 0'(t) +w'(t) — AoB(t) = h(t) in H for a.e. t € (0,T).

(a3) There exists a function £ € L*(0,T; H) with £ € 81y y(w') a.e. on Q such that
w'(t) + E(t) — vAgw(t) = f(B(t),w(t)) in H forae.t€(0,T).

(a4) 8(0) = By and w(0) = wy in H.

We denote the time-derivatives of § and w by #' and w', respectively.

Theorem 2.1. Under the assumptions (1) and (2), problem (P) has at least one solution
{6,w} in the sense of Definition 2.1 such that § € L®(Q) and w € W0, T;V) N
L=(0,T; H*(2)).

The above existence result will be proved in the sections 3, 4 and 9.

3. Approximate problem

In this section, we consider the following approximate problem (F.) := {(3.1)-(3.3)}:

O, +w,— Al =h inQ, (3.1)
Wy + BIB,N(wt) + Va(pe(w) =/ f(ga J;P,w) in Q7 (32)
9(05 ) = bq, w((): ) =wp in (, (33)

where ¢, is the Moreau-Yosida approximation of ¢ defined by (1.10), J¢, is the subdif-
ferential of ¢, in H and J? = (I +edyp)".

Definition 3.1. For every fixed € > 0, a pair of functions {f.,w,} is called a solution of
(P.) if it satisfies the following conditions (b1)-(b4):

(b1) 8., JPw, € W*2(0,T; H) N L*®(0,T; V), w. € WH*(0,T; H).

(b2) 0.(t) +wi(t) — Aob:(t) = h(t) in H forae. te(0,T).

(b3) There exists a function & € L?(0,T; H) with & € 8Iy,,v(w!) a.e. on @ such that
wl(t) + &(t) + vOp (we(t)) = F(8.(t), Jfw,(t)) in H forae te€ (0,T).

(b4) 8.(0) = 6 and w(0) = wo in H.

Theorem 3.1. Under the assumption (1), for any 8y, wy € V,h € L*(0,T;H) and for

each € > 0, there ezists at least one solution {0, w.} of (P:) in the sense of Definition
3.1.
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First, we construct a local in time solution of (P.) by using the fixed point argument.
To do so, prepare a set X&(My) defined by

6 W20, T; H) N L®(0,T;V), 6(0)=f,
~ J“’wEW”(OTH)ﬂL‘”(OTV) w(0) = wy,
€ o _
XT(MO) - (61 'U)) tg ]Lz(QTH) < 1 +M(), SupteOT 1V6( ) %I 1 +M0’
10" (3o o S 1+ Mo, SUDepo) \VJ¢ ( )% <1+ Mo

, (34)

where M, is a positive constant dependent on the norm of initial data and a fixed number
v, more precisely, My := |63 + 2(1 + v)|wo|%. We see that X7(Mo) is the convex and
compact subset of the product space C ([0, T]; H) x Cy([0,T); H). We fix & >0 and take
an element (6, @) in X&(Mp), and substitute 8, @ for 6, w in the right side of (3.2), namely

w' () + Olg (W' (1)) + vOpe(w(t)) 2 F(6(2), Jfw(t)) in H forae te(0,T) (3.5)

We denote by (P.)q) the system (3.1), (3.5) for each (8,w) € X5(My) and (3.3). For
every (f,w) € X% (M ), (3.5) can be written in the form

! -1 7y -
w'(t) = (I+0Luy)  (FOF), JE0() - vdp(w(®)))
where I is the identity in H. Noting that (I + 8I; )~ and Oy, are Lipschitz continuous
in H and the equation (3.1) is linear, we can find a unique solution {6, w} of (P:)(.z)-
Now, taking a number Ty with 0 < Ty < T, (determined later), we define a mapping S
from X5(My) into WH2(0,T; H) N L*>(0,T; V) by the formula

= Ht,wt if OStSTo,
5, 2)(t) = { Eegz)*o),w()%o)) T, <t<T,

where {#,w} is the solution of (P.)gq). As to this mapping S, we see the following
lemma:

Lemma 3.1. There exists Ty with 0 < Ty < T such that
S(X7(Mo)) C X7(Mo).
Proof. Let (§,17) € X5(M,) and {6, w} be the solution of (P) (3@~ From the assumption

(1), without loss of generality, we may assume that g and g’ are Lipschitz continuous on
R. Multiplying (3.5) by w' — g() in H and noting that

o (W), w(t) - 9(0) = SO ~ Lo B,
o (£),w'(t) - gB(2))) 2 0, VE() € Dy w(w'(£)),
o (eu(w(®), w'(1) ~ 90(1) = L lw(t)) ~ Ppelwlt)), 5(@(E)),
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WO + LFE), o) + 5B, @) + 5@
W' (&) + K: (B0 + 7200 +1),

we have

S () + ve(w(®) < i (BO + 200l +1) + v(0p.(0), o 00))

for a.e. t € (0,T), where K is a positive constant depending only on Lipschitz constants
of f and g, and norms | f|e and |g|e. Combining the above inequality with the following
inequalities:

Opcw(®),s@(B) = (~BoTru(®) o0(1)
= (VJ“’w (t),Vg(# )))
SV Isw (O + 5V

polw(®) + '—fil'&(z—*M—")

IA

IA

B+ Eo@E < 100E + lo@E
15(0) + fot 7' (s)ds

: + !m(o) + /: o' (s)ds ’

t _ i
< 206f% +2 /0 1 () 5ds + 2Jwol%, + 2 fo @' (5) %, ds
< 2006l3 + 2410|207y + 2wl + 200 L2 0,7m)
< 2 (WOG{ + Iwolé) + 4T (1 + Mo),
we see that ) p
5 W' (8) |5 + Vd—.soe(W(t)) < v (w(t)) + Ka (3.6)

for a.e. t € (0,T), where K, is a positive constant depending only on the Lipschitz
constants of f,g, norms |f|eo, |gleos 00!z, |wolz and constants v and Mp. Applying the
Gronwall’s lemma to (3.6), we obtain that

v, (w(t)) < (voe(wo) + K2T) el < (V!V'wgl%, + KgT)eT =: K3, Vtel0,T].

Hence by (3.6), the following holds:

-;—Iw'(t)lfq + v%cps(w(t)) < Kg + K; forae te(0,T).
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Integrating the above in ¢ over [0,7"] with (0 < 7" < T'), we obtain that
%/OT’ [ (£) J5dt + v (w(T") < voe(wy) + T (K + Ks), VI' € (0,T]. (3.7)
Next multiplying &' by (3.1) in H, we get that

%|9'( )% + 2dt]V0(t)[ < |w' @))% + (@)% for ae. t € (0,T).

Integrating the above in ¢ over [0,7] (0 < T < T") and using (3.7), we see that

1 T ! 2 1 Y12
5 [ 0@k + 51V < |V%m+/'mj w+/ (6) 2yt
< K0+2T’(K2+K3)+/0 h(t) |,
where
M,
Ko _4V%w+mv%m 5

Taking Ty with Ty < T such that
1 1
2T0(1+;>(K2+K3 +/ (t) |5 dt 5-2-
we have the conclusion.

Lemma 3.2. For any € > 0 and any 0y, we € V,h € L*(0,T; H), there ezists a solution
{6, w} of (P.) on the time-interval [0, To] such that 8, JPw € WH*(0,To; H)N L*®(0,Ty; V)
and w € WY2(0,Ty; H), where Ty is a (small) positive number determined in Lemma 8.1.

Proof. In order to get the conclusion of this lemma, we shall use the Schauder’s fixed
point theorem for the mapping S. First we show S is continuous in the topology of
C([0,T]; H) x Cy ([0, T}; H). We take a sequence {(6,,,)} C X5(Mq) converging to some
element (6, W) € X5(Mo) in the topology of C([0,T]; H) x Cy([0,T]; H). Let {f;,w;} be
the solution of (F.)s, ,) each for : € N. Then the couple {6;,w;} of functions satisfies

B(8) + wl(t) — Aobs(t) = h(t) in H for ae. t € (0,Ty), (3.8)
wi(t) + &(t) + vip.(wi(t)) = f(B:(t), Jfw;(t)) in H for ae. t € (0,Ty), (3.9)
6;(0) =6y and w;(0) =wp in H, (3.10)

where &(t) € Ol v(wi(t)) in H for a.e. t € (0,T;). By (3.8) and (3.9), two solutions
{Oi,.wi}, 1 = m, n, satisfy that

O (t) — O () + win (8) — wr(t) ~ Do(Bm(t) — 6u(t)) =0 in H (3.11)
and
w;n(t) w, ( ) + Em( ) nlt ) + Va(pa(wm(t)) - Va@s(wn(t))
= f(Om(t), JEDm(t) — f(On(t), JEWa(t)) in H (3.12)
for a.e. t € (0,Tp). For the sake of simplicity, we denote Wm, —wn, O~ bn; &m —&n, 0 b, — 0,

and Wy, — @y, by 0, 6, €, 9 and W, respectively. Multiplying (3.12) by w, ~ g(0) — (wl, —
9(6,)) in H and noting that
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o (wh(t) = wh (), W (t) = g(On(t)) — (w}(t) - 9(Ba(1))))
wh () — wh(8) = (wha(t) — wh(t), 9(Fm(2) — 9(Bn(2)))

> 2 luha(®) ~ w0l ~ o0 (0) - 9,
> 200} - L0
o (6nlt) — E(8) w0, (8) — 9B (®) — (wh(®) — 9Ba8)) 2 0

> 'C%(Ps(wm(t) - wn(t)) — ‘é‘ l@%(wm(t) - wn(i))[2 — E 'g(gm(t)) _ g(e‘n(t))lH

d 1 L% -
> et ~ R 2 _ _g_ 2
> dtsoe(w(t)) 252iw(t)la 5 0() 5

® (.f(gm(t)a ngm(t)) - f(gn(t), Jépwn(t))v 'LU,:n(t) - g(e_m(t)) - (w;(t) - g(gn(t))))
= (f(Bn (), JEDm(t)) = f(Ba(t), IEDn(t)), win(t) — w)(£))
— (F(Bm(), TEB()) — F(On(t), JE(2)), 9(0m(8)) — 9(6a(2)))

< 2ty (8) ~ wh(0)fy + | Bnle), T (8)) = F(E(0), T (D),

2 1 2

& 1| fOnlt), T8 (0) — FOu(0), TET O], + 5 [0(0(1)) = 9D,
< L) + 312 (1) R + lTea Lo o2
< gh0'(o) % + 303 (B + e ) + 00
we have that
1 d N .
SO + v o) < Ko (00 + OO+ OF)  (613)
for a.e. t € {0,T;), where Ky is a positive constant dependent on & > 0 and Ly and Ly

are the Lipschitz constants of f and g, respectively. By the simple calculation, we have

2ol = 20'(0), 00) < [0 OF + [BOL (3.14)

It follows from (3.13) and (3.14) that

9 Lol + vee(o@) ) < Ks (B0 + 17750)f%) + K (Gho s+ ve.o))
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for a.e. t € (0,Tp), where K5 and Kj are positive constants. Applying the Gronwall’s
lemma to the above inequality, we have

L0l + oo @) o5 {1 [ (001 + 00 e}, vie T

This implies that
To / = .
(o) <25 [ (0B + 1P ) dty Vee 0T

Then (3.13) gives

S0/ + v 306 < Ko {00 + 20+ [ (1605 + 1770 01 )

for a.e. t € (0,Ty), where K7 is a positive constant. Integrating the above in ¢ over [0, Ty},
then

L 0t + v (@) < Kr(1+ T5) | " (B + 1ol ) dr

Taking n,m — +00, we see that
To / o .
K1+ T) [ (1) + 1720 ) dt -0

This shows that {w},} is a Cauchy sequence in L*(0, Ty; H). Hence there exists a function
w € W12(0,Ty; H) such that
wy, = w in C([0,Ty); H) and w), —w' in L*(0,Tp; H) as n — +oo. (3.15)

For every fixed ¢ > 0, from (3.15) and the following inequality

To Ty
L 100t hdt = [ 1000 (wn(t)) - G (0) pd
1

we see that {9y (w,)}2; is bounded in L?(0,Ty; H). Putting

o
an(t)lfth

&u(t) == —wl,(t) — vOp:(wa(t)) + f(Ba(t), JEWa(t)) in H for ae. t € (0,Tp),

we see that {,(t) € 05,y n(wy,(t) in H for ae. t € (0,Tp) and {&.} is bounded in
L*(0,Ty; H). We may assume that for a subsequence {ny}, {£,,} converges weakly to &
in L2(0,Ty; H) as k — 400 and £ = —~w' — v8p.(w) + f(, J#%), because J#b, — J@
in C([0,Ty]; H) as n — +oo. For simplicity, we use again n instead of n;. Moreover, we
can easily show that

limsup

To T
n—+o0 JO 0

(Enlt), wh(H)dt < [ (60, w 1), (3.16)
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because we see that
[P uiinas = [ (~ul0) ~ v0pulwn(®) + F0a(0), Tomn(), 1))
= = [ kOt — v (a(Te) + v ()

+ /OTo ( F(Bu(t), T, (1)), w;(t)) dt,

then
> T(; 7 . . fi2 . .
limsup | (£a(t), wn(D)dt < —liminf fwy s ) — v i inf e (wn(To)) + vepe(wo)

To ~
+ lim [ (f(6u(t), JEmn(1)), w) (1)) dt

n—+00 Jg

IA

~ W[ 20,15 = ¥ (w(To)) + vpe(wo)

+ /0T° (£(82), J2 (1)), w' (1)) dt

= /GTO (—W'(t) — vdp(w(t)) + F(O(), JEw(t)), wf(t)) dt
= [, won

Since I, n(-) = Iz n(-) on H in the sense of Mosco (cf.[4,12,17]) as n — +00, by the usual
monotonicity technique with the Mosco convergence and (3.16), we have the inclusion
&(t) € Bl n(w'(t)) in H for a.e. t € (0,Tp). Finally, we have the following:

W (8) + E(t) + B (w(t)) = FO), JPw(D)), &) € Ogyun(w'(t)) m H  (3.17)
for a.e. t € (0,Tp). Multiplying (3.11) by §" in H with the following calculations
o (B,(t) - 6L(8),0,(8) — 6L () = (0'(),0) = (OO,

o (WD) = (), B(t) — 4(0) = (@(0), 8)) 2 30O, = 5O

o (=0l (t) — 8a(8)) 00)  B2(8) = (~DoB(0), 0)) = 5 VOO,

we have that p
013 + Eivé(t)ﬁ{ < W@ for ae. t € (0,Tp). (3.18)

Then on account of (3.15), the above inequality implies that {f,} is a Cauchy sequence
in W2(0, Ty; H) N L®(0,Ty; V). Therefore we may assume that there exists a function
6 € W12(0,Ty; H) N L*(0,Tp; V) such that

8, — 6 in C([0,To]; H) and 6, — ¢ in L*(0,Tp; H) as n — +oo. (3.19)
It follows from (3.15) and (3.19) that
—Agl, = —Agf weakly in L?(0,Ty; H) as n — +oo.
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Hence the limit functions § and w enjoy
O'(#) +w'(t) — Aeb(t) = h(t) in H for ae. t € (0,Tp). (3.20)

Therefore from (3.17) and (3.20), the pair of limit functions {f,w} is the solution to
(P.).0) on (0,Tp) with the regularities §, Jfw € W20, To; H) N L=(0,T; V) and w €
WL2(0,Ty; H). Here, extend # and w on [0,Ty) onto the time interval [0, 7] by 6(T0)
and w(Ty). Then S(8,@) = (§,w) and S is continuous in the topology of C(0,T}; H) x
Cyw([0,T); H). Hence we can apply the Schauder’s fixed point theorem with respect to
the mapping S in X&(M,) to find a fixed point (8, w) of S which is a solution to (P.) on
[OsTO]- <> »

Lemma 3.3. For every fized ¢ > 0, the solution {8, w} of (F:) is unique on any time
interval [0,7") (0 <T' < T).

Proof. Let {0, wy} and {#,,w,} be the solutions to (P.) on [0,7"] (0 < T" < T) with
the same initial data, namely, they satisfy the following equations:

.(t) + wi(t) — Aofi(t) = h(t) in H for ae. t € (0,T), (3.21)
wi(t) + &(t) + v (wi(t)) = F(8:(t), JEw;(t)) in H forae. te(0,T), (3.22)
0;(0) =6y and w;(0) =wo in H, (3.23)

where &(t) € 0l .~ (wit)) in H for ae. ¢t € (0,T),7 = m,n. By the above equations,
two solutions {6;, w;}, i = m,n, satisfy that

O (t) = (1) + Wi (t) — wr(t) — Bo(Om(t) = On(t)) =0 in H (3.24)

and
W (8) = wiy(8) + Em(t) — €a(t) + vOPs(Win(t)) — VO (wa(t))

= f(Om(t), JEwm(t)) = F(Onlt), JEwn(t)) in H (3.25)

for a.e. t € (0,T'). Then by the same calculations to get (3.13) and (3.18) as in Lemma
3.2: (3.24) x 6 and (3.25) x {w}, — 9(6n) — (wh, — 9(6:))},

o (wi(t) — wy(t), win () — 9(0m(t)) — (wr(t) — (6 (2))))
= [wjn() — wn (@) — (W) = (), 90 (1)) = 9(6a(2))
[wha(8) = wi (&) — 19(8m(®)) = 9(6a (D)

[ (8) 3 — L318(t) &,

>

WG W

v

o (n(t) - §n(t)3w§n(t) = 9(0m(t)) — (wr(t) — 9(6a(t)))) 2 0,

. .12.1wg(w<t))@ = (I (1)) < e (1),
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o 2IV(Bn (1) ~ V(6D = 519 On() VOn(D) = 4 0 0) VL)
< 14/ On(£) V0 (2) — & B (D) V0 (O + 19/ Or(8))V6a8) = 8 (0a(8)) VO 1)y
< 19 (O (D)4 V0 (t) ~ V0, (0 + V8 (6) 19 Or(®)) = 9/ Gu(t)) s
< 19/ (6n O)3IVODN + L V0.0 )
< K (V)3 + 00),
o (Bpu(wn() = Ope(wa(t), Wn(t) — 96n(1)) — (wh(t) ~ 90 (1)
= (00: (wm(t) = wn(t)), wh(t) — wh(8)) = (Bpe(wn(®) = wa(t)), 9(0m(8)) - 9(0u2))

> & wnlt) — wal8)) = 5 VT2 () = () — 5 [V 9(6m(2)) — Val0u)

&I& &l@~

Vv

P (B(1)) — :((2)) — Ks (IVO®) + 16(0) %),
e O 7 8) = ) 2,510 o0~ 0~ o)
= (F(On(0), TEun(t)) — F(a(8), TEun(8), i) = w5 2)
— (FBlt), TE0m(2)) = £(On), T2 (2)), 90 (1)) = 9(8a(1))
< 2uty(t) — (O + 1 0m(8), TEum(®) = F60u(0) TFua)
4 21108, T00(0) ~ 6000, TEwalO)fs + 5 90 (8) — 9l
< Ll + 323 (Bl + 172000) + 00
1

< SO + Ko (100 + b)),
we deduce that

1010 + v g pe(0(8) < vl (0) + Koo (0O + VAP + [0 f) (326

and

GOR + SV < ik (3.27)

for a.e. t € (0,T"), where 0 =6, — 0, ¥ = w, — w, and K, Kg and K, are positive
constants independent of € > 0 and L, is a Lipschitz constant of g. Computing (3.26) +
(3.27) x %, we have that

(@) 10O+ {voe0(0) + V0N | < ve0@)+Kus (00 + [0(0f)
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for a.e. t € (0,T"). Making use of (3.14) for both w and 6, we have the following
d 1 oy 2 1 ~ 2 ~ 1 pat 2 ]. ~ 2 ~
& (2O + 0@ +ve ()} < Kus (O] + 0O +ver@()

for a.e. t € (0,T"), where Ky, is a positive constant. Applying the Gronwall’s lemma to
the above inequality, the uniqueness follows at once. ¢

Lemma 3.4. For every fized € > 0, the solution {8, w} of (P.) can be extended in time to
the interval [0, T).

Proof. Let T* be the supremum of all Ty € [0, 7] such that (P.) has a (unique) solution
{6, w} on [0,Ty]. By Lemma 3.3, {#,w} is uniquely determined on the interval [0, T*).
Let Ty be any number such that 0 < Ty < T*. The solution {#, w} satisfies that:

0'(t) + w'(t) — Apb(t) = h(t) in H, (3.28)
w'(t) + £(t) + vdp(w(t)) = f(6(¢), JEw(t)) in H, (3.29)
6(0) =6, and w(0)=w, in H, (3.30)

where £(¢) € 8lp ~(w'(t)) in H. Multiplying (3.29) by w’ — ¢(#) and (3.28) by ¢’ in H
with the following calculations:

o (u/(0) (1) — g(6(2)) > /()3 ~ l9(0(e)
o (€(1),w(t) ~ 9(01))) 2 0, VE() € Doyl (1)),
o (Qplolt), D) - 900) = Lou(w(t) - Golu(t), 90(0).
o (B0, (w(®), 900 < pulw®) + L2,
o (F(O0), Tu(d)), w(d) - 9(6(9)
= (F(002), TEw(2), w(2)) = (£(600), JEw(d), 90(6)
W O + 60, TEw®) s + 5100, Jew®)fh + 56O

' (O + Kz (1000) 5 + |T2w(@)} +1),

<

IA
N i e

we have that

SO + v pee(wl®) < Kis (001 + lw@ly +veuw@) +1)  (331)

and
1

SO+ 5 VO < [ (0 + AL (3.32)
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for a.e. t € (0, To) respectively, where K, and K3 are positive constants. Computing
(3.31) + (3.32) x 3, we have that

ggwf(t)az S + 5 {SIVOE) + veew(e))

< Ky (001 + lw(®) i + veoe (w(t)) + [B() [ + 1) (3.33)

for a.e. t € (0,T;), where K14 is a positive constant. Using (3.14) for both 6 and w with
the suitable arrangement, we have the following:

%E(t)g[ﬁs (BO +hOG +1) foraetcOT), (339

where 1 ;
E(t) := glﬂ(t)l%, + le(t)lfq + v (w(t)) for a.e. t € (0,T)

and K5 is a positive constant. Applying the Gronwall’s lemma to {3.34), we obtain that
¢
E(t) < (E(O) + K5 /0 lh(t)@,czHKwTo) efisTo i ¢ [0, Tp). (3.35)
Integrating (3.33) in ¢ over [0, Ty}, then by (3.35) we have that

T W g [ 10O B+ 5 V0T + v w(T)

< o futwe) + 0y + [ e 1) (3.:36)

where Ky is a positive constant. Noting that (3.36) is valid for any Tp € [0,7™) be-
cause the value of right hand side of (3.36) is independent of Tp, and |[(Jfw)'|20,mm) <
lw,ILZ(O,To;H)’ we obtain that

8, 2w € W30, T* H) N L®(0,T% V) and we W"*(0,T* H).
Therefore the following limits exist:
lim A(¢) =: 6* and lim w(t) =t w* in H.
t ST t ST

Hence by the local existence result again we see that {6, w} can be extended to the time
beyond T*. It contradicts the hypothesis of T*. Finally, we obtain that 7' =T". ¢

Proof of Theorem 3.1: It follows immediately from Lemmas 3.2-3.4. $
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4. Convergence of approximate solutions

In this section we discuss the convergence of approximate solutions. Let {f.,w.} be
the solution of (P;) obtained in Theorem 3.1, namely, it satisfies that

:9;(75) +wl(t) — Agfe(t) = h(t) in H ae t € (0, T, (4.1)

W (8) + Ol o (w (8) + 1Oe(n(8)) 3 F0.(8), JPwa(®)) i H et € (0,T), (4
6.(0) =6y in H and w.(0) = wy in H. (4.3)

We need some uniform estimates of approximate solutions {f.,w.} to discuss the
convergence.

Lemma 4.1. Any approzimate solution {0, w.} satisfies
1600 |Welow < My + M{T,
where My = [6p|oo + |hloo + |g]oo + N.
Proof. Define a function p on [0, T] by
p(t) := My + Mt

Noting that |wl]e < |glee + N holds for any £ > 0 by the definition of a solution of (F,),
we observe that

(0: =p)' = Bo(fe —p) =h—w - M; <0 inQ. (44)
Multiplying (4.4) by [f. — p]* in H, we have that

ld

57 0=(t) = PO [ + V[6:(2) — p(O)] 5 <O forae. t € (0, 7).

Integrating the above inequality in ¢, we see that
16:(8) — p&)] 5 < {[60 — p(O)]* [ =0, Vee[0,T].
This implies that 6. < p < My + M{T. On the other hand,
(=0 —p) = Do(~b: —p) = ~h+w, - M <0 inQ. (4.5)
Multiplying (4.5) by [—6. — p|* in H, we have that |

1d

5 g [ 70:(8) = PO [ + [V[=0:(t) — p(O)] % < 0 forae. t € (0,7).

Integrating the above in t, we see that

[=0:(t) = p)] "1 < [~ —p(O)*[}; =0, Vee[0,7],
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which gives 6.(t) > —p(t) > ~M; — M;T. Hence we complete the proof. {

Lemma 4.2. There exists a positive constant Ry independent of ¢ > 0 such that
w3200, + 10201,y + 1208 [L20.mm) < R

and

sup |V8.(t)|% + sup [VJfw.(t)|% < Ry.
te[0,T) t<[0,T]

Proof. Multiplying w. — ¢(8.) by (4.2) in H and noting that
(€.(1),wi(t) — g(6:)) >0, V& (t) € Blp, @y n(wi(t)) in H forae. t € (0,T),
we have with the similar calculation to obtain (3.31)

()1 + v e(e(t)) < Ny (1000 + e ) + 1) + v@p(ws(t)), 9(66(1) (46)

for a.e. t € (0,T), where N, is a positive constant independent of ¢ > 0. Noting that
0. (we(t)) = —AgJPw.(t) in H and the boundedness of g, we have

(G (we(0), 96:(8) = (VIFw.(), Vo(6.(0)
SV wet) s+ 500D

IA

o) + (V0.0

AN

for a.e. t € (0,T). From the above inequality and (4.6) we observe that

%m;(t)!%z + vd%soe(we(t)) < Ny (10: ()% + V6. (8) 5 + lwe(®)ff + 1) + v (we(t)) (47)

for a.e. t € (0, T), where N, is a positive constant independent of ¢ > 0. Next, multiplying
(4.1) by 6. and —Af, in H, we have

SO + 3 SIV0Of < w0 + MO (4.9
and 1 d .
L0 VA0 + 5100 < w0 + b (4.9

for a.e. t € (0,T), respectively. Computing (4.7) + (4.8) x 1 + (4.9) x g, we infer that
1 / 2 E ' 2 i_ 2 __d_ l 2 }
L0, + il + 51800l + 5 {00 + veun()
< Ny (10:(2) 3 + V0.0 + lwe(®) iy + 1) + vipe(we() (4.10)

for a.e. t € (0,7T), where Nj is a positive constant independent of ¢ > 0. By (3.14) with
some suitable arrangements in (4.10), we deduce that
d

ZB() < Nu(E(®)+1) forae.te(0,T), (4.11)



38

where Ny is a positive constant independent of € > 0 and

1

1 1
8 (O + GIVO)r + lwe@ +vee(we(®)), vee[n,T) (412)
Applying the Gronwall’s lemma to (4.11), we have the following:
E(t) < (E(0) + NyT)e™T, vt e[0,T]. (4.13)

Combining (4.12) with (4.13), we can find a positive constant Ns independent of € > 0
such that

sup lvae(t”?‘l + sup ]v‘]fwe(t)‘%{ < Ns. (4~14)
1€[0,7] 1€(0,7]

By (4.10) and (4.13), we can find a positive constant Ng independent of € > 0 such that
w20y + 105 Fe oy + [A0Bel 2oy < Ne- (4.15)
By (4.14) and (4.15), put R; := N; + Ns to get the conclusion. ¢
Lemma 4.3. There exists a positive constant Ry independent of € > 0 such that
8ag @Dl < R (1080 +1)  for a.e. tE€ O,T),
Proof. From the fact that
Dog(0:()) = g'(8:(1)) Aobe () + g" (B (1) | VE.(2) [,

it follows that
[og(B-(4)) s < Ny (IV0:(8) 41 + [Dobe (D)) (4.16)

for a.e. t € (0,T), where Ny := 2max{|¢’|co, [¢"|cc}. By the Gagliardo-Nirenberg interpo-
lation inequality (cf.[18]):

1 1
Valie) < Clzling l2l%, V2 € Q)N HY(Q)
and Lemma 4.1 and 4.2, the following inequalities hold:
*VQE (t) ﬁf‘(ﬂ) O4|95(t) %{2((1){05“)@0
< CH(18:8)% + VO + [ AoBe () ) 16:(8) 2
< Ns(|Aof(®)} +1) forae te(0,T),

IN

where C and Ny are positive constants independent of ¢ > 0. In virtue of (4.16) we can
find the desired constant Ry. ¢

Remark 4.1. In the case that } C R?, we see that the above constant Ry is independent
of both parameters € and N. By the Gagliardo-Nirenberg interpolation inequality for
2-dimensional case L

|2y < Clzly 218, VzeV,
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and Lemma 4.2 we can get the following inequalities without the L*-estimate of 6, ob-
tained in Lemma 4.1:

Bog(B: D)% < 219 (0:(5)) Acbe () + 219" (B (1)) VO (D) 3
Ny (1808 (8) 3 + | V0 () o)

N7 (|80 ()] + CH V6. ()3 V6 () )
CUN.R} + N7 (1 + C*RY)| Ao (0) 5

Ny (|Adbe()f3 +1)  for ae. t € (0,T),

INIA A A A

where C' and Ny are positive constants independent of € and N.
Lemma 4.4. There ezists a positive constant Ry independent of € > 0 such that

|V IEw, 720,10y + SUP |AgJfw:(t) |3 < Rs.
t€[0,T7

Proof. Multiplying (4.2) by dp.(w! — g(6:)) in H and note that
o (wl(t), 00 (wi(t) — 9(8:(2)))) = (wi(t), B (wi (1)) — (wi(t), Ope(9(0e(¥)))),
o (wl(t), 8- (wl(2)) = (wi(t) — JEwL(t), Bpe(wl (1)) + (JEwL(2), Opc (wi (1))
= ¢|8pe (wl () i + [V Il ()
> |V Jzwe(t)
o (w.(1),Bp.(9(8:(1) = (VJIEwL(t), Vg(bc(t)))

VI£w, ()| + [Va(6:(0)l&

IA

N PR (R N

IV IEw, (@)% + 191561 V0= () 7

IN

IA

Vw0l + Mo,
o (600 B (H) — 90 (1) 20, V(D) € (1),
o Bpulwn(t)), 00w ®) — 9(6.(0)
= (0 (1(2)), Bpe [t (1)) — (ipe(we(1)), Do (4(2)
= 2 il )y — @ e0)), Bl ),
o (Bpe(w:(t)), e (9(8:(1))))

< 20w )l + 510000
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e (1)) By + 51000 8.

8w () + 51— Bag O (83
10 (e + 2 (18080 +1),
o (F(8:(8), T#wo(t)), Dpa(wl (1) — (8 (8))

= (F(B:L8), TEwe (), e (wh(6))) — (F(0.(8), T2we 1), e (9(6:(0))),
* (f(ﬁg(t), was(t)):aﬁps(wé(t)))

IA

iR S N N

<

VIR (B + |V F0.(0), TEw )

IA

IA
e e el R

|VI2w (@) + Nux ([V0:(6) % + [V I (we () [

IA

V2w (&) + Nuy (V8 + ve(we(t)))
< IVIRW (@) + Ve,

o (F(O.(8), J2w.(0), B (5(6.(1))
< 510, TEwe ) + 5100. (610 ()
< Nus (o0 + 120 + 1D B +1)

< Nug (206 (0 + 1),
we have with the help of Lemmas 4.2 and 4.3 that
1 vd
SIVIPUL O + 5 210w )l < Nos (18060} + Ppe(we®)f +1)  (417)

for a.e. ¢ € (0,T), where N; (i = 10,11,12,13,14, 15) are positive constants independent
of € > 0. Moreover, multiply (4.1) by —Agf. to have

1d
2dt
for a.e. t € (0,T). Integrating (4.18) in ¢ over [0, 7] and using Lemma 4.2, we have that

V8.0 + 51001 < (Ol + (O (4.18)

T T
/G | AoBe (£) Byt < |6o]% + 2R2 + 2 /0 IB(t) 2t =: N, (4.19)
Applying the Gronwall’s lemma to (4.17) and using (4.19), we obtain that

(2(N15N15 + N15T)
v

2NisT
v +lw01%{2(9)) eXP{ 2

sup |9, (w,(t)) J?I <
te[0,77]

} = Ny, (4.20)
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Again by (4.17), we have with the above estimate (4.20) that
T Ry 2 .
./0 IVwaE(t)lHdt < l/lwt)in(Q) —+ 2N15(N16 -+ N17T + T) = ng.

Putting Rz := N7 + Nig, we complete the proof.

5. Proof of Theorem 2.1

We are now in a position to give a proof of Theorem 2.1.

Proof of Theorem 2.1 Let {6, w.} be the solution of (F;). By the uniform estimates
in Lemmas 4.1-4.4 we can choose a sequence {¢, } tending to 0 as n — +oo with functions
0 € WL2(0,T; HYNL®(0,T; V)NL2(0, T; H*(Q)) and w € WL2(0, T; V)NL*(0, T; H*(QY))
such that ‘

f,:=6,, —6 in C([0,T};H) asn — 400 (5.1)

and
JE wy = Jf we, = w in C([0,T;V) asn — +oo. (6.2)

It follows from Lemma 4.4 and (1.6) that
(wa(t) = JE wa ()| < €n)00e, (Wa(t))|r < €nRa, VE€[0,T).

This implies that
w, =+ w in C([0,T};H) asn — +o00. (5.3)

Now, let n — +o00. Then it follows that
8., (wy) — Bp(w) = —Aqw  weakly in L*(0,T; H) as n — +oo.
Here, we observe that the function
£a(1) i= —w! () — vOpe, (wa(t)) + F(Ou(t), JEwn(t)) in H forae. t e (0,T).

satisfies that &,(t) € 8o,y n(w,(2)) in H for ae. ¢t € (0,T) and {&} is bounded in
L2(0,T; H). Therefore there exist a subsequence {n;} of and a function § € L*(0,T; H)
such that

£, — & weakly in L*(0,T; H) as k — +oo.

Clearly ¢ = —w' + vAqw + f(6,w) in L2(0,T; H). Now let us show the inclusion £(t) €
Olo(sy,n(w'(t)) in H for a.e. t € (0,T). In order to do so, we employ the usual monotonicity
technique. Since Iy, n(-) — Ig.n() on H in the sense of Mosco, we have only to show

T

0

limsup [ (6u, (6), 0, ()it < [ (€(2),w/ ()t (5.4)
k—+oo YO
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This can be proved as follows:

tmsup [ (6, (), 1, (1)

k—+-00
.. 2 . P i
< —liminf jup, [Zoorm + v B0 e, (wo) — viminfoe, (wn, (T))
T
+ tm [ (f(8n,(2), JE, wn, (), wh, (£))dt

k—+oo JO

< 10/ Bagin + 5 Vuolly — 21T+ [ (£(00),w0(8), w®)i

= [ €0, w o).
Therefore we obtain £(t) € 8y n(w'(t)) in H for a.e. t € (0,T) and
w'(t) + £(t) — vAww(t) = f(Ot),w(t)) in H forae. t € (0,T).

By using regularity w € L*(0,T; H*(Q2)) and Lemma 4.1, we obtain w € WH*(Q). Since
the equation (4.1) is linear, it is easy to discuss the convergence for (4.1) and obtain that

@' (t) + w'(t) — Aof(t) = h(t) in H forae.t€(0,T).

This completes the proof of Theorem 2.1. $

Remark 5.1. In the case of & C R?, from Remark 4.1 it is possible to take N — +0co in
IToy,n (-) and hence the solutions obtained in the above satisfy the following system (PY:

. Bt + we — Agg = h(t, CL') in Q,
(P)! wy + alg('wt) - I/Ao'w > f(g, lU) in Q,
9(0’ ) = 007 'lU(O, ) = Wy in Q:

where .
o= 1 Lo 20

and 0Iy(w,) is its subdifferential:

@ if we < g(g),
Olp(we) = { (—o0,0] if w; = g(6),
{0} if we > g(9).

(P)' is the same system that we have already discussed in [3]. We note here that if N is a
sufficiently large positive number, Iy x(-) is close to Iy(+). Therefore we can consider that
the problem (P) is one of approximate problems of {P)’, because the indicator function
Iy n(-) can be regarded as an approximation of (-).

Remark 5.2. In the case of @ C R3, we are very interested in the situation when the
fixed large number N goes to 4+0co. In that case we can not obtain the uniform estimate
in Lemma 4.1. This unables us to discuss the convergence of approximate solutions.
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