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Nonlinear Schrodinger equations with
superposed delta-functions as initial data

HIERY - HEHEXEZER 46 B4 (Naoyasu Kita)
Faculty of Education and Culture, Miyazaki University

Abstract

We consider the initial value problem of the nonlinear Schrédinger equation
with superposed §-functious as initial data. We treat this problem case by case, i.e.,
the cases in which the initial data consists of single, double and triple é-functions,
respectively. In particular, when the initial data consists of double or triple ¢-
functions, the solution receives the generation of new modes which is visible ouly in
the nonlinear problem (see section 3 aud 4).

1 Introduction
We consider the initial value problem of the nonlinear Schrddinger equation like

i = —8%u + N (u),

u(0, z) = (superposition of d-fuuctions).

(NLS) {

where (¢, 2) € R x R, &, = 9/0t, 0, = 0/, and the unkuown function u = u(f, ) takes
complex values. The gauge invariant power type nonlinearity A'(u) is given by

N(w) =luflu with1<p<3.

The nonlinear coefficient A takes arbitrary complex number. In particular, if ImA < 0,
uonlinear term causes dissipative effect. We mainly treat this initial value problem by
assunting that u(0,2) = podo, w(0,2) = pedo + 118, or w(0,2) = pedy + fh106e + 110106
where ¢, denotes the well-known point mass measure supported at z = a € R and .
g {7,k = 0,1) are any complex number.

From the physical point of view, the cubic nonlinearity (i.e. p = 3 which is excluded
i our assumption for mathematical reason) frequently appears. For exauple, (NLS) with
A€ Rand p = 3 is said to govern the motion of vortex filament in the ideal fluid [10]. In



fact, letting k(t, ) be the curvature of the filament and 7(¢, 2:) the tortion, we observe that
u(t,z) = K(t, x)exp(i f§ 7(¢,y) dy) (which is called "Hasimoto transforn” [10]) satisfies
(NLS), where z stands for the position parameter along the filament. To our regret, our
argument is slightly away fromn the cubic nonlinear case. However, if one allows us to treat
the solution as a fine approximation of the physically important case, one can imagine the
time evolution of vortex filament with the locally beuded initial state, e.g., £(0, ) = §,.

The Cauchy problems with measures as initial data are extensively sutudied for various
kinds of nonlinear evolution equations. As for the nonlinear parabolic equation,i.e., dyu —
Pu+ JulPlu = 0 with u(0,z) = &, Brezis-Friedman [2] specify the critical noulinear
power concerning the solvability. They prove that, if 3 < p, there exists no solution
continuously connected with the é-function at ¢ = 0 in the distribution sense and that, if
1 < p < 3, it is posibble to construct a solution with a general measure as initial data.
Their argunent relies on the comparison principle and the smothing property of the linear
diffusion. For the KdV equation, Tsutsumi [23] constructs a solution by making use of
Miura transformation [17} which deforms the original KdV equation into the modified oue.
Recently, Abe-Okazawa [1] have studied this kind of problem for the complex Ginzburg-
Landau equation. The ideas to construct solutions in these known results are based on the
strong smoothing effect of linear semi-group or the nonlinear transformation of unkuown
functions into the suitably handled equation. In the present case, however, the uonlinear
Schrédinger equation have neither the useful smoothing properties like the heat equation
nor the transformation of Miura type. Therefore, it is still open whether (NLS) is solvable
when the initial data is arbitrary measure except for é-functions.

We here remark Kenig-Ponce-Vega's work [15]. They proved the ill-posedness of the
nonlinear Schrodinger equation with w(0,2) = §; and 3 < p. The situation is very
sinilar to the nonlinear heat case introduced above. They proved that (NLS) possesses
either no solution or more than one in C([0,T]; S'(R)), where S’(R) denotes the class
of tempered distributions. In their work, the Gallilean invariance of (NLS) plays an
important role, where the Gallilean invariance means the fact that, if u(Z, z) is a solution
to (NLS), un(t,2) = e ™ eMoy(t, 2 — 2tN) also satisfies (NLS). Theuw, the obvious
identity 8y = €*¥*8, determines the formula of « and the super critical power yields the
divergence of the phase at ¢ = 0. This rough sketch of their argument lets us expect that,
for the subcritical case, it is pssible to construct a solution continuous at ¢ = 0.

There are large amount of articles concerning the local or global well-posedness for
the nonlinear Schrodinger equations in the L*(R) or H*(R) (s > 0) frame work (see
[5, 6, 8, 11, 12, 13, 18, 19, 21, 22| and references therein). Roughly speaking, this is
because these function spaces works well via the conservation laws, energy estimates and
Strichartz’ estimates [20, 24]. On the other hand, since the present situation is away from
the well-known fraine, we require another method to construct a solution. Our idea to
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solve (NLS) is based on the reduction of the original problem into the ordinary differential
equation (ODE) system as in the following sections.

We prove that the solution is explicitly obtained when the initial data consists of single
S-function (see section 2). Furthermore, we observe that, when the initial data consists of
double (or more) d-functions, the superposition of infinitely many linear solutions imme-
diately appers in the solution to (NLS) (see section 3 aud 4). In this paper, we call this
feature "the generalization of new modes”. Let us state our main results case by case.

2 The case u(0,x) = pedo
This case simply gives an explicit solution. Namely, the solution to (NLS) is given by

(2.1) uft, z) = A(t) exp('it8§)50,

where exp(itd?)8y = (4dmit)~1/2 exp(iz?/4t) and the modified amplitude A(t) is

2| polPt .
Jtg EXD (—_-—‘E-O—I—Mm[“(p“wzt) if ImA =0,
_ i3 -p) |
(22 AW = 2(p — 1)ImA|polP? e
o (1 it 3 —p Ho |47r¢[*<1>-l>/%> GRSt £ 0.

In fact, by substituting (2.1) into (NLS), we have the ordinary differential equation (ODE)
of 44(2‘) :

dA Iy
23) i = Aldrt| W=D Ar(4),

A(0) = po.

To solye (2.3), we first multiply A(?) on both hand sides of (2.3). Then, we Lave %I Al =
‘ G
2l4mt] " D2 Im A AP and so
: -t -1/p-1
(2.4) IA()] = (g%r(p—v — (p—1)TmA / || ~e-1/2 dr)
40

The integral in the parenthesis of {2.4) makes a sense since p < 3. Substituting (2.4) into
(2.3) aud solving the simple ODE, we obtain (2.2). Note that ImA > 0 implies blowing-up
of A(t) in positive finite time.

3 The case u(0,x) = podg + 10,

In this section, we observe that the superposition of §-functions causes "the mode genera-
tion” for ¢ # 0. Before stating our results, we introduce several notations. Let T = R/27Z
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where Z stands for the set of integers. Throughout this section, the Lebesgue space LI(=

27
L4(T)) denotes the class of mesureble functions on T with || /|5, = / f(8) d8 < oo.
Also, the Sobolev space H*(= H*(T)) is defined by

H® = {f(6) € L% || fl%: < oo},

where || £ = S (1+[k])*|Ce[? with Gy = (27) / F(8)e™™® dB. Let 2 be the weighted
keZ
sequence space defined by

G = {Arhkezs { A}zl = 20 (14 k)* | Aef® < oo}
keZ
For the simplicity of description, we often use { Az} in place of { Ax}kez. Then, our results
are
Theorem 3.1 (local result) For some T > 0. there exists ¢ unique solution to (NLS)
described as
(3.1) u(t,z) = Y Ax(t) exp(itd?)dgq,
keZ
where {Ar(t)} € C([0,77; €2) N CH{(0,T); 63) with Ag(0) = po, A(0) = p1 and Ax(0) =0
(k#£0,1).
Remark 3.1. Let us call A(t) exp(it0?)dx, the k-th mode. Then, (3.1) suggests that new
modes away from 0-th and first ones appear in the solution while the initial data contains
ouly the two modes. This special property is visible only in the nonlinear problem.

Remark 3.2. Reading the proof of Theorem 3.1, we see that it is possible to generalize the
initial data. Namely, (NLS) is solvable even when point masses are distributed on a line at

equal intervals, i.e., the initial data is given by u(0,7) = 3 16k, where {ju} € ¢1. In this
keZ
case, the solution is described similarly to (3.1) but {Ax(0)} = {u} for £ € Z. The decay

condition on the coefficients is required to estimate the nonlinearity. This is because we
use the inequality like [NV (v)| 2 < Cllvl5mt vllLe where v = u(t, §) = ¥, Age~#0eika)/4t
and @ € [0,27] (see Lemma 3.4 below). Accordingly, to estimate |Jv||=, we require the
decay condition of {Ag}.

Remark 3.3. The iufinite summation of (3.1) converges in L2, ((0,T]; L=(R)), siuce, for
any 7 € (0,77,

sup Jult, =m) < (4m7)"1/? nggTZ; At
< CHEmrT) I { At Hl L= o,msen)

< 0.
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This implies that the nonlinearity N (u(f, z)) makes a sense as a function for { # 0. We
also note that u(t, 2) € C([0,T); S'(R)).

Remark 3.4. The representation (3.1) is derived by the following rough consideration.
Since the nonlinear solution is first well-approximated by the linear solution u; (¢, ) =
exp(itd?)(podo + 11168, ) around t = 0, the second approximation us(t, z) is given by solving

(32) (iat -+ &')ﬁ)ug = N(Ul)
N((Qﬂ.)—l/zeigzz'—’/ALD(‘uO + #16‘1’“&.6%‘2/4‘5))
|4mg’~(p41)/2(2ﬁ)-1/2€m2/4zDN(I + e—mema/g),

i

wlere we have used uy = e/ DFel* Ay (0, 2), Df(t,x) = (2it)™™2 f(t,x/2t) and F
denotes the Fourier transform. Let us replace az by #. Theun, the nonlinearity in (3.2) is
regarded as a 27-periodic function of 8, and hence the Fourier series expansion yields

(the right hand side of (3.2)) = ]47rtl”(”’1)/2(27r)71/2e”2/4t[) > By (t)eitka)* 4t g=iko
keZ

= |dmg| P12 37 Bi(t) exp(itd2)0kas
keZ
where By (t)e!(k)*/4 is the Fourier coefficient. By the Duhamel principle, one can imagine
that the solution to (NLS) has the description as in (3.1).

Our next interest is to see the global solbavility of (NLS). The sign of ImA determines
the blow-up or global existence.

Theorem 3.2 (blowing up or global result) (1) Let ImA > 0. Then, the solution
as in Theorem 8.1 blows up in positive finite time. Precisely speaking, the £2-norm
of {Ak(l)} tends to infinity at some positive time.

(2) Let Im)\ < 0. Then, there exists a unique global solution as in Theorem 8.1 with
{Ax(t)} € (10, 00); ) N C1((0, 00): £2).

Let us present the proof of Theorem 3.1 and 3.2. The idea is based on the reduction of
(NLS) iuto the ODE system of { Ai(t)}rez. The next key lemma gives the representation
formula of N>~ A, exp(itd2)6xa)-

k

Lemma 3.3 Let {Ai(¢)} € C([0,T); £2). Then, we have

(3.3) N (3 Ax(t) exp(itd)dra) = Hmt|~ @02 3™ 4 (2) exp(it0)0ka,

keZ keZ



where Ay(t) = (20) e N (0), ), with 1 = v(t.6) = 30 A,()e 0N and
J

-27 J—
(fr9)a= | [(6)g(6)db.
Proof of Lemma 3.3. Note that the linear Schrédinger group is factorized as follows.
exp(itéR)f = (4mit)™? [ exp(ile —y[*/4t)f (y)dy
= MDFM}{.
where
Mg(t,x) = e*/Hg(x),
(21t)"2g(z/2t),
Fg(&) = (27{)_1/2/ e %¢g(r)dr (Fourier transform of g).

T
o
=
S

I

Then, we see that
(3.4) N (3 As(t) explitd?)d0)
J .

= N(@m)"?MDY A (4)ertioritiof/aty
J

= |dmt| P2 (2m) EALDN (3 Aj(t)eidestitiar/aty

7

Note that, to show the last equality in (3.4), we make use of the gauge invariance of the
noulinearity. Replacing ar by 6, we can regard N (%, A‘,-(t)e"iﬂ’”(j“)g/ 4) as a 2m-periodic
function of 8. Therefore, by the Fourier series expansion,

N(ZAj(t)e'ij9+i(j“)2/4‘) - ch(t)eﬂ-kg
i k
= Z Ak(t)ei(ku)Q/éte—ikG
k
= (2m)'?3" At) F Méy,
k

where we let Ci(t) = (21) 1 (N (v), e"#F)y and rewrote Ci(t) = Ag(t)eitha’ /4 Plygging
this into (3.4), we obtain Lemma 3.3. O

We now explain how to reduce (NLS) into the ODE system of { Ax(t)}. By substituting
U = 33 Ak(t) exp(itd?)dk, into (NLS) and noting that id; exp(itd?)ora = — 02 exp (it )oka,
Lemma 3.3 yields

E i%—}i exp(itd2)op, = )\|47Ti‘|'(p"1)/2 Z Ap exp(itd2)oxa.
k ) k
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Equating the terms on both hand sides, we arrive at the desired ODE system:

(3.5) z%’i = dnt|~®WD724,

with the initial condition Ax(0) = g. Now, showing the existence and uniqueness prob-
lems of (NLS) is equivalent to showing those of (3.5). To solve (3.5), let us consider the
following integral equation.

{Ac) = {2({4;01}
(3.6) = {}Lk}“‘i/\[J [4mr|~®=D/2{ A, (7)} dr.

‘Then, we want to see the contraction mapping property of {®;}. The sitple aplication
of Parseval’s identity derives the following.

Lemma 3.4 Let I =[0,7]. Then. we have

(3.7) ”{Ak}HL%(I;ff) < O”{Ak}ﬂix(;;ggy
(3.8) {AD Y~ LA e )

v (4} p— 1 2
< C(?iﬁ}?é H{AY }lhwu;ﬁ))p IH{Ai )} - {142 )}”Lac(z;egy
Proof of Lemma 3.4. According to the description of Ay as in Lemma 3.3 and the
integration by parts, we see that

k/ik _ (Qﬁ)—lie—i(m)?/u<€)9N‘(Z Aj(_,—éjﬂf,i(ja)"‘/ét)?e—ikﬂ)g.
J

Then, Parseval’s identity and || 3; A;e U0+l /4, - < Cl{A;Hlez yield

kAl = (2m) VRGN (S Agemeitior ),
J

IA

C| Z Aje—ijaei(.ia)zﬁlt Hi;[ﬂ ZjAjE"ijgifi(‘ja)g/“l‘H;;z
J J

I A

IA

‘Thus, we obtain (3.7). The proof for (3.8) follows similarly. Since there is a singularity
at u = 0 of the nonlinearity A (u), we do not employ £2-norm to measure {Aﬁﬁ b {Af) }.
|

We are now in the position to prove Theorem 3.1.



Proof of Theorem 3.1. The proof relies on the contraction mapping principle of
{2({A;1)}- Let [{ze}llep < po and

Bapo = {{Ax} € L=([0,T1: 6):; 1{Axtlz= qoamey < 2p0}

endowed with the metric in L°([0,77]; 2). Note that Bs, is closed in L>([0, T; £2). Then,
in virture of Lemma 3.4, we see that

”{@k({AJ’})}HL*([QT};L‘{) < pot CT(:"”)/ZQ@Y’,

LAY — {2 AP D Hl i o)
< CTO PR (200 {4} = (AP

Le([0.7):83)"

Thus, {®({A;})} is the contraction map on By, if 1" is sufficiently small. This implies
¢ -~

that a solution to (3.6) exists in L>([0,7]; #%). Since / ldmr| "W D2{ A} dr belougs
0

to C([0,T]; £3) by Lebesgue’s convergence theorem, the solution is £f-valued continuous
funetion and so it belongs to C'((0, T); £2). The uniqueness of {Ax(t)} in C(I;£E) follows
in the standard way. Huece, Theorem 3.1 is obtained. 3

To prove Theorem 3.2, we apply the a priori estimates described in the following,.

Lemma 3.5 Let {A(t)} be the solution to (3.5) in'C([0,T]:43) N C{(0, T}; £3).
(1) Then, we have

AAOHE  Fnh o
dt - T (47”) “U(t)WL;)H’

(3.9)

where 'U(t, 9) — Z Ak(t)e_ikeei(ka)2/4t<
k

(2) In addition, if ImX <0, then we have
(3.10) [{kAL) g < Ce™.

where the positive constant C' does not depend on T

Remark 3.5 The bound in (3.10) may be refined by sophisticating the estiniates in the
proof. We do not, however, concentrate ourselves to this kind of refinement.
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Proof of Lemma 3.5. According to (3.5), we see that v = v({.§) satisties the nonlinear
equation like

2
(3.11) W0 = ——Z?é)gv + Adat|"P=UEN (v).

Of course, we require to check whether d,v and J2v make a sense. This is justified by the
mollification. In this proof, however, we do not consider this kind of matters since we want
to avoid the complication of the proof. Let us remark that v/2r||{Ax(t) Hie = v(e)]
and \/ﬁl]{kAk(t)}H% = [|0pv(t)||z. Then, multiplying (3.11) with ¥ and taking the
imaginary part of integration, we obtain (3.9). On the other hand, multiplying (3.11)
with O,v and taking the real part of integration, we have
a d 2ReA
(312) 0 = — gl + 2
—2(1111/\)]47Tt|“(””1>/’hu<.f\/'(z.), 2} u)g.

d
2 H 155

H ¢~ —{e-1)/ B

To estimate Im(N (v), v}y in (3.12), let us multiply N (v) on both hand sides of (3.11).
Then, we see that

a?

(3.13)  Im(N(v),0w)s = -5 2R e(dyu, N (v))o + (ReA)jdmt|” =172 )%,

(ReX)|dmt|~®=D2 0%,

v

since Re(djv, N'(v))s < 0. Conibining (3.12) and (3.13), we have

(3.14) —”30“[|L2+K(R@/\ oo d Mol — Ka(lmd) (ReA)* ol <0,

8
(b + L)a(4m) > D72

where Ky = and Ky = This is equivalent to

8
a?(4myp-t

p+1
Lotls

(3.15) %E(t) < (i__m;‘i%t(iiﬂa)/?”

v !
where

(8) = ool + Ka (RN ol — Ka(Tm)(Bed) [ Po(r)%, dr

2t}

We first consider the case ImA < 0 and ReA < 0. By (3.15), we have E(t) < (const.) for
>ty le.,

(3.16) 9pvlli: < C) + Cot® P72y

P G [ ()2, dr
to



a7

for soine positive congtants C1, Cy and (5. Applying the Gagliardo-Nirenberg inequalities:

lolEtt, < Clof %P ;pﬂm o)
)%, < Clol )2,

where 1/(p+1) = 8(1/2 - 1)+ (1= B)}/2 and 1/(2p) = (1/2 = 1) + (1 — v)/2, and using
Young's inequality, we have

C + CLo PP () n‘“”*"nvmu%””“"”
v [P I ¢

(3.17) [o(E)I3

VAN

< Cj+Ct(5—P)/Z'1,l) t)||H&_L)/2+G / P ||lv(r )“Hl
Sy
, , 1 . t .
< COH + SR + [ o) dr.
to

We here note that, since [Ju(t)||,2 has a finite bound in virture of (3.9), it is included in
the positive constant C'. Then, applying Gronwall's inequality to (3.17), we obtain (3.10).
We next consider the case ImA < 0 and Red > 0. By (3.14), we have

Do)+ Ky (RN PR SOl < 0.

Let F(t) = ||0pv(t)||2: + K1 (ReM)tEP)/2 v (|74 Then, from the above inequality, it
follows that

ptl
Lb+L

2 ”1{1 (ReA)Ju(t)]
5

2

d
— <
o F(t)y <

< P1p().

5—p)/2
This implies that F(t) < F(to) (fg)( P2 Since HOpu(£)]12. < F(t), there exists a positive
constant C such that {[v(t)]|%, < C(L+#)®P/2 Hence, we obtain (3.10) O

Proof of Theorem 3.2. If Im) > 0, then, Lemma 3.5 (3.9) and Holder’s inequality

[l|EHE > (2m) D2t give

d s
Sl > Clune D2 o)z,

This implies that [[u(t)||z2 = [[{Ax(t)}llz blows up in positive finite time. On the other
hand, if ImA < 0, then, Lemma 3.5 gives the a priori bound of ||{ Ax(¢)}]« for any positive
t. Hence, the local solution to (3.5) is continuated to the global one. O
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4 The case u(0,x) = poedo + t1004 + 1010 (a/b & Q)

In this section, we consider the case in which the initial data consists of triple d-functions
supported at z = 0,¢ and b. If /b € Q (Q denotes the set of rational muubers),
the location of §-functions is the special one mentioned in Remark 3.2 and thus (NLS)
is solvable as in Theorem 3.1 and 3.2. Therefore, our concern is to observe the case
a/b &€ Q. Before stating our main results, we introduce several new notations. We often
use weighted sequence space ¢2(Z?) endowed with the norm

1 g =03 (L k] + ) A sD?.

ki.kocZ

{J4fﬂ Jei-_g }k‘b '2

Let T = R/27Z. The quantity || [l po(r2) denotes (/ [ £(6,,62)]7 d91d92>
Jr2
We next define the Besov space for periodic functions. For ¢ > 0, {s] denotes the
greatest integer not exceeding s. Then, if ¢ is not integer and 1 < ¢,r < o0, the Besov
space B? (T?) is defined by

B2 (T2 = {f € LUT: |f sy x) < o0}
where
s e = M lzacasy + 1M,
: o~ 11 Ly
= ||fllzecr2y + (/ T sup Hdh T zeer d’f)
0 Ihi<r
XN
with A = (hy, hy) and dVY f(6,,6,) = > ( i ) (—1)¥F(6) + jhy, 03 + jhy). We remark
=0

that, f 0 <o <land ljg=0o/¢ + (1 — a)/qO with 1 < g4, ¢y < oo, then the Gagliardo-
Nireuberg type inequality || f]]. Brs, (T2 S < ClIflg Bs, Al /'H‘L;J’(T-“,) follows from the above
definition. We also note that || f H Bs (T2) 18 equndient to

I1f1

: 12
Ho(T) = ( Yo (L (k] + |heg])™ CM.E:2|2) ,
ki kz€Z

where (', g, is the Fourier coefficient of f given by 27r)“)/ F(8y,0y)e  Rabr+haba) gy, g,

For more detail about Besov space, see [4].

For the simplicity of description, we often use the brief notation {Ag, 4,} in place of
{ Ak, ko beo koez. Then, our first result is



Theorem 4.1 (local result) Let 1 < o < p. Then, for some T" > 0, there erists a
unique solution to (NLS) described as

{(4.1) u(t, x) Z Ay (1 txp(’iii);%)dﬁ;la+gf2b,
k1 k2€Z

where the coefficient sequence {Ag, 1, ()} € C{[0,T); 2(Z*)) N C(0,T}; (2(Z?)) with
Aklkg (O) = [k ky lf (11’31, ILQ) = (0, O), (1, O). (0, 1) and Akl‘kz(o) = (} otherwise.

Remark 4.1. As meutioned in Remark 3.1, the solution in Theorem 4.1 causes the
generation of new modes. The point remarkably diffevent from Theorem 3.1 is that, for
t # 0, exp(—itd?)u looks like the point mass measures densely distributed on R since a/b
ig irrational. Reading the proof of Theorem 4.1, we see that it is possible to construct
a solution even when the initial data consists of infintely many é-functions given by
w(0, %) = Yk, kyez Mer kaOkrathob, Where {1u p,} € (5(Z%).

Similarly to Theorem 3.2, the sign of lmA determines the global solvability of (NLS).

Theorem 4.2 (blowing up or global result) (1) Let ImA > 0. Then, the solution
as in Theorem 4.1 blows up in positive finite time. Preciscly speaking, the £3(Z%)-
norm of { A, 1, (1)} tends to infinity at some positive timne.

(2) Let Imh < 0 and, in addition. |ReA| < 2P l]'rn,M Then, there exists a unique
P —

global solution as in Theorem 4.1. Futhemwrc
{ Ak (8)} € C([0,00); £3(Z%)) 0 CH(0, 00); £5(Z7)).

Remark 4.2. As for the global result, it is still open whether the additional condition

2./p s o . .
|ReA| < \/1_1 [lmA} is removed or not. In our proof, this condition will be applied to
o —

obtain the time global estimate of [|[{Ag, x,() ez The key to derive this esimate is

2/
Liskevich-Perelmuter’s inequality [16], t.e., if ImA < 0 and |[ReA| < ” j{pl [ImA|, then it
follows that Im ()\(N (v1) — N(w2) ) (w1 — v )) <0.

The idea to prove Theorem 4.1 is quite analogous in the proof of Theorew 3.1. Namely,
we reduce (NLS) into ODE system. To solve this ODE system, we use several lemnias

given below.
Lemma 4.3 Let o > 1 and {Ag (1)} € C({0, T); 2(Z?)). Then, we have

(‘1 2 Z Akl Rz )U( )5k1a+kzb> - i47rt‘ (-1/2 Z Akx l-z(i)U )5k1a~¥ kabs

ki ko€Z Ry ko€Z
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where Ag, iy (1) = (2m) 2o ihiatkal) /3 £f (1)) o=ithibrthabaly g

W = Z.U(t. 91 92) — Z Akl kz(t)()i(k1a+kzb)2/42‘€,——i(k;91+’C292)
k1.ko€Z

and
(- Ghovsn = [, 1(61,62)56105) o

Proof of Lemma 4.3. By using the factorization exp(itd?)f = MDF M f as in the proof
of Lemma 3.3, we see that

(4.3) N3 Ak(t) exp(itdy )5k1a+kgb)

ki.k2
= N(@DRND Y Ay iy (f)em rnstbaberritet ka2
k1.ky
— Mﬂ.t[*(pwl)/‘l(gﬂ_)—l/‘Z]\[DN( Z Akl‘kz(t)e—‘i(!ﬂa.1:+}ugb.v)+i(k1a+}c2b)2/4t).

ki ko
Note that, to show the last equality in (4.3), we make use of the gauge invariance of the
nonlinearity. Replacing az (resp. b2) by 6, (resp. 6;), we can regard
N( Z Ak1 kz(t)e~é(k191+k232)*i(kla+k‘zb)2/4#')
ki k2

as a 2m-periodic function of 6; and #,. Therefore, by the Fourier series expausion,

Z A;” 1»2 —i(k1 8 +keb)+ilk, athob)? /41)

ki.k2

=S gt i
ki.k2

= ZAki,kg(Zﬁ)e’:(k“""'k'zb)?/“e“i(kl91+k202)
k1.ko

= (2m)!/? 3 Appstes (OF Mk akaps

kl,kz

where we let Cy, 1,(t) = (2m) 1N (w), e {mibi+ka2)y, o swhich is the Foirier coefficient of
N{w) and rewrote Ci, () = Agy , (t)eithrat820/4 - Plygging this into (4.3), we obtain
Lemma 4.3. 1

Let us reduce (NLS) into ODE system. By substituting the infinite superposition of
the linear solution u(t, ) = Ty, &, Aki k. () eXP{i202)S4ya 1456 into (NLS) and noting that
i exp(z't@%)ékm%zb = — 02 exp(it02)0kyas kepy Lemma 4.3 yields

> z exp (i) 0harkgy = Aldart|=(P-D/2 > Ay exp(it02) 0k, atkoyb-
ky k2 ky ke
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This implies that

dA L - .
(44} Z ¢ kl 5kla+k2b = >‘|4th (p-1)/2 Z Akl.k26k1a+k2[)-
ki.ko ki.kn

Equating the terms on both hand sides of {4.4), we arrive at the following ODE system:

i AAgy ks

(4.5) -

= At EV2 AL

In fact, this identity holds by multiplying (4.4) with a test function supported around
x = kia + kyb and by shrinking its support. To solve (4.5) with the iuitial condition
Apy k,(0) = pg 4y, We translate it into the integral equation like

(4.6) {Aum®} = {Pnm{A4,000}
= {N‘ki‘k’z} -—IA/O I4WT!_QP_1J/2{AM,&2(T)} dT.

This will be solved by contraction mapping argument. To this end, we need several
lemnnas concerning the nonlinear estimates.

Lemma 4.4 Let 1 <a <p and [ = f(61.63) € BS,(T?). Then. we have

(4.7) AP~ fllsg ey < CUFNT <y 1 g 0m2)-
Proof of Lemma 4.4. This estimate is proved by referiug to [7, 9]. |

Applying Lemma 4.4, we can estimate the sequence {Ap ko } (= {Ag, 1,(1)}) defined in
Lemma 4.3.

Corollary 4.5 Let [ ={0,7]. Then, we have

(4.8) IH{ Ay e e zzzy < Cl{ Akyke

(4.9) H{Akl I {Am kat
<C AW o N T A A
<0 ?fg“{ Fukeo | 7% (g2 22)) A ket — (A k)

L (02022

L1327

Proof of Corollary 4.5. By Parseval’s identity,

{ Aky (O Hliez @2y = (2m) "INV (w0(2)) Hm
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where w(t) = w(t,0,,6;) = Y Akl Jeilkiathab)* [t o=itkibi+hab2)  Applying Lemma
ki ko€Z
4.4, we have

!I{Akl.k;?(t)}l!fg(z2) < CIN(w(t)llss, T

Cllule) [ oo ()l ).

Since [lw(t)|| L2y < Cllw(t)|| yaqr2y = 27C (t)}Hlez (z2), we obtain (4 8). The proot

for (4.9) more simply follows. Note that we can not wplace tH{ 4511 k2t ™ {A,gl ko o= (rez2y)
by the weighted £2-norm since the nonlinearity A'(w) contaius the singularity at w = 0.

.|

Proof of Theorem 4.1. Let [ = [0, 7], [|[{1tk, 4>}l 2(z2) < po and
By = {{ At s} € L LA(Z2)); [1{Aky oMl Le(rzz2)) < 2p0})-

Note that Ba,, is closed in L=([; (3(Z*)). We first show that {®g, 4, ({4, 1)} in (4.6)
is the contraction map on By, with the metric of L™(I; £3(Z?)). By applying Corollary
4.5, it is easy to see that

{@rs e (A D H i~ ez a2y < o+ CTEP2(2p0)7,

I{ Pk {Aﬁﬂ}) { P, s {AJU)})”LX(I;%(Z'Z))

< CTE 2 (2p0) H ARk} — (AL Hlie iz

—_ pO k1 ko ke LX([;;{O(Z—))-
Thus, taking 7 > 0 sufficiently small, we observe that {@k],;“,z({ Aj .1} is the cou-
traction map. This implies that a solution to (4.6) exists in L™([;£4(Z?*)). Siuce

o

the solution is £2(Z%)-valued continuous function and so it belougs to C((0, T; £2(Z?)).
The uniqueness of {Ag, 4, (t)} in C(I; £2(Z*)) follows in the standard way. "

elongs to C(1;¢2(Z?)) by Lebesgue’s convergence theorem,

Let us next prove Theorem 4.2. To continuate the local solution of the ODE system
(4.5) to the global one, we need time global bound of [[{Ag, ., (t) }Hlez z2) (= [|w(¢ )”33 L(T2))-
The estimate of |lw(t)|lpy,(r and the logalithmic Sobolev inequality due to Brezis-
Gallouet [3] will present this bound.

Lemma 4.6 Let { Ay, x,} be the solution to (4.5) in C([0,T); 2(Z*)) N C*{(0,T]; £2(Z?)).

(1) Then, we have
ImA

d
(4.10) Zi*t‘H{Ak;,kz(t)}] Bz = —WH w(t )HLM(W
where w(t) = w(t, 0;,6s) = > A, sy (1)@ rathab)® /4t o —ilkiO1-+haba)

ki.ks



2 §
p \—/ﬁl [ImAX|, then we have

(4.11). [{ Ak, ko () Hlez(z2) < C,

(2) If ImA <0 and |ReA| <

where the positive constant C' does not depend on T.

Proof of Lemma 4.6. According to the ODE system (4.5), w(t, 61, 65) satisfies
(4.12) iOpw = —(4t?) " udy, + bIp, 2w + Mdmt| P U N (w).

Multiplying @ on both hand sides of (4.12}), we have

d . | g
ol lffare = 2PV O] -

Note that [Jw(t)[|7zerey = (27)1{ Ak () Hizzey by Parseval’s identity. Then, we obtain
(4.10). Let us next prove (4.11). We here remark that, since the second order differentia-
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tion on the right hand side of (4.12) is degencrated, the £%(Z?)-estimate of {Ag, ,(t)}. (or -

equivalently H'(T?)-estimate of w(t)) is not derived analogously in the proof of Lemma
3.5 (2). However, we establish the desired estimate by taking advantage of the nonlin-
ear dissipation. Applying dg, (j = 1,2) to (4.12) and taking the imaginary part after
multiplying dy,w, we have

%Uaej'wu)li%m‘z) = [4mt|~®=D/2 . 2T (>\<Ue.jN(w(t)).-aej‘w(t»el,ez) :

2P

D
71 Im\, Liskevich-Perelmuter’s inequality [16] gives

Note that, if ImA < 0 and |Re| <

Im (Mang(w(z)),agju.)a))e,_gg) <0
Accordingly, |0, w(t)l|z2¢r2) < 10s,w(to)l|L2(r2) for £ > to, which implies that

R Ak ke O H 222y < HE Ak (L) 2 23)-

By taking tq > 0 sufficiently simall, the local existence argument as in the proof of Theorem
4.1 gives [{k; A, &, (1) Hlezzz) < 2p0 f 0 <t < tg. Hence, we obtain (4.11). |

Lemma 4.7 (Brezis-Gallouet) Let o > 1. Then, there exists some positive constant
(', depending only on o such that

(4.13) Il ooy £ Co (1 + V”f“H‘(T%\/lOg(l + 1S “(TZ))) :
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Proof of Lemma 4.7. We refer to [3]. m|

We are now in the position to prove Theorem 4.2.
Proof of Theorem 4.2. We first prove Theorem 4.2 (1). By Hélder’s inequality,

Wy > (QW)_(P'I)Hw(t)ﬂﬁ;l@). Then, by Lennna 4.6 (4.10), we have

d . (o
EH{Ahkz(t)}Hfg 2 ClmAt @ 1)/2“{44k1,k2(5)}”?§_1-

Solving this differential inequality, we observe the blowing-up of £Z-norm. We next prove
+ Theorem 4.2 (2). Making use of (4.12) and Lemma 4.4, we see that

@19 L@l S ORI O e o) nscr

< O V2 (8 e (O ey

Then, Lenuna 4.6 {(4.11) and Lemma 4.7 yield

@15) @l < O+ ) nry/os(L + 100 mmm)
S Cf\/log(Z + “'ZU(t)”Hn(TZ))

Plugging (4.15) into (4.14), we have the following differential inequality

d

@l < ClC (log(2 + u(t)lecry)

(p—1)/2 ’
)T el g

)(P—I)/Z

IN

Gl (log(2 + [fw(e) leer2)) " (@ + (&) sozs).

From this inequality, it follows that

ars) < Ol 0772 (log(2 + Jwo(®) )72

% log(2 + |jw(t)]

Thus, [[{ Ag, & (6) Hiezz2) = (27) 7 Hw(t) | graerey < Cet < oo for t € [0, T] with the positive
constant ' independent of T". Hence, the local solution { Ay, &, {¢)} is continuated into the
global one. d
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