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Existence of global solutions
for a semilinear parabolic Cauchy problem

R RERE TSR EE 76 (Munemitsu Hirose)
Department of Mathematics, School of Science and Technology, Meiji University

1 Introduction

In this paper, we consider the following Cauchy problem

wy = Aw + |z)'w?, z€R", t>0,

1.1
w(:r,()):f(z), z € R, ( )

where p > 1,1 > —2and n > 3 are parameters, and f is a nonnegative bounded continuous
function in R" This problem is more general version of
we=Aw+w?P, z€R" t>0,
(1.2)
w(z,0) = f(z), z €R"

In 1966, Fijita [2] has proved that if p < 1+ 2/n, then the solution of (1.2) blows up
in finite time for all f > 0 and f # 0, and if p > 1+ 2/n, then (1.2) has a global classical
solution when f satisfies f(z) < & exp(—|z|2) where 4 is sufficiently small positive number.
Moreover, Lee and Ni [4] have shown that the global existence when the initial value f
has polynomial decay near z = oo. Their result is that if p > 142 /n and f satisfies
(&) ~ (1+]2[?)~Y/®D then (1.2) has a global classical solution and the solution w(z,¢)
satisfies ||w(-, t)||zoo(rn) ~ t7/®"Y) as t — oo, Furthermore, for the problem (1.1), Wang
[5] has derived the following result.



128

Theorem A. ([5]) Supposen > 3,1 > =2 and p > (n+ 2+ 2l)/(n — 2), then there
ezists @ small g > 0 such that if 0 < f(z) < p(l + |z])~@/2-Y) 4n R, then (1.1) has
global solution w(x,t) with {jw(-, t)||pe@ms) < Mt~ @HD/2=1),

In order to prove Theorem A, we introduce the following semilinear elliptic equation

with a gradient term

Au+%$' Vu+ M+ |z|'uwP =0, ze€R™ (1.3)

where, n, I, p and )\ are parameters. It is easily seen that w(z,t) given by
w(z, t) =t~ /2=y (m/\/z) (1.4)
satisfies the equation of (1.1) if and only if wu(z) : R* - R in (1.4) satisfies

1 241
Au+§m~Vu+2(p_l)

u+|zf'v? =0, z€R" (1.5)

Since we will consider the radial solutions (u = u(r) with » = {z]) to (1.3), we need the

following initial value problem

-1
u,,+(nr +%)u’+/\u+r‘u”=0, r >0,

u(0) =a >0, u'(0)=0.

(1.6)

Note that when I > —2, (1.6) has a unique solution u(r) € C*([0,00)) NC?((0, o)), which
is denoted by u(r; o). Then Wang has shown the follwing result.

Theorem B. ([5]) Supposen>3,1> -2 andp> (n+2+20)/(n—2). Then,
(i) lim r*u(r; @) erists.
(i) If lim r*u(r; o) =0, then rl_lgio r™u(r;a) =0 and Jim r™u.(r;a) = 0 for all positive
m.

(iif) Let A = (241)/2(p—1) Then there ezists some positive number & such that u(r; &) > 0

X

for all v > 0 and u(r; &) satisfies u(r; @) ~ v~ as r — oco.
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Wang has shown Theorem A by using Theorem B. We introduce the sketch of the

proof as follows:

Sketch of the proof of Theorem A.  Let A = (2+1)/2(p—1). When the parameters n,
! and p satisfy the assumptions, it follows from Theorem B that there exists some positive

22

solution u(r) with u(r) ~ r~?* as r — oo for the problem (1.6). Now, we set

w(z,t) = (t+1)u (jol/VEFT),

then W(z,t) is an upper solution of (1.1) if u is sufficiently small positive number. More-
over, since the trivial solution can be a lower solution of (1.1), there exists a global solution

of (1.1). m

Namely, if we can show the existence of some positive solution u(r) with u(r; o) ~ r=2*

as r — oo for the problem (1.6), then we can conclude the existence of a global solution

o {1.1). Our first result is the following one.

Theorem 1.1 Suppose n > 3. Then there exist some positive numbers oy and I* =
I*(n) € (0,1) such that if ~2<I<!* and 1+ 2+ 1)/n<p < (n+2+20)/(n—2), then

2X

(i) For any a € (0,ap), u(r;a) >0 for all r > 0 and u(r; o) satisfies u(r; o) ~ r™** as

T - O0.
(i) u(r;ap) > 0 for all r > 0 and u(r; op) satisfies rl_l_}l&) r?u(r;ap) = 0.
(iii) For any o € (g, 00), u(-, @) has a zero in (0, 00).

(Especially, I*(1) = 2/3 holds. )

Moreover, the following theorem follows from Theoreml1.1 and the sketch of the proof of

Theorem A.
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Theorem 1.2 Suppose n > 3. Then there exists some positive number I* = I*(n) € (0,1)
satisfies =2 < 1 < I* such that if 1+ (2+1)/n < p < (n+2+21)/{n—2), then there ezists
a small p > 0 which satisfies

i 0 < flz) < p(l+ |z])~@H/2e=1 in R", then (1.1) has global solution w(z,1).

In order to prove Theorem 1.1, we apply the classification theorem by Yanagida and

Yotsutani [7]. Let ¢(r) be a solution of

" n-—1 ) _ r
{<p+(—~—~7—j—+2r><p +Ap =0, >0, 7
0(0)=1, ¢'(0)=0.
For a solution u(r) of (1.6), if we put
u(r) = p(r)o(r), (1.8)
then we see that v(r) satisfies
(g(r)v') + g(r) K (r)pff~lo =0, r>0, 1.9
v(0)=a>0, '(0)=0,
where
g(r) =" exp (r2/4) o(r)?, K(r):=r'lo(r). (1.10)

We should note that ¢(r) > 0 on [0,00) if A > —n by (i) of Proposition 2.1 in Section 2.
To see whether u(r) has a zero or not, we have only to check this property for v(r). For
this purpose, we employ the classification theorem by Yanagida and Yotsutani [7], which
is stated as follows. Let g{r) and K(r) satisfy

g(r) € C*([0,00));

) g(r)>0 on (0,00);

1/g(r) ¢ L'(0,1); ?
\ 1/g(r) € L'(1,00),
and )
K(r) € C(0,00);
K(r)>0 and K(r)#0 on (0,00); (K)

h(r)K(r) € L(0,1);
| 9(r) (h(r)/g(r))F K(r) € L*(1,00),
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where
h(r) == g(r) /roo g(s) tds.

Moreover, define

G(r) = —0r )RR () = [ a(6)K(s)ds, (1.11)
Hr) = 5—_?_—-1-11(9")2 (%((%) k()= [~ hGs) (‘S%) K(s)ds,  (1.12)

and

rg :=inf{r € (0,00) : G(r) <0}, ry:=sup{r € (0,00): H(r) <0}.

Theorem C. ([7]) Assume that g(r) and K(r) satisfy the conditions (g) and (K). Let

v(r; ) be a solution of

(g(r)v"Y + g(r) K (r)(vt)? =0, r>0,

(1.13)
v(0) =a >0, ¢'(0)=0,
where vt := max{v,0}, and suppose that G(r) £ 0 on (0, c0).
(i) Ir
0<ry <rg < oo, (1.14)

then there exists a unique positive number oy such that the structure of solutions to

(1.13) 45 as follows.

(a) For every a € (ag,00), v(r; @) has a zero in (0,00).

(b) If a = ay, then v(r;a) >0 on [0,00) and

o0 -1
0 < lim (/ g(s)’lds) v(r;a) < 0. (1.15)
(c) For every a € (0,0p), v(r;a) > 0 on [0,00) and
o0 -1
lim (/r g(.s_)_lds) v(r; @) = oo. (1.16)

(ii) If rg < 0o and rg =0 (i.e., H(r) > 0 on [0,00)), then v(r;a) is positive on {0,00)
and satisfies (1.16) for every a > 0.

(iii) If r¢ = oo (i.e., G(r) > 0 on [0,00)), then v(r;a) has a zero in (0,00) for every
a>0..
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2 Proof of Theorem 1.1

In order to prove Theorem 1.1, we prepare the following proposition which is shown in [1]

and [3].

Proposition 2.1 Let ¢ be the solution of (1.7) and suppose 0 < X < n/2. Then,
1) o(r) >0 and ¢'(r) <0 in (0,00).

(ii) lim r**(r) exists and positive.

(ili) o(r)=1- 2%7"2 +0(r?) as r — co.

(iv) exp(r?/4)o(r) is an increasing function of r € [0,00).

(v) fO< A< (n—2)/2 and(n —2)/2 < A < n/2, then

r¢/(r)
22 < <0 2.1
(r) )
and
4 r¢' (1)
n—2)\< ol <0 (2.2)
for all r € (0, 00), respectively.
(vi) Set
M if D<ag 2
m(A) 1= 2
4\ f n -2 <A< n
n—2x 2 2

Then for each A € (0,n/2), r™MNp(r) is an increasing function of r € [0, 00).

By using Proposition 2.1, we can check the conditions imposed on the coefficients of

equation of (1.9).

Lemma 2.1 Ifn > 3 and 0 < A < n/2, then g(r) := r" Vexp (r?/4) p(r)? and K(r) :=
rlo(r)|F~? satisfy (g) and (K), respectively.
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Therefore, g(r) and K(r) are admissible. Substituting their definition (1.10) into G(r)

and H(r), we obtain

G() = —go)KE) = [ g()K (s)ds

o 2 (2 s [ [ e () o)
[t (Z) i
H(r) = p+ ()’ (—E;)-)PK(T) - [ ~ h(s) (%)pff(s)ds
= ﬁ;rz"““’ exp ( 2) p(r)r*? { / s exp (-— -S-i) s0(5)‘2d5}p+2

_ /r = it oy ( ) @(s)?t? { f '~ exp (— %2-) <p(t)"2dt}p+1 ds.

In order to prove Theorem 1.1, we must show condition (1.14). To do so, we will

investigate the profiles of G(r) and H(r). First, we will study the increase and decrease.

Differentiation yields

¢ =([" g(s)“lds)—p—l H(r) =

2 onEe) (20)-252), 23

where

O(r) = (29’(1‘) + %’)(L)) /roo gls)"lds

= oxp () o0 [+ =) 41+ 043 ()] e

I 2
X / s " exp (— §4—> o(s)"2ds.

In view of (2.3), G(r) and H{r) have the same extremal points, namely those r > 0 which
satisfy ®(r) = (p +3)/2. So in order to know the sign of G'(r) and H'(r), we must study
the relation between ®(r) and (p + 3)/2. We first consider the behaviour of ®(r) near

r =0 and r = oo.
Lemma 2.2 Suppose n >3 and 0 < A < n/2. Then

941
hm@(fr) — M

r—30 n—2

and lim &(r) = 2.
Fd00
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Proof. Using ’Hospital’s theorem, in view of the definition of ®(r) we derive

d [0 gl=n exp(—s? /4)p(s) " 2ds

im ®(r) = lim dr o7 T3
e " 4 [pn=2 oxp(r2/4)p(r)? {2 +2(n — 1) +1 + (p +3) (%) }]
= 2
with noting (2.1) and (2.2). The case r — 0 is done similarly. | .

Note that ®(r) is continuous in [0, 00) and (p -+ 3)/2 satisfies

241 <p+3 <2n—2+l
2n 2 n—2

| 91
ifand only if 14 270 < p< ME2HE
n n—2

be proved in the following Section 3.

(2<)2+ (2.5)

. And we can get the following lemma which will

Lemma 2.3 Under the assumptions on n, I, p and X in Theorem 1.1, there ezists a
unique number r* € (0,00) satisfying ®(r*) = (p +3)/2 and
o> 272 in ),
ep(,«) < gﬂ
2
Therefore, it follows from (2.3) and Lemma 2.3 that

(2.6)
in  (r*,00).

Lemma 2.4 Under the assumptions of Theorem 1.1, there exists a unigque number r* €

~ (0,00) such that G(r) and H(r) are increasing in [0,r*) and decreasing in (r”, 00).

Moreover, in order to locate r¢ and 75, we need to determine the behaviour of G(r) and

H(r) near r = 0 and r = oo.
Lemma 2.5 Under the assumptions of Theorem 1.1,

(i) lim G(r) = —o0.

r—r0o0

(ii) lim G(r) = 0.

r—0
(iti) liminf H(r) > 0.

(iv) limsup H(r) < 0.

r—0
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We can show this lemma by using Proposition 2.1. Now we can prove Theorem 1.1.

Proof of Theorem 1.1. First of all, we must note that

;o
0<)x<—72E — 1+—2—;—:—<p<oo

holds when A = (2 4+ 1)/2(p — 1). As is already seen in Lemma 2.4, both G(r) and H(r)
have exactly one local maximum at r* € (O, 00). Moreover, in view of Lemma 2.5 H(r)
is negative near r = 0 and positive for large r. Thus H(r*) > 0 and 0 < rg < 7",
Besides, we obtain G(r*) > 0 from G(0) = 0, and the negativity of G(r) for large r yields
0 < r* < rg < 00; so we conclude that condition (1.14) holds. Thus from Theorem C
there exists a unique positive number g such that for every a € (g, 00) v(-; @), ie.,
u(-; @) has a zero in (0,00). Moreover, for every a € (0,ao] v(;;) is positive in [0, cc)
and

fir { /°° " exp (_ s ) o(s) ds}ﬂ o) { € (0,00) i o=oy,

r=oe \Jr 4 =00 if a€(0,a).

Integrating by parts, we obtain

/r°° R (__ fj_) o(s)"2ds = 2r~" exp (42;) (r) (1 +o(1)

asr — oo. (Here we use the boundedness of r¢'/¢.) Taking the decay rate of ¢(r) and the
definition of v(r) into account (see Proposition 2.1 (ii)), this estimate immediately shows
that (1.15) with g(r) = r"~"exp(r?/4)¢” is equivalent to lim r?u(r) = 0. At the same
time, we obtain that (1.16) with g(r) = r" ' exp(r?/4)” is equivalent to lim r*u(r) > 0,

i.e. u(r;a) satisfies u(r;a) ~ r™2 as r — oo for every a € (0, a). »

3 Proof of Lemma 2.3

We will show there is exactly one crossing point of ¢ = ®(r) and ¢ = (p +3)/2 in (r,¢)-
plane. Our strategy is to investigate the sign of ®'(r.) for r, satisfying o(r.) = (p+3)/2.
Here the existence of r, is guaranteed by Lemma 2.2, the continuity of ®(r) and (2.5).
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Define
Q = {r, € (0,00); ®'(r,) > 0},

Qy == {r. € (0,00); ¥(r.) =0},
Qs == {r, € (0,00); ¥'(r,) < 0}.

Then we obtain the following result.

Lemma 3.1 Suppose the assumptions onn, I, p and X in Theorem 1.1. Then
(i) Q is empty.

(ii) Qy consists of at most one element.

(iii) s consists of at most one element.

Proof. Differentiating ®(r), we get

®'(r) = [?—;— +{@2n-1) - Xp+3)}r’+2(n-1)(n—2)

+2{r +2(n—1)+1} (i;i’) +l+3) (%ﬂ

(3.1)
n—-3 rl 2 s’ ~2
X777 exp ( ) e(r) / " exp (»—Z) o(s)*ds
1({, re/
——Sr+2m—-1)+Il+(p+3) | — ) -
r ‘ ¥
For any r, satisfying ®(r,) = (p + 3)/2 the equality
(3.2)

p+3

27'* r2+2n~1)+l+(p+3)(1’2%°(%{f—)“1)}

~exp (f;) w(r*f s mexp (— 57;) p(s)*ds
{

holds. Note that

2, {rf +2n—1)+1+(p+3) ("f(:r)))} >0, (3.3)
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since the left-hand side of (3.2) is positive. Combining (3.1) with r = r, and (3.2), we

obtain
&'(r,) = i)
2r, {r2+2(n — 1) + 1+ (p+3) (255)
where

-1 _
T(r) := ?—2——r4+ {(271—- Dp—2n+5—Xp+3)°+ E——Z—El} 72

H2(n - 1) +IH{(n - 2)p - (n+2) - 21} (3.4)
2 ry’ 2 [T¢ ?
In view of (3.3), we will investigate the sign of ¥(r,) instead of ®'(r.). Using (2.1) and
(2.2), it is casily seen that
lim ¥(r) = +o0,
lim (r)={2n-1)+{H{{n—-2)p—- (n+2) -2} <0.
Moreover, we have the following lemma whose proof will be given at the end of this

section.

Lemma 3.2 Under the assumptions on n, I, p and X in Theorem 1.1, there exisis a

unique number 7 € (0,00) satisfying ¥(#) = 0 such that
U(r)y<0 in [0,7) and T(r)>0 in (7, 00).

Recalling that the sign of ®'(r,) is equivalent to that of ¥(r.), from Lemma 3.2 we get
the sign of ®'(r.) as follows:

d'(r,) <0 if r €0,7),
®(r,)=0 if r,=*, (3.6)
'(r,) >0 if r, €(F00).
First, we will show (i). If ¢ = ®(r) and ¢ = (p + 3)/2 cross in (7, 00), then there exists
a unique number 7, in (,00) such that ®(r}) = (p + 3)/2 with &'(r,) > 0. But it is
impossible because of ®(r) — 2 as r — co. Therefore, O = 0.
Moreover, if ¢ = ®(r) and ¢ = (p + 3)/2 cross in [0,7), then there exists a unique
number 7 € [0,7) such that ®(r) = (p + 3)/2 with ®'(r}) < 0. Therefore, {13 = @ or
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Q3 = {r"}; so we conclude (iii). Statement (ii) is trivial in view of (3.6). |

Thus we conclude that the relation between ¢ = ®(r) and ¢ = (p+3)/2 in (r, g)-plane
is one of the following:
(a) ®(r) > (p+3)/2in [0,r)) and ®(r) < (p+3)/2 in (7}, 00),
(b) ®&(r) > (p+3)/2in [0,7) and ®(r) < (p+3)/2 in {F, 00),
(c) ®(r) > (p+3)/2in [0,7)) and ®(r) < (p+3)/2 in (r], c0)}\F.
(Here we used the notation introduced in the proof of Lemma 3.1.) Therefore, by putting

r* := 7" in cases (a) and (c) or r* = # in case (b}, (i} of Lemma 2.3 holds.

Proof of Lemma 3.2. In order to prove Lemma 3.2, we will investigate the sign of ¥'()

for 7 satisfying ¥(7) = 0. If we set
X(r):=r¢' [

A= —(p + 3)2;
B(r) = -2(p+3){r* +2(n— 1) +1};

Clr) := E)~~:—2~_—~]17*4+ {(Qn ~1)p—2n+5-Ap+3)°+ %(p - 5)}r2

H2(n - 1) +1H{(n-2)p - (n+2) - 21},
then ¥(r) can be rewritten as

U(r) = AX(r)? + B(r)X(r) + C(r). (3.7)
From (1.7), we can express X'(r) in terms of X (r) as |

X(r) - gX(r) — A, (3.8)

2_n—2

X'(r)= ——ifX('r)

r

So differentiating (3.7) and using (3.8), we obtain
A - -
v = - 2x () - {“(“ D+ B0 Ar} X(r)? - {*____(n 2B(r)

r

—B'(r) + (2AA + %ﬂ) 'r} X(r) — AB(r)r + C'(r).
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From ¥(7) = 0, X (f)? and X(F)® can be replaced by

x(r = -20x - €0,
N e (3.10)
o (245 e 20

Substituting (3.10) into (3.9), all the terms containing X (7) vanish and #¥'(F) turns out
to be a polynomial in 7% of degree 3:

(p+1){p-1)
9

y22(n—1)+H(n—-p+n—4—H{n-2p— (n+2) -2}

(p + 3)7V¥'(F) 7+ n(l,p,n, N7 + (1, p,n, A)F

where

n(l,p,n, ) = “)\P3+(Sn—-5,\—1+—;—)p2—3()\-2+i)P—3(nw3)\—1+—;—),

and

K(lpyn,X) = —3(p— DI+ [(2n - 3)p? ~ 6(2n — 1)p — 3(2n + 1) + 4\ (p +3)°|{
+2(n —1)(p — {=Ap? +3(n— 22 — L)p+3(n— 32 = 1)}.

We want to determine the sign of ¥'(7). Setting z = 72, we have (p + 3)F¥'(7) = O(z),
where ©(z) is a polynomial of degree 3 given by

_ +1p-1
O(z) = 5
+202n—-1)+1Hn-2p+n—4-1H{{n-2)p— (n+2) -2}

&® +n{p,n, \)z? + k(p,n, Nz

for z € [0,00). Concerning the profile of ©(z), we readily see

{ 0(0) = 2{2(n — 1) +1H{(n—2p+n—4—IH(n—2)p — (n+2) - 20},

(3.11)
Jim ©(z) = +oc0.

(Here, we must note that (n —2)p+n—4—1>0holdsif n > 3,p > 1+ (2 +1)/n and
~2 < | < n?=2n—2.) What may happen in (0,00) is clarified by the following lemmas.

Lemma 3.3 Suppose n >3, 2 <1<, 1+2+))/n<p<(n+242)/(n—2) and

set

NI o= (n — {2 +2(n+4)] + 4(2n + 1)}
0)= 41+2){I+2(n-1)} '
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Then ©(z) has exactly one zero in (0,00) if 0 < A < X*(1).

Proof. Note that it follows from n% — 2n — 2 > 1 for any n > 3 that ©(0) < 0 under

the assumptions on n, [ and p. Differentiating ©(z), we obtain
3
O'(z) = 5(p + D(p - Da* + 29(1,p,n, Nz + £(1,p,n, A).

Now we will show n(l, p,n, ) is positive under the assumptions on n, [, p and A. In fact,

define

+ 242
fi() =0, p,n,A), pE (1, %":T)

then we observe

fill)=8-4>0 (3.12)
and n+2+ 20 |
m-2r ()
(3.13)

=2{l4+2(n—-D}(n—-2){P+2(n+4)! +42n+1)}

-4l +2){I+2(n—-1)} Al > 0.
From (3.12) and (3.13), it is sufficient to show that f;(p) does not have any local minimum
in (1,(n+2+20)/(n — 2)). So consider the sign of f;(p), where p satisfies f{(p) = 0.

Using
fi(p) = =3Ap* +2 (371—5}\—1-}-‘;—)?—3()\— 2 +1)
and
{(p) = —6Ap +2 (3n —-5A—-1+ %) ,
we obtain
Bfi(B) = —6Ap*+2 (3n —BA—1+ %) P

= -3 —1)+3(1-2)<0.

Thus, if f;(p) has an extremum, then it must be a local maximum and we conclude

15, 3) = fu(p) > min {flm,fl (-—*ﬁil)} >0,

n-—2
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Since n{l,p,n,A) > 0, the quadratic equation ©'(z) = 0 does not have two solutions in
(0,00); so ©(z) has at most one extremum. Therefore, either ©(z) is increasing in [0, c0),
or ©(z) has a local minimum at #; € (0,c0) such that ©(z) is decreasing in [0,%;) and
increasing in (#1,00). Thus from (3.11) and ©(0) < 0 we can conclude that ©(z) has

exactly one zero in (0,00). W

Here, note that l_-}irg-;-o A*(l) = +o00 and the following result which is easily shown.

-2
Lemma 3.4 A*(I) is decreasing in (—2,00) and Jim A = n_4__ (< g)

So for | € (—2,1), which satisfies A*({) < n/2, and X € (A*(I),n/2), the profile of O(z)
has not been derived. First, we will prove the following result.

Lemma 3.5 Let n = 3. If =2 < 1 < 2/3, then ©(z) has ezactly one zero in (0,00) for
any X € (0,3/2) andp e (1+ (2+1)/3,5+21).

Proof. Since A*(2/3) = 85/112 > 3/4, for any A € (0,3/4), ©(z) has exactly one zero
in (0, 00) from Lemmas 3.3 and 3.4. So we suppose 3/4 < A < 3/2 and set

() = «(,p,3,A) _
= —3(p- 1) +{3(* —10p - 7) + 4\(p + 3)*}1
+4(p - 1) {-M?+6(1 - Np+3(2 - 3N} .

Then we get
‘ 2 _ 212
L) = —3p—1) {l _3(p 10p6(p71 —;—)4)\(194-3) }
{3(0* = 10p - 7) + 4\(p +3)*}
* 20— 1)
+4(p— 1) {=2p® +6(1 — N)p+3(2 - 3))}
and

3(p? — 10p —7) +4A(p+3)* S 3(p?—10p—T)+4-3(p+3)?
6(p—1) - 6(p—1)
6(p —1)*
6(p—1)
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241
LA |
> 1+ 3

241
—5

Thus the axis of quadratic function fy(l) is positive for all [ > —2. Moreover, since
£2(0) < 0 under the assumptions on p and X with [ = 0 (see Lemma 3.2 in [3]}, we obtain
fa(l) is negative in (—2,0]. Furthermore, if 0 <1 <2 /3, then p > 5/3, the axis of fo(l) is
greater than 2/3, and -
; fo (g) — —6)p® + (—26A + 39)p% + (6A — 32)p + 90X — 55
= —(3p-5){2\(p +8)* — 13p — 11}

< —(3p—5) {2 - —2-(}94—3)2 —13p - 11}
w-9{30-3)"-)

<o-of3-Y-3)
= 0

holds. Therefore, we have f3(I) is also negative in (0,2/3). Hence, we have fo(l) < 0,
ie., £(l,p,3,A) < 0 under the assummptions on /, p and A. Since x(I,p,3,A) < 0, the
quadratic equation ©'(z) = 0 has exactly one solution in (0,00); so ©(z) has a local
minimum at £, € (0, 00) such that ©(z) is decreasing in [0, #,) and increasing in (&5, 00).

Thus it follows from (3.11) that ©(z) has a unique zero in (0, c0). ‘ |

Next, we will show the following lemma.

Lemma 3.6 Let n > 4. Then there ezists some positive number I* = I*(n) € (0,1) such
that if =2 <l <l and1+(2+)/n<p<(n+2+2l)/(n-2), O(x) has ezactly one
zero in (0,00) for any A € (0,n/2).

Proof. Since it is easily seen

(n—2)(10n +13)
12(2n - 1)

A1) =
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and
(n — 2)(10n + 13) S 3(n-1)
12(2n — 1) 8
for any A € (0,3(n —1)/8), ©(z) has exactly one zero in (0,00) from Lemmas 3.3 and

3.4. So we suppose 3(n — 1)/8 < A < n/2 and set f3(I) := k(l,p,n,A). Then we get

Al = —3(p-1) {Z _ (2n—3)p* —6(2n - (lszi:i))@n +1)+ 4/\(p+3)2}
L AGn =3 —6(2n—1)p—3(2n+1) + A+ 3)2)°
12(p - 1)
+2n-De-D{-2p*+3(n-22-1)p+3(n—-3x-1)}

for n >4,

and

(2n — 3)p? — 6(2n — 1)p — 3(2n + 1) + 4A(p + 3)?

6(p—1)
(2n—3)p* —6(2n—1)p—3(2n+1)+4- fﬂﬁg_—g(p +3)2
- 6(p—1)
_ (in- 9)p* — 6(n+ 1)p+3(5n — 11)
12(p—1)

= 112{(7n 9)(p — 1) +8(n — 3)+6—g‘—3§l}.

Thus the axis of fg(l) is positive for all I > —2. Moreover, since f3(0) < 0 under the
assumptions on n, p and A with [ = 0 (see Lemma 3.2 in [3]), we obtain f3(/) is negative
in (—2,0]. Furthermore, if n > 4and 0 <! <1, then 1 <1 +2/n<p< %Jf% < 4, the
axis of f3(l) is greater than 1. In fact,

(2n — 3)p® — 6(2n — 1)p — 3(2n + 1) + 4\ (p + 3)?

6(p— 1)
> 1—12-{(7n-9)(p—1)+8(n_3)+1—%’—"‘_—‘1—3l}
> 11—2-{8(n—3)+}§%:%?2}
= Vo3 >

holds. Therefore, there exists some positive number I* = I*(n) € (0, 1) such that fs(l) is
negative in (0,1*). Hence, we have f5(I) < 0, i.e., (I, p,n,A) < 0 under the assummptions

on n, I, p and \. Since x(l,p,n,A) < 0, the quadratic equation ©' (z) = 0 has exactly
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one solution in (0,00); so ©(z) has a local minimum at &3 € (0,00) such that ©(z) is
decreasing in [0, %) and increasing in (%3, 00). Thus it follows from (3.11) that ©(z) has

a unique zero in (0, 00). |

Thus in view of Lemmas 3.3, 3.5, 3.6 and (3.11), there exists a unique number zy €
(0, 00) such that
O(z) <0 in (0,z), ie. U(f)<0O
O(ze) =0, ie. ¥(f)=0 if 7= /T,
O(z) >0 in (zg,00), 1Lle. ¥ (F)>0
Therefore, in view of (3.5), there exists a unique number # satisfying ¥(7) = 0 with
# > /Ty, such that ¥(r) < 0 in [0,7) and ¥(r) > 0 in (¥, 00). This completes the proof

of Lemma 3.2. n
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