Tilings and Fractals from Pisot substitutions

Shunji ITO (Kanazawa University)

This is the note for the lecture at RIMS (Kyoto University).

1 Definition of Pisot Unit Substitutions

$$\mathcal{A} := \{1, 2, \dots, d\}$$
 (alphabet)
$$\mathcal{A}^* := \bigcup_{n=0}^{\infty} \mathcal{A}^n \quad \text{(free monoid, i.e., the set of finite words)}$$

 $(G\{1,\cdots,d\}: a \text{ free group of rank } d)$

Definition 1.1 $\sigma: \mathcal{A}^* \longrightarrow \mathcal{A}^*$ is a substitution if

(1)
$$\sigma(i) = W^{(i)} \in \mathcal{A}^*, \quad W^{(i)} \neq \emptyset$$

 $= w_1^{(i)} \dots w_k^{(i)} \dots w_{l_i}^{(i)}, \quad w_k^{(i)} \in \mathcal{A}$
 $= P_k^{(i)} w_k^{(i)} S_k^{(i)};$

(2)
$$\sigma(w_1 \ldots w_k) := \sigma(w_1) \cdots \sigma(w_k)$$
 for $w_1 \ldots w_k \in \mathcal{A}^*$.

(A substitution σ is invertible if σ is an automorphism on $G\{1,2,\cdots d\}$.)

Let L_{σ} be a matrix of σ , that is,

 $L_{\sigma}\left(i,j\right):=$ the number of the letter i contained in $\sigma\left(j\right)$.

Example 1.1 (Fibonacci substitution)

$$\sigma_F: \begin{array}{ccc} 1 & \rightarrow & 12 \\ 1 & \rightarrow & 1 \end{array}, \quad L_{\sigma_F} = \left[\begin{array}{ccc} 1 & 1 \\ 1 & 0 \end{array} \right].$$

Example 1.2 (Rauzy substitution)

Assumption For the substitution σ ,

- (1) L_{σ} is primitive, that is, $\exists N : L_{\sigma}^{N} > 0$;
- (2) L_{σ} is unimodular, that is, $\det L_{\sigma} = \pm 1$;
- (3) L_{σ} is *Pisot type*, that is, for eigenvalues $\lambda = \lambda_1, \lambda_2, \dots, \lambda_d$ of L_{σ} ,

$$\lambda = \lambda_1 > 1 > |\lambda_i|, \quad i = 2, \dots, d;$$

- (4) the characteristic polynomial $\Phi_{\sigma}(x)$ of L_{σ} is irreducible;
- (5) $\sigma(1) = 1W'$.

We say the substitution σ satisfying Assumption the *Pisot Unit substitution*. On Assumption (5),

$$w_{\sigma} := \lim_{n \to \infty} \sigma^n (1) = s_1 s_2 \cdots s_m \cdots$$

is a fixed point of σ , that is, $\sigma(w_{\sigma}) = w_{\sigma}$.

 $f: \mathcal{A}^* \to \mathbf{Z}^d$ is a homomorphism given by

$$f(i) := e_i$$
 and $f(w_1 \cdots w_k) := \sum_{j=1}^k f(w_j)$.

Lemma 1.1 The following relation holds:

$$\begin{array}{cccc}
A^* & \xrightarrow{\sigma} & A^* \\
f & \downarrow & \downarrow & f \\
Z^d & \xrightarrow{L_{\sigma}} & Z^{d*}
\end{array}$$

Let v > 0 be a positive eigenvector of λ and P be L_{σ} -invariant contractive plain, that is,

$$\mathbf{R}^{d}:=\mathcal{L}\left(\mathbf{v}\right) \oplus P.$$

The projection π is given by

$$\pi: \mathbf{Z}^d \to P \text{ along } \mathbf{v}.$$

Lemma 1.2 The following relation holds:

Figure 1: The figure of $\{f(s_0s_1\cdots s_k)\mid k=0,1,2,\cdots\}$ on σ_F .

For the fixed point $w_{\sigma} = s_1 s_2 \cdots s_n \cdots$,

$$Y := \pi \{ f(s_0 s_1 \cdots s_k) \mid k = 0, 1, \cdots \},$$

$$Y_i := \pi \{ f(s_0 s_1 \cdots s_{k-1}) \mid \exists k : s_k = i, \ k = 1, 2, \cdots \},$$

$$Y'_i := \pi \{ f(s_0 s_1 \cdots s_k) \mid \exists k : s_k = i, \ k = 0, 1, \cdots \}$$

where $s_0 = \varepsilon$ (the empty word).

Definition 1.2 $X_i := \text{ the closure of } \pi Y_i \text{ is called atomic surfaces}$ $(X'_i := \text{ the closure of } \pi Y'_i) \text{ and } X := \bigcup_{i=1}^d X_i \left(= \bigcup_{i=1}^d X'_i \right) \text{ is called atomic surface of the substitution } \sigma.$

On Example 1.1 and Example 1.2, we have the figures (see Figure 2 and Figure 3 respectively).

Remark There is the theorem. Theorem ([E-I]): On $d=2, X_i$ is interval is the interval iff σ is invertible.

Figure 2: The figure of the atomic surface on $\sigma_F: 1 \mapsto 12, 2 \mapsto 1$.

Figure 3: The figure of the atomic surface on $\sigma_R: 1 \mapsto 12, 2 \mapsto 13, 3 \mapsto 1$.

Theorem 1 ([A-I], [I-R]) Atomic surfaces satisfy

- (1) X, X_i, X'_i are compact sets;
- (2) $\overline{int.X} = X$;
- $(3) \ L_{\sigma}^{-1}X_{i} = \bigcup_{j=1}^{d} \bigcup_{k:W_{k}^{(j)}=i} \left(X_{j} + L_{\sigma}^{-1}\left(f\left(P_{k}^{(j)}\right)\right)\right) \quad \text{(non-overlapping)};$
- (4) $^t(\mid X_1\mid,\ldots,\mid X_d\mid)$ is the eigenvector of L_σ with respect to $\lambda=\lambda_1>1$ where $\mid B\mid$ is the volume of the set B.

Sketch of proof. On the notation,

$$\begin{array}{rcl} (\boldsymbol{x},\ i) &:=& \{\boldsymbol{x}+\lambda\boldsymbol{e}_i\ |\ 0\leq \lambda\leq 1\,\}\,,\\ \sigma\left(\boldsymbol{0},\ i\right) &:=& \sum_{k=1}^{l_i}\left(f\left(P_k^{(i)}\right),\ W_k^{(i)}\right), & 1\leq i\leq d,\\ \overline{w_\sigma} &:=& \lim_{n\to\infty}\sigma^n\left(\boldsymbol{0},\ 1\right) & \text{(the broken line starting from }\boldsymbol{0}\), \end{array}$$

we define

$$(Y_{i}, i) := \{(\boldsymbol{y}, i) \mid (\boldsymbol{y}, i) \in \overline{w}\}, \quad \overline{w} = \bigcup_{i=1}^{d} (Y_{i}, i)$$

$$= \left\{(\boldsymbol{y}, i) \mid (\boldsymbol{y}, i) \in \sigma \left(\bigcup_{j=1}^{d} (Y_{j}, j)\right)\right\}$$

$$= \bigcup_{j=1}^{d} \{(\boldsymbol{y}, i) \mid (\boldsymbol{y}, i) \in \sigma (Y_{j}, j)\}$$

$$= \bigcup_{j=1}^{d} \bigcup_{k:W_{r}^{(j)}=i} \left\{\left(L_{\sigma}\boldsymbol{y} + f\left(P_{k}^{(j)}\right), i\right) \mid \boldsymbol{y} \in Y_{j}\right\}.$$

Taking only the starting points of line segments, we get Theorem 1 (3).

Question Are X_i , i = 1, 2, ..., d non-overlapping?

Definition 1.3 Substitution σ satisfies the coincidence condition if $\exists n, k$:

(1)
$$f(P_k^{(n,1)}) = f(P_k^{(n,2)}) = \dots = f(P_k^{(n,d)})$$

(2)
$$w_k^{(n,1)} = w_k^{(n,2)} = \dots = w_k^{(n,d)}$$

$$\sigma^{n}(1) = w_{1}^{(n,1)} \cdots w_{k}^{(n,1)} \cdots w_{l(n,1)}^{(n,1)}$$

 $\vdots = \vdots$ $\sigma^{n}(d) = w_{1}^{(n,d)} \cdots w_{k}^{(n,d)} \cdots w_{l(n,d)}^{(n,d)}$

Proposition 1.1 If σ satisfies the coincidence condition, then X_i , i = 1, 2, ..., d are non-overlapping.

Conjecture Any Pisot unimodular substitutions satisfy the coincidence condition.

Remark On d = 2, the conjecture is proved by Barge and Diamond ([B-D]).

If X_i , i = 1, 2, ..., d are non-overlapping, then we have two dynamical systems on X:

(1) $T: X \to X$,

$$T\boldsymbol{x} = L_{\sigma}^{-1}\boldsymbol{x} - L_{\sigma}^{-1}\pi f\left(P_{k}^{(j)}\right) \quad \text{if } \boldsymbol{x} \in X_{i}, \ \exists j,k: L_{\sigma}^{-1}\boldsymbol{x} \in X_{j} + L_{\sigma}^{-1}\pi f\left(P_{k}^{(j)}\right).$$

Therefore, T is Markov endomorphism with the structure matrix ${}^{t}L_{\sigma}$.

(2)
$$W: X \to X$$
 is well-defined $x \mapsto x - \pi e_i$ if $x \in X_i$ and W is called the domain exchange transformation (later, we will see $W \simeq$ the rotation on T^{d-1}).

From Markov endomorphism (1), we have the following numerical expression.

Corollary 1.1 Using Markov endomorphism, X_i is presented by

$$X_{i} = \left\{ \pi_{c} f\left(P_{k_{0}}^{(j_{0})}\right) + \pi_{c} L_{\sigma} f\left(P_{k_{1}}^{(j_{1})}\right) + \pi_{c} L_{\sigma}^{2} f\left(P_{k_{2}}^{(j_{2})}\right) + \dots + \pi_{c} L_{\sigma}^{n} f\left(P_{k_{n}}^{(j_{n})}\right) + \dots \right\}$$

where
$$(*)$$
 is defined by $\begin{pmatrix} j_0 & j_1 & \cdots & j_n & \cdots \\ k_0 & k_1 & \cdots & k_n & \cdots \end{pmatrix}$ is given by $w_{k_n}^{(j_n)} = j_{n-1}$ and $w_{k_0}^{(j_0)} = i$. (see Figre 4).

Figure 4: Figures of Markov endomorphism T and the domain exchange transformation W on Example 1.2.

2 Stepped Surfaces and Tiling Substitutions

For

$$(\boldsymbol{x}, i^*) \in \boldsymbol{Z}^d \times \{1^*, \dots, d^*\},$$

we give a geometrical meaning such that

$$(oldsymbol{x},\ oldsymbol{i^*}) := \left\{egin{array}{c} \sum \limits_{egin{array}{c} j=1,\ldots,d,\ j
eq i} oldsymbol{x} + \mu_j oldsymbol{e}_j \end{array}
ight|\ 0 \leq \mu_j \leq 1
ight\}$$

(see Figure 5).

Figure 5: The figures of $(0, i^*)$.

Definition 2.1 $S := \{(\boldsymbol{x}, i^*) \mid (\boldsymbol{x}, \boldsymbol{u}) \geq 0, \ (\boldsymbol{x} - \boldsymbol{e}_i, \boldsymbol{u}) < 0\}$ is called the stepped surface of the contract plain P where the row vector $\boldsymbol{u} >= 0$ is the eigenvector such that $\boldsymbol{u}L_{\sigma} = \lambda \boldsymbol{u}$ and the contract plain P is given by $P = \{\boldsymbol{x} \mid (\boldsymbol{x}, \boldsymbol{u}) = 0\}$.

Definition 2.2 $\pi S := \{\pi(\mathbf{x}, i^*) \mid (\mathbf{x}, i^*) \in S\}$ is called a tiling of P from the stepped surface S (see Figure 6).

3 Dual Substitution σ^* (Tiling Substitution)

 $S^* := \{$ the finite sum of elements of S $\} \simeq \{$ the patches of tiles of the tiling $\pi S \}$. Let us define the dual (tiling) substitution σ^* by

$$\sigma^*\pi\left(\boldsymbol{x},\ i^*\right) = L_{\sigma}^{-1}\pi\boldsymbol{x} + \sum_{j=1}^{d} \sum_{\left(\begin{array}{c}j\\k\end{array}\right):W_k^{(j)} = i} \pi_c\left(L_{\sigma}^{-1}f\left(P_k^{(j)}\right),\ j^*\right)$$

(see Figure 7 and Figure 8).

Figure 6: The figure of the tiling πS of P from the stepped surface S on σ_R in Example 1.2.

Figure 7: The figure of $\sigma_R^*\pi\left(\mathbf{0},\ i^*\right)$.

Figure 8: The figure of $\sigma_R^{*n} \bigcup_{i=1,2,3} \pi(e_i, i^*)$ on σ_R .

Theorem 2 ([A-I]) σ : An Pisot Unit substitution, then

- (1) $\sigma^*: S^* \to S^*$ is well-defined;
- (2) $\forall (\boldsymbol{x}, i^*) \in S, \exists (\boldsymbol{y}, j^*) \in S: (\boldsymbol{x}, i^*) \in \sigma^*(\boldsymbol{y}, j^*);$
- (3) $(\boldsymbol{x}, i^*) \neq (\boldsymbol{y}, j^*) \in S \Rightarrow \sigma^*(\boldsymbol{x}, i^*) \cap \sigma^*(\boldsymbol{y}, j^*) = \emptyset.$

Theorem 3 ([I-R]) Let $\mathcal{U} = \{\pi (e_i, i^*) \mid i = 1, 2, \cdots, d\}$, then,

- (1) $\sigma^*\mathcal{U} \succ \mathcal{U}$;
- (2) if $d(\partial(\sigma^{*n}\mathcal{U}), \mathbf{0}) \to \infty$ ($n \to \infty$), then

$$\tau' := \{\pi\left(\boldsymbol{x}, \ j^*\right) \mid \pi\left(\boldsymbol{x}, \ j^*\right) \in \sigma^{*n}\pi\left(\boldsymbol{e}_i, \ i^*\right) \text{ for some } n \text{ and } j^*\}$$

coincides with πS and a quasi-periotdic tiling;

- (3) $-X_i = \lim_{n\to\infty} L_\sigma^n \sigma^{*n} \pi(e_i, i^*);$
- (4) $\tau := \{\pi \boldsymbol{x} X_j \mid \pi(\boldsymbol{x}, j^*) \in \tau'\}$ is also a quasi-periodic tiling of P.

Figure 9: The figure of the quasi-periodic tiling τ .

References

- [A-I] P.ARNOUX and S.ITO, Pisot substitutions and Rauzy fractals, Bull. Belg. Math. Soc., 8(2001), no.2, 181–207.
- [B-D] M.BARGE and B.DIAMOND, Coincidence for substitutions of Pisot type, Bull. Soc. Math. France 130 (2002), no.4, 619-626.
- [E] H.EI, Some properties of invertible substitutions of rank d, and higher dimensional substitutions, Osaka J. Math. 40 (2003), 543-562.
- [E-I] H.EI and S.Ito Decomposition theorem on invertible substitutions, Osaka J. Math. 35 (1998) no.4, 821–834.
- [E-I] H.EI and S.ITO Tiling from some non-irreducible Pisot substitutions, to appear in Discrete Math. & Th. Computer Science.
- [I-R] S.ITO and H.RAO, Atomic surfaces, tilings and coincidence I. Irrecucible case, to appear in Israel J..
- [S-A-I] Y.SANO, P.ARNOUX and S.ITO, Higher dimensional extensions of substitutions and their dual maps, J. Anal. Math. 83 (2001), 183-206