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1 Introduction
This report is a commentary on the paper “On a problem in information dynamics of cellular
automat\"a written and subm itted by Friedrich von Haeseler (KU Leuven) [1]. He has developed
a general setting for studying a problem posed by H.Nishio and T.Saito in connection with
information dynamics of cellular automata (CA for short) $\lfloor\Gamma 6]$ . Particularly he shows that the
lattice introduced by them is anti-isomorphic to a certain partition lattice.

First, we shall give an introduction to information dynamics of CA and then present von
Haeseler’s results utilizing (the LaTeX source of) his manuscript The references are very
limited. For thle general of algebra and polynomials over a finite field, we refer to [2] and [3],
respectively.

2 Information Dynamics of Cellular Automata

2.1 Cellular automaton on a finite field

One-dimensional CA on a finite field is defined by a 4-tuple $(Q, \mathbb{Z}, N, f)_{r}$ where $Q$ is the finite
set of cell states, $\mathbb{Z}$ is the set of integers, $N$ is the neighborhood and $f$ is the local function.

State Set $Q$ is assumed to be a finite field $\mathrm{G}\mathrm{F}(\mathrm{g})$ , where $q=p^{n}$ with prime $p$ and positive
integer $n$ .

$N$ is the neighborhood (index) which is assumed here to be the elementary neighborhood
$N=\{-1,0, +1\}$ .

The local function $f$ : $Q\mathrm{x}$ $Q$ )( $Qarrow Q$ is uniquely expressed by the polynomial form:

$f(x, y, z)=u_{0}+u_{1}x+u_{2}y+\cdots+u_{i}x^{h}y^{i}z^{k}+\cdots$

$+u_{q^{3}-2}x^{q-1}y^{q-1}z^{q-2}+u_{q^{3}-1}x^{q-1}y^{q-1}z^{q-1}$ ,

where $u_{i}\in Q(0\leq i\leq q^{3}-1)$ . $\langle$ 1)

$x$ , $y$ and $z$ assume the state values of the neighboring cells -1(left), $\mathrm{O}(\mathrm{c}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{e}\mathrm{r})$ and $+1(\mathrm{r}\mathrm{i}\mathrm{g}\mathrm{h}\mathrm{t})$ ,

respectively.

The global map $F$ : $Carrow C$ is defined on the set of configurations $C=Q^{\mathrm{Z}}$ : For any $\mathrm{i}\in \mathbb{Z}$ ,
$\mathrm{F}\{\mathrm{c}$) $(\mathrm{i})=f(c(\mathrm{i} -- 1), \mathrm{c}(\mathrm{i}) c(\mathrm{i}+1"$ , where $c(\mathrm{i})$ is the state of cell $\mathrm{i}\in \mathbb{Z}$ of $c\in C$ . For a
configuration $c\in C$ , the dynamics of CA is defined by $F^{\mathrm{f}+1}(c)=F(F^{t}(c"$ , where $F^{0}(c)=c$ .
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2.2 Information X and polynomial states
Let $X$ be a symbol different from those used in the polynomial form (1). It stands for an
unknown state or the information of the cell in CA and will be called the information variable. In
order to investigate the dynamics of information $X$ in CA space, we consider another polynomial
form, which generally defines the cell state of the extended $\mathrm{C}\mathrm{A}$ .

$\mathrm{g}(\mathrm{X})=a_{0}+a_{1}X+\cdots+a_{i}X^{i}+\cdots+a_{q-1}X^{q-1}$ , where $a_{i}\in Q(0\leq i\leq q-1)$ . (2)

The polynomial form $g$ uniquely defines a function $Qarrow Q$ and the set of such functions is
denoted by $Q[X.$ $Q[X]$ is a polynomial ring with identity. Note that $pX=0$ and $X^{q}-X=0$

in $Q[X]$ .

2.3 Extended $\mathrm{C}\mathrm{A}[X]$ or Polynomial State CA
Based upon $\mathrm{C}\mathrm{A}=(Q, f)$ we define its extension $\mathrm{C}\mathrm{A}[X]=(Q[X], f_{X})$ , where the set of cell states
is $\mathrm{Q}[\mathrm{X}]$ . $\mathrm{C}\mathrm{A}[X]$ will be called the polynomial state $CA$ over $GF(q)$ . The local function $f_{X}$ is
defined on the same neighborhood and expressed by the same polynomial form $f$ as in $(Q, f)$ .
The variables $x$ , $y$ and $z$ , however, move in $Q[X]$ instead of $Q$ . That is, $f_{X}$ : $Q[X]\mathrm{x}$ $Q[X]\mathrm{x}$

$Q[X]arrow Q[X]$ .

2.4 Information dynamics of $\mathrm{C}\mathrm{A}[X]$

$F_{x}$ : $C_{X}arrow C_{X}$ , where $C_{X}=Q[X]^{\mathrm{Z}}$ . For any $\mathrm{i}\in \mathbb{Z}$ , Fx (cx)(i) $=f(c_{X}(\mathrm{i}-1), c_{X}(\mathrm{i}),$ $c_{X}(\mathrm{i}+1))$ ,
where $c_{X}(\mathrm{i})$ is the state of cell $\mathrm{i}\in \mathbb{Z}$ of $c_{X}\in C_{X}$ . For a configuration $cx$ $\in c_{X}$ , the dynamics
of $\mathrm{C}\mathrm{A}[X]$ is defined by $F_{X}^{t+1}(c_{X})=F_{X}(F_{X}^{t}\langle c_{X}))$ , where $F_{X}^{0}(c_{X})$ $=c_{X}$ .

$\ldots$ -2 -1 0 $+1$ $+2\ldots$

$c_{X}^{0}$ constants w X constants $w’$

$c_{X}^{t}\ovalbox{\tt\small REJECT}^{1}F_{X}^{t}$

$.\cdot.\cdot.\cdot.\cdot\cdot\cdot.\cdot.\ovalbox{\tt\small REJECT}^{\backslash }\prime\prime\prime\prime\prime g\mathrm{a}\cdots \mathit{9}1^{\cdot}\cdot.\cdot\prime\prime\prime.\cdot.\cdot.\cdot g_{2}.\cdot\cdot...\cdot.g_{\tau}......\cdot..g_{3}\prime\prime\prime\prime\prime\prime’\backslash \prime l\prime\prime\prime\prime\prime\prime\prime\prime\prime l\backslash \prime\prime\prime\prime\prime l\iota\prime\prime\backslash \backslash \backslash \backslash \backslash \iota\backslash \backslash \backslash \backslash \backslash \backslash \backslash \backslash \backslash \backslash \backslash \backslash \backslash \backslash ..\backslash ...\cdot\iota.\iota\backslash .\backslash$

constants $w$ $X$ constants $w’$

$-\mathrm{f}$ 0 $t$

Fig. 1. Information dynamics of $\mathrm{C}\mathrm{A}[X]$

Fig.1, illustrates an elementary information dynamics, which begins with the initial configura-
tion $c_{X}^{0}=wXw’$ , where $c_{X}^{0}(0)$ $=X$ and $w$ and $w’$ are semi infinite strings of constant polynomial
functions. Obviously $w$ and $w’$ do not contain any information about $X$ . Then, by repeated
application of $F_{X}$ , the information $X$ spreads in time $t$ among cells $-t,$ $-t+1$ , ..., 0, ..., $t-1$ , $t$

and at time $t$ we observe a configuration $\mathrm{c}_{X}^{t}$ , which might contain some polynomials in $X$ . Note
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that a same polynomial may appear at several cells. Such a set of polynomials is generally
expressed by $G_{c_{X}}‘=\{g_{1}, g_{2_{?}}\ldots, g_{r}\}$ . $G_{\mathrm{c}_{X}^{2}}$ is considered to preserve some amount of information
of $X$ contained by the initial configuration $c_{X}^{0}$ .

2.5 Completeness and Degeneracy
Among several notions pertinent to information dynamics, we concentrate here on the com-
pieteness and the degeneracy.

The paper [6] contains the following definitions and a basic result.

Definition 1 (complete configuration) A subset $G\subseteq Q[X]$ is called complete, if $G$ gen-
erates $Q[X]$ . Any constant is allowed to be used at the computation. For any configuration
$c_{X}\in C_{X}$ , define the set of polynomials $G_{c_{X}}=\{c_{X}(\mathrm{i})|\mathrm{i}\in \mathbb{Z}\}$ $\subseteq Q[X]$ . A configuration $c_{X}$ is
called complete, if $G_{\mathrm{c}_{X}}$ is complete.

Definition 2 (Degeneracy) For a configuration $cx\in Q[X]^{\mathrm{Z}}$ , let $\psi_{a}(c_{X})$ be a substitution of
$a$ in $c$ Then, $c_{X}$ is called $m$-degenerate, if

$|\{\psi_{a}(cx)|a\in Q\}|=|Q|-m$ .

It is easily seen thai $0\leq m\leq|Q|-1$ Such $m$ will be called the degree of degeneracy of $c_{X}$ and
denoted as $m(cx)$ . A configuration $cx$ is simply called degenerate if $m(cx)\neq 0$

Theorem 3 A configuration is complete if and only if it is not degenerate.

2,6 Generation of subrings and value size
In [5], the notion of the completeness is generalized and the degree of completeness is defined
and related to the degree of degeneracy.

For a subset $G\subseteq Q[X]$ , by $\langle G\rangle$ we mean the subring of $Q[X]$ which is generated by $G$ and
constant polynomial functions. Note that $\langle G\rangle$ is expressed as $\langle G\rangle_{N}$ in von Haeseler’s formulation
below.

For any subset $G\subseteq Q[X]$ , the $log$-ring size or degree of completeness $\lambda(G)$ is defined by the
following equation.

$\lambda(G)=\log_{q}|\langle G\rangle|$ (3)

Note that $1\leq\lambda\langle G)\leq q$ .

Suppose that a subset $G\subseteq Q[X]$ consists of $r$ polynomials: $G=\{g_{1}$ , $g_{2}$ , $\ldots$ , $g_{r}|g_{i}\in Q[X]$ , $1\leq$

$\mathrm{i}\leq r\}$ . Then an $r$-tuple of values $(g_{1}(a), g_{2}(a)$ , ..., $g_{r}(a))$ for $a\in Q$ is called the value vector of
$G$ for $a$ and denoted by $G(a)$ . Note that $G(a)\in Q^{r}$ . The value set $V(G)$ of $G$ is defined by

$V(G)=\{G(a)|a\in Q\}$ . (4)

Finally we define the value size of $G$ by $|V(G)|$ . Note that $1\leq|V(G)|\leq q$ . Then, we have the
following theorems which relate the degree of completeness to that of degeneracy.

Theorem 4
$\lambda(G)=\log_{q}|\langle G\rangle|=|V(G)|$ . (5)

Proof: See [5]. In [4] is given a new proof based on the partition of value set $V(G)$ , which has
been inspired by von $\mathrm{H}\mathrm{a}\mathrm{e}\mathrm{s}\mathrm{e}1\mathrm{e}\mathrm{r}’\mathrm{s}$ results.

The following theorem, which is equivalent to the above theorem, has been given without proof
in the concluding remarks of [6]. Note that the case of $m=0$ corresponds to Theorem 3, i.e.
$G_{c_{X}}$ generates $Q[X]$ .
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Theorem 5
$\lambda(G_{c_{X}})$ $+m(cx)=q$, for any cx $\in C_{X}$ , (6)

2.7 Problem posed by H.Nisho and T.Saito
The follow ing problem arises from the above considerations on the degrees of completeness and
degeneracy and has attracted von Haeseler,

Characterize the lattice (by set inclusion) of subrings of $Q[X]$ generated by arbitrary subsets $G$

of $Q[X]$ .

Besides Theorem 4, [5] contains several computational examples concerning the lattice structure
of subrings of $Q[X]$ , but H.Nishio has not succeeded in obtaining a complete solution.

3 F. von Haeseler’s results

3.1 Formulation
Prom now on $\mathrm{F}$ denotes a finite field with $q$ elements The set of all maps $g:\mathrm{F}\prec \mathrm{F}$ is denoted
as $\mathrm{F}^{\Gamma}$ . It is a ring with pointwise addition and multiplication, i.e.,

$(f+g)(x)=f(x)+g(x)$ and $(fg)(x)=f(x)g(x)$ .

Nov let $G\subseteq \mathrm{F}$ and let $\langle G\rangle_{N}$ be the set of all finite sums of finite products of elements in $G$

together with the constant maps, $1.\mathrm{e}_{)}$. an element $f$ of { $\mathrm{G})\mathrm{w}$ is given as

$f= \sum_{i=0j}^{n}‘\prod_{=0}^{m}.g_{j_{\mathrm{t}}}$ ,

where $gj_{j}$ in $G$ or a constant function.

Then H. Nishio and T. Saito ask for a description of the lattice consisting of all sets $\langle G\rangle_{N}$ ,
$G\underline{\subseteq}\mathrm{F}^{\Gamma}$ . Moreover, they are interested in criteria for $\langle G\rangle_{N}=\mathbb{P}$ .

We consider the above problem in a slightly more general setting, which can be described as
follows.
Let $X$ be a finite set. The set of maps $g$ : $Xarrow \mathrm{F}$ is denoted as $\mathrm{F}^{X}$ . Note that $\mathrm{F}^{X}$ i $\mathrm{s}$ a ring
with pointwise addition and multiplication. For a subset $G$ of $\mathrm{F}^{X}$ the set $\langle G\rangle$ denotes the set
of all finite linear combinations of finite products of elements in $G$ , i.e., an element $f$ of $\langle G\rangle$ is
given as

$f$ $= \sum_{i=0}^{n}c_{i}\prod_{j_{\mathrm{t}}=0}^{m}.g_{j}.$ ,

where $c_{i}\in \mathrm{F}$ and $g_{j}$ , in $G$ . Note that $\langle G\rangle_{N}=\langle G\cup \mathrm{C}\rangle)$ where $\mathrm{C}$ is the set of constant functions.

The extended problem is now: Describe the lattice given by this construction and the relation
with the lattice generated by H. Nishio and T. Saito.

It is clear that the following holds:. $\langle G\rangle$ is the smallest (w.r.t. inclusion) subring $R$ of $\mathrm{F}^{X}$ that contains $G$ and that is an
$\mathrm{F}$-vectorspace, i.e., $f\in R$ implies af $\in R$ for all $\alpha\in$ F.. $\langle G\rangle_{N}$ is the smallest (w.r.t. inclusion) subring R of $\mathrm{F}^{X}$ that contains G and the constant
functions, and R is an F-vectorspace
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Thus one has : $\mathcal{L}(X,\mathrm{F})=\{\{\mathrm{G})|G\subseteq \mathrm{F}^{X}\}$ is the set of all subrings of $\mathrm{F}^{X}$ which are also F-
vectorspaces, and $\mathcal{L}_{N}(X, \mathrm{F})=\{\{\mathrm{G}) |G\subseteq \mathrm{F}^{X}\}$ is the set of all subrings of $\mathrm{F}^{X}$ which contain
the constant functions and are $\mathrm{F}$-vectorspaces. Moreover,

$\mathcal{L}_{N}(X, \mathrm{F})\subset \mathcal{L}(X, \mathrm{F})$ .

3.2 Characterization of generating sets
A generating set $G$ is rninirnal if its cardinality $|G|$ is smallest among all generating sets. A
generating set $G$ is properly generating if no proper subset $G’\subset G$ is a generating set. Later
we shall see that a properly generating set is not necessarily a minimal generating set. If
$\langle G\rangle_{N}=\mathrm{F}^{X}$ , then $G$ is called N-generating.
In order to characterize generating sets we introduce some notions. For $G\subseteq \mathrm{F}^{X}$ the support of
$G$ is the set

$\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(G)=$ {$x\in X|$ there is $g\in G$ with $g(x)\neq 0$ }.

Two points $x$ , $y\in X$ are called $G$ -equivalent, denoted as $x\sim cy$ , if

$g(x)=g(y)$ for all $g\in G$ .

$X/\sim G$ denotes the set of equivalence classes and $\pi$ : $Xarrow X/\sim G$ is the canonical projection.

Then one has

Lemma 6 [LI]

1. $\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(G)=\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(\langle G\})$

2, $x\sim cy$ if and only if $x\sim\langle G\rangle y$ .

The set $G$ separates if for every pair $x$ , $y\in X$ with $x\neq y$ there exists a $g\in G$ such that

$g(x)\neq g(y)$ .

Theorem 7 [Tl] The set G $\subseteq \mathrm{F}^{X}$ is generating if and only if

1. $G$ is separating and

2. $\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(G)=X$ .

Corollary 8 [Cl] $\langle G\rangle_{N}=\mathrm{F}^{X}$ if and only if G separates

Theorem 7 also allows a description of $\langle$ $G_{/}^{\backslash }$ if $\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(G)\neq X$ .

Theorem 9 [T2]

1. The ring $\langle G\rangle$ is isomorphic to the ring $\mathrm{F}^{\mathrm{u}\mathrm{p}\mathrm{p}(G)/\sim_{G}}$ .

2. The ring $\langle G\rangle_{N}$ is isomorphic to the ring $\mathrm{F}^{X/\sim_{G}}$

Proof. Ad 1, For every $g\in G$ there exists a unique and well defined map $g_{\sim_{G}}$ such that the

diagram commutes.
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Moreover, $($cty $+\beta h)_{\sim_{G}}=\alpha(g)_{\sim_{G}}+\beta(h)_{\sim_{G}}$ and $(gh)_{\sim_{G}}=(g)_{\sim c}(h)_{\sim_{G}}$ for all $\alpha$ , $\beta\in \mathrm{F}$ and a1J
$g$ , $h\in G$ . This implies that for every $h\in\langle G\rangle$ there exists a unique $h_{\sim_{G}}\in\langle \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(G)/\sim c\rangle$ such
that the diagram commutes

Let $G_{\sim G}=\{g_{\sim}G|g\in G\}$ , then $G_{\sim G}\subseteq \mathrm{F}^{\mathrm{u}\mathrm{p}\mathrm{p}(G)/\sim G}$ . The above considerations show that
the rings $\langle G\rangle$ and $\langle G_{\sim G}\rangle$ are isomorphic. Since $G_{\sim c}$ satisfies the conditions of Theorem 7 for
$X=\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(G)/\sim c$ , this proves the first assertion.
The second assertion follows from $\langle G\rangle_{N}=\langle G\cup \mathrm{C}\rangle$ and the fact that $\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(G\mathrm{U}\mathrm{C})$ $=X$ combined
with the first assertion.

$\blacksquare$

This also gives

Corollary 10 1. $|\langle G\rangle|=q^{|\sup \mathrm{p}(G\rangle/\sim_{G}}|$ .

2. $|\langle G\rangle_{N}|=q^{|X/\sim c|}$ .

Remarks by Nishio: We notice that the second equation of this corollary is equivalent to
Equation (5) of Theorem 4 given in the previous section.

3.3 The lattice $\mathcal{L}(X,$F)
In this section we introduce the lattice $(\mathcal{L}(X, \mathrm{F})$ , $\Lambda,$ $\vee)$ and show that it is anti-isomorphic to a
partition lattice.

A lattice is any nonempty partially ordered set in which any two elements $a$ and $b$ have a least
upper bound, $a\vee b$ , and a greatest lower bound, a $\Lambda b$ . The operation $\vee$ is called join, and the
operation A is called meet

The set $\mathcal{L}(X, \mathrm{F})$ is via inclusion a partially ordered set; meet and join are given as

$R_{1}$ A $R_{2}=R_{1}\cap R_{2}$

$R_{1}\vee R_{2}=\langle R_{1}\cup R_{2}\rangle$

i.e., $\mathrm{C}(\mathrm{x})\mathrm{F})$ , $\Lambda,$ $\vee)$ is a lattice.

Of particular importance is the partition lattice of a finite nonempty set $Y$ . A partition of $Y$ is
given as $P=\{p_{1}$ , $\ldots$ : $p_{s}\}$ , where $p_{i}$ are mutually disjoint, nonempty subsets of $Y$ such that

$Y= \bigcup_{l=1}^{s}p_{i}$

The set of all partitions is denoted as $P(Y)$ . If $P=\{1, \ldots,p_{s}\}$ and $Q=\{1, \ldots?t\}$ are
partitions of $Y$ , then $P\leq Q$ if every $p\in P$ is contained in a $q\in Q$ , i.e., $P$ is finer tAan $Q$ . This
defines a partial order on $\mathcal{P}(Y)$ . Then meet, $\cap$ , and join, $\mathrm{u}$ , are defined, i.e., $(P(Y), \mathrm{n}, \mathrm{u})$ is a
lattice.
We also need the concept of (anti)-isomorphic lattices. Two lattices $(L_{i}, \Lambda_{i}, \bigvee_{i})$ , $\mathrm{i}=1,2$ , are
isomorphic, if there exists a bijection 4 : $L_{1}arrow L_{2}$ such that

$\xi(x\Lambda_{1}y)=\xi(x)\Lambda_{2}\xi(y)$

$\xi(x\bigvee_{1}y)=\xi(x)$ $\bigvee_{2}\xi(y)$
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holds for all $x$ , $y\in L_{1}$ . They are anti-isomorphic if

$\xi(x\Lambda_{1}y)=\xi(x)\bigvee_{2}\xi(y)$

$\xi(x\bigvee_{1}y)=\xi(x)\Lambda_{2}\xi(y)$

We can now state the characterization of the lattice in question. Suppose 0 does not belong to
$X$ , then $X_{0}=\{0\}\cup X$ .

Theorem 11 [T3] The lattices $(\mathcal{L}(X,$ F), $\bigwedge_{\}}\vee)$ and (P$(X_{0}), \cap,$U) are anti-isomorphic.

Proof. Definition of a bijective map from $\mathcal{L}(X, \mathrm{F})$ to $\mathrm{V}(\mathrm{X}0)$ , Let $R\in \mathrm{V}\{\mathrm{X}$ ) $\mathrm{F}$). Then one
has $X=\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(R)\mathrm{U}\mathrm{k}\mathrm{e}\mathrm{r}(\mathrm{R})\}$ where $\mathrm{k}\mathrm{e}\mathrm{r}(R)=X\backslash \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(R)$. The projection $\pi$ : $\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(R)arrow$

$\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(R)/\sim_{R}$ defines a partition of $\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(R)$ , namely $P$ $=\{\pi^{-1}(u\}|u\in \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(R)/\sim R\}$ .
This induces a partition of $X_{0}$ as

$\xi(R)$ $=\{\{0\}\cup \mathrm{k}\mathrm{e}\mathrm{r}(R)\}\cup\{\pi^{-1}(u)|u\in \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(R)/\sim R\}$ .

For the inverse consider $\eta$ : $\mathcal{P}(X_{0})arrow \mathcal{L}(X,$ $\mathrm{F}_{J}^{\backslash }$ is defined as follows. Let $Q=\{q_{0}, \ldots, q_{s}\}$ be a
partition of $X_{0}$ such that $0\in q_{0}$ , then

$\eta(Q)=\{\sum_{i=1}^{s}\alpha_{l}\chi_{qj}|\alpha_{i}\in \mathrm{F}$ , $\mathrm{i}=1$ , $\ldots$ , $s\}$

is in $\mathcal{L}(X, \mathrm{F})$ . It is easy to see that $\xi(\eta(Q^{\backslash }))=Q$ and $\eta(\xi(R))=R$ . This proves the bijectivity
of 4. It remains to show that 4 reverses the order, i.e., if $R_{1}\subseteq R_{2}$ for $R_{1}$ , $R_{2}\in \mathcal{L}(X, \mathrm{F})$ , then
$\xi(R_{1})\geq\xi(R_{\underline{9}})$ . If $q\in\xi\{R_{2}$ ), then the characteristic map $\chi_{q}$ is in $R_{2}$ . Since $R_{1}\subset R_{9}\vee$

’ it follows
that every $p\in\underline{=}(R_{1})$ either has empty intersection with $\mathrm{g}$ , or $q$ is contained in $p$ . In other
words every $q\in\xi(R_{2})$ is contained in a $p\in\xi(R_{1})$ . This shows that $\xi(R_{2})\leq\xi(R_{1})$ and that 4
is anti-isomorphic.

$\blacksquare$

Corollary 12 [C2f the lattice $(\mathcal{L}_{N}(X,$F) , A , V) is a sublattice of $(\mathcal{L}(X,$F), A, $\vee)$ and it is anti-
isomorphic to the partition lattice $(P(X), \cap,$U).

The proof is as the proof of Theorem 11 using $\xi_{N}$ : $\mathcal{L}_{N}(X, \mathrm{F})\prec$ $\mathcal{P}(X)$ defined as

$\xi_{N}(R)=\{\pi^{-1}(u)|u\in X/\sim_{G}\}$

Examples. Consider $\mathrm{F}_{5}=\{0, \ldots, 4\}$ and $X=\mathrm{F}5$ and let $p(x)=x+x^{3}+x^{4}$ , $q(x)=4x+4x^{2}+2x^{3}+$

$x^{4}\in \mathrm{f}_{5}\mathrm{f}^{\mathrm{s}}$ regarded as maps. Then $\langle p\rangle_{N}$ and { $\mathrm{q})\mathrm{N}$ are different set. This follows from

01234
$p$ 0 3 1 1 4
$q$ 0 1 1 3 4

$\mathrm{i}.\mathrm{e}.$ , the partitions 4( $(p\rangle_{N})=\{\{0\}, \{1\}, \{2,3\}, \{4\}\}$ and $\xi(\langle q\rangle_{N})=\{\{0\}, \{1,2\}, \{3\}, \{4\}\}$

are different. Note also that $|\langle p\rangle_{N}|=\{\mathrm{q}$ ) $\mathrm{N}=5^{4}$ , i.e., $\{p\}$ and $\{q\}$ are not generating,

state $|ff^{\mathrm{g}}|5=5^{5}$ .. If $g\in \mathrm{F}$ , then { $\mathrm{q})\mathrm{N}=\mathrm{F}$ if and only if $g$ is bijective. More general: Let $g\in \mathrm{F}^{X}$ , then
$\langle g\rangle_{N}=\mathrm{F}^{X}$ if and only if $g$ is injective; and $(g)=\mathrm{F}^{X}$ if and only if $g$ is injectave and

$0\not\in$ $\{g(x)|x\in X\}$ .

Remarks: von Haeseler notes on the number of elements of $\mathcal{L}(X,\mathrm{F})$ :

0 1 2 3 4
$p$

$q$

0 3 1 1 4
0 1 1 3 4

$|\mathcal{L}(X, \mathrm{F})|=B_{|X|+1}$ and $|\mathcal{L}_{N}(X, \mathrm{F})$ $|=B|X|$ ,

where $B_{n}$ is the n-th Bell number or the number of partitions of a set having $n$ elements
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4 Concluding remarks
von Haeseler’s paper consists of 17 pages with 5 references and includes more results like prop-
erties of generating sets and the case of a ring $\mathbb{Z}/m\mathbb{Z}$ , which we have had to omit here. Many
thanks are due to him for his cooperation, especially for a LaTeX source of his manuscript, ! !
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