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Unless specified, R is a valuation ring, that is, an integral domain in which either
a devides b, or b devides a for any nonzero a, b in R. This shows that R is a local
ring with the unique maximal ideal m consisting of all nonunits of R. Clearly its
unit group is R* = R —m.

Let M be a left free module over R of rank n, and Endg(M) or End(M) the right
R algebra of R-endomorphisms of M. The unit group of Endr(M) is Autg (M)
or simply Aut(M). We write an endomorphism ¢ on the right side of a module
element v € M.

The special elements in Endg (M) used here are (a) to (f) following, where £ =
{e1,e9,-++ ,en} is a fixed basis for M over R, and X = {11,229, - ,2p} is an
arbitrarily chosen basis for M over R.

(a) For z,y € M and L C M, let M = Rz ® Ry ® L. A transposition
A=A, € Aut(M) is defined by ’

zA =y, yA=z and A=1 on L.
(b) Fora € R,z,y € MandU C M,let M = Re@RyoU and L = RyaU.
A transvection 7 = 7T, 4yv € Aut(M) is defined by

zr=z+ay and 7=1 on L.

(¢) Fora€R, :E,yEMandUQM,‘IethRQSEBRy@U.

1This is an abstract and the details will be published elsewhere.
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We define a left transposed transvection or a left skew transvection ¢ = g qy,v €
Aut(M) by
Y= Am,y,UTw,ay,Ua

ie.,
zop=vy, ypo=2z+ay and ¢ =1 on U

Similarly, a right skew transvection 7y qy g4 v is possible to define. However,
as we will see, left skew is right skew and right skew is left skew. Therefore, we will
often call them just skew transvections.

(d) For any elements ay,a2, - ,a, in R and for X a basis for M, we
define § = 6x (a1, as, "+ ,a,) € End(M) by

xz(S:azm, 5 z'=1,2,--~,n.

(e) An element n = nx € Aut(M) is defined by
zin =21 and T =Ti_1+T; , 2<i1<n.
If n=1,1ie,| X |=1, we define nx = 1, i.e., the identity map on M.

(f) For w € S, we define a permutation automorphism nx € Endg(M)
by
TiTX = Tqi
The set of such wx is denoted by Sx. Clearly Sx is a subgroup of Aut{M)
isomorphic to S,.

If X = ¢, ie., the canonical basis, then for 7 € §,, the permutation automor-
phism 7¢ is said to be a canonical permutation. For simplicity we may write = and
S, instead of rx and Sx, respectively.

Moreover, providing these particular elements in Endz(M), we define the follow-
ing three subsets of Endg(M), where X = {z1,z3, - ,Zn} is again an arbitrary
chosen basis for M :

The set of transvections relative to X is

(51) TR,X = {Tzi:‘“"'j,U I ac R’ U= 69:;_-1 ,Rwh) 1<1 #.7 < 'i’L},
2.J

the set of skew transvections relative to X is

(5.2) Or,x = {Pz 00,0 |0 ER, U= EB:?__;‘R:G;L, 1<i#j<n},
2%

and for subsets Sy, S2,---, S, of R we write

(53) 5X(517827 e ’Sn) = {_5X(alaa21' t ’a"n.) | a; € S’L}



For any ¢ € EndgM we define the fixed submodule M, of ¢ by

M,={z e M| zo=z}

Definition. For ¢ = 0,1,--- ,n we define
S = {5 € End(M) | rank M, = n —i}.

An element o in SV is called a simple element, i.e., ¢ is simple if and only if &
fixes a hyper plane of M.

By definition, A in (a) and 7 in (b) are in S, and ¢ in (c) is in S, Also §
in (d) is in S(™9 if exactly i of {a1,as, -+ ,an} is 1. Further n in (e) belongs to
§in—1) ,

Main Theorem. Let 0 # o € EndgM. Then there exist

(i) nz with Z' C Z for some basis Z for M
and
(i) skew transvections ¢1,¢g, -+, ¢ with0 <l <n—1

such that
W Yainzo = dx (a1, a2, ¢, 01,8141, 5 Cn)

for some basis X for M with a; |as | <<+ | a; and a; | a; for I <@ < n.
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