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1 Introduction

In this report, we present formalization of the valuation theory in Isabelle/HOL which is
executed on a personal computer with linux OS.

Our aim is to express abstract algebra in formal language and make mathematical
logic clear and easy to understand for beginners. Because of the limit of capability of
Isabelle/HOL, some concepts cannot be treated, we choose the Valuation theory as a target
of our formalization. We know mathematical objects which should have unfixed number
of types is not treatable in Isabelle/HOL. Up to now, we have successfully formalized some
topics on the valuation theory, namely definition of a valuation, normal valuation derived
from a valuation, elementary properties of the valuation ring, topology with respect to a
valuation and approximation theory by using Ostrowski elements.

Tn our report we have nothing new added to the theory from the mathematical point of
view, but our work shows an extended usage of a computer to abstract mathematics, and
moreover it will be easy to see that we have got a gear to avoid making human mistakes.
One more point we want to stress is, human inference is not completely free from intuitive
feelings, and intuitively natural inference is easy to understand. But mechanical proof
often gives a strange feeling.

As noted above, we introduced the set of augmented integers as a value group, we give
here a revised version of formalization, the original version that we presented on February
21 has a cyclic group with infinity instead. New version is much easier to read than the
original one.

2 Definition of valuations

In this report we treat only discrete valuations. In Isabelle/HOL, the definition of a
valuation is expressed as:
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valuation::"’'b FieldType = (°b = ant) = bool"
"yaluation K h == h € extensional (carrier K) A
h € carrier K — Zo A
h (0g) = oo A (Vx € ((carrier K) - 0g). h x # oo0) A
(Vx € (carrier K). Vy € (carrier K). h (x x y) = (h x) + (h y)
A (Vzx € (carrier K). 0 < ¢(hx) — 0 < h (Ig + x))
A (3x. x € carrier K A (R x) # oo A (b x) # 0)"

Here, 'b FieldType means an algebraic system having field structure, a base set (called
carrier) consisting of elements of type 'b, two operations addition and multiplication sat-
isfying field conditions, and K is the field of type 'b FieldType. Type ’b has no special
meaning, but if we have an element with type ’a, then Isabelle see elements having type 'a
and type ’b are different, automatically. “ant” means a type of augmented integer. “ex-
tensional” is a special concept of Isabelle and it means that the function h has “arbitrary”
value outside the carrier K. “carrier K” is the basic set of the field K. “Zy” is the set of
augmented integers without minus infinity. “x -x y” is the product in the field K of two
elements (with type 'b). In the set of augmented integers no integer is neither equal to
infinity nor minus infinity. Therefore the final line of the definition guarantees that the
field having a valuation is a non-zero field.

In “Ze” we have co + 00 = 0 , z + o0 = oo forall integer zand 0 - co =0,z - 00 =
xifl<z,z-00=-00ifz <0

Elementary properties of a valuation are proved with some lines of proof. For example
lemma “feld K; valuation K v; x € carrier K; x # 0 = int n e, (vx) = v (x"K2)” is
proved as

apply (frule field_is_ringlof "K"], induct_tac n,
simp add:ring_r_one asprod_1, simp add:value_of_one,
frule val_nonzero_z[of "K" "v" "x"], assumptiont,
erule exE, simp add:asprod_o_x)

apply (frule sym, thin tac "int n *a v x = v (x"K n)", simp,
subst val_t2p[of "K" “vy" "x"], assumptiont+, rule npClose,
assumption+, simp, frule val_nomzero_zl[of "K" "vy" "x"],
assumption+, erule exE, simp add:asprod_mult a_zpz,
simp add:zadd_zmult_distrib)

done

The key points of this proof is to use induction and the property of a valuation appearing
at the fourth line of the definition. “frule”, “induct_tac”, “simp add:”, “assumption”,
“erule” and “subst” are built in functions and others e.g. “feld is_ring” etc. are names of
lemmas we have already proved earlier.

3 Normal valuations

Let K be a field with valuation v. We see that there is an augmented positive integer a such
that any element of the image v (carrier K) is expressed as a - x with some augmented
integer x. This a is equal to the minimum of the set {x. x €V(carrier K) A 0 < x}.
Therefore for any x in carrier K, we have an equation '



vx=a X
Here, x' is uniquely determined by x, and we denote x' as “n.val K v x”. Now we have
a function from the carrier K to Zoo. We can prove this function is a valuation, and this
is called as the normal valuation of v. The definition is formalized as:

Lv::"[’r FieldType, ’r = ant] = ant"
(x* Least nonnegative value *x)
"Ly K v == AMin {x. x € v ¢ carrier K A 0 < x}"

nval::"[’r FieldType, ’r = ant] = (’r = ant)"
“n.val K v == Ax € carrier K.
(THE 1. (1 - (Lv K v)) = v x)"

Here, THE 1. (1 - (Lv K v)) = v x is the unique augmented integer 1 satisfying the
equation _
I-IvKv)=vx
We have a lemma
lemma n.val_valuation:*[| field K; valuation K v |] = valuation K (nval K v)”

We have also a lemma:
lemma n_val:“]| field K; valuation K v; x € carrier K 1=
nval Kvx) LvKv)=vx"
by (frule n.valTrfof “K” “v’ “x”], assumption+, simp add:n- al.def)

Since Lv K v is positive (augmented) integer, we have a proposition “v (x) is positive if
and only if n_val K v x is positive”.
The following lemmas are easy to see. 7
lemma valsurj_n_val:“[| field K; valuation K v; 3x € carrier K. vx =1 =
(nvalKv) =V’

apply (rule funcset_eqlof _ '"carrier K"],
simp add:n_val_def restrict_def extensional_def,
simp add:valuation_def)

apply (rule balll,
frule val_surj_n_valTr[of K" "v"], assumption+,
frule_tac x = x in n_val[of "K" "v"], assumption+,
simp add:amult_cne_r)

done

lemma n_val n_val: ]| field K; valuation K v |] = nval K (n.val K v) =nval K v”
by (frule n_val_valuationfof “K” “v”], assumption+,

frule n_val_surj[of “K” “v”], assumption+,

simp add:val surjn_val) '

The last lemma shows that the normal valuation of a normal valuation is the normal
valuation. The proofs of above lemmas are concise and easy to read.
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4 The valuation ring determined by a valuation v

The valuation ring determined by a valuation v is a ring consisting of the elements having
positive value of v. We introduce a formalized definition of the valuation ring:

Vr::"[’r FieldType, ’r = ant] = ’r RingType"
"Vr K v ==Sr K ({x. x € carrier K A0 < (v x)})"

Here Sr denotes a ring structure derived from K. The definition of Sr is:

Sr ::"[(’a, ’more) RingType.scheme, ’a set] => ’a RingType"
"Sr RS == (| carrier = 8, pOp = Ax € S. Ay € S. x hr ¥,
mlp = Ax € S. -5 x, zero = OR, tOp = Ax € S. Ay € S.
X 2 ¥, one = 1z )"

Here Ax€S. Ay€S. x +z y is a function with variables x and y taken from a set S mapping
to X +g y. From this definition, we see that the valuation ring is an integral domain:
lemma Vr_integral:“[| field K; valuation K v |] = integral_.domain (Vr K v)”

apply (simp add:integral_domain_def,
simp add:Vr_ring, (rule balll)+, rule impI,
simp add:Vr_tOp_f_t0Op, simp add:Vr_0_f_0)

apply (rule contrapos_pp, simp+, erule conjE,
frule field_is_idom[of "K"],
frule_tac x = x in Vr_mem_f_mem[of "K" “v"], assumption+,
frule_tac x = y in Vr_mem_f_mem[of "K" "v"], assumptiont,
frule_tac x = x and y = y in idom_tOp_nonzeros[of "K"],
assumption+, simp)

done

We explain this proof line by line. At first, we give a definition of the integral domain.
Since the definition of the integral domain is (1) it is a ring and (2) satisfying a condition
that it has no zero-divisor. simp add:Vr_ring gives the fact that “Vr K v” is a ring, and
(rule ball)+. rule impl etc. are a preparatory operations to prove that there is no nonzero
zero-divisor.

It is known that Vr K v is a local ring. And the subset vp K v defined as

vp::"[’r FieldType, ’r = ant] = ’r set"
"vp K v == {x. x € carrier (Vr K v) A 0 < (v x)}"

is the maximal ideal.

The valuation ring is a principal ideal ring and any ideal is expressed as a “power” of
vp K v. In the case where we take exponent of power from a natural number, zero ideal
is not expressed as a power of vp K v. But if we define the power with exponent chosen
from the augmented integers, we can treat the zero ideal as a power of vp K v:

r.apow::"[(’r, ’m) RingType_scheme, ’r set, ant] = ’r set"”
"r.apew R I a == if a = oo then {0z}
else (if a = O then carrier R else I °F (82 2)yn

Here, a is an augmented integer and na a is a natural number defined as



nna=0ifa<Oelsena=intaif0 <aAa#oo
Because any element has type, and we cannot add two elements having different types,
therefore Isabelle has functions converting from one type to the other. We defined “ant”
as a type of augmented integers, and relation between type are as follows:

int ant convert functions
— —
nat int ant types
—
nat tna convert functions
an :
__.)
nat ant
{_.
na

As stated above, vp K v is a maximal ideal. This fact is formalized as
lemma vp-maximal:“|| field K; valuation K v |] = maximal.ideal (Vr K v} (vp K v)”

The above statement might be a little funny, since in a text book, we have only to write
“Let K be a field and let v be a valuation. Then vp K v is a maximal ideal of the ring Vr
K v”. In a textbook, we do not write as “yaluation K v” but we write simply as valuation
v. In Isabelle/HOL, we have a method to avoid putting items required to define such as
K and v for Vr K v. Expressing the valuation ring as Vr is much easier to read than to
express Vr K v, but we have chosen a way putting items all together, because formalization
of definition is simple and clear.

To formalize Vr K v is a principal ideal domain, we formalized the following two items
and then we have the lemma Ig_generate L.

LI :: "“[’r FieldType, ‘r = ant, ’r set] = ant"
"LI Kv I ==AMin (v © D"

The minimum of the set v ¢ I, the image of Ibyv.

Ig :: "[’r FieldType, ’r = ant, 'r set] = ’'r"
"Ig K v I == SOME x. x € I Avx=LIKvI'

Then
lemma Ig_generate I:“[| field K; valuation K v; ideal (Vi Kv)I]] =
(VeKv)o (IgKvI) =T

Here, (Vr K v) ¢ (Ig K v I) is a principal ideal of Vr K v generated by Ig K v L.
As a property of the discrete valuation ring Vr K v, we have

lemma ideal apow_vp: ]| field K; valuation K v; ideal (Vr K vil}=
I= (Vp K V)(Vr Kv)(nval K v (Ig K v I))»

This lemma states that any ideal of Vr K v is expressed as a power of the maximal ideal
vp K v. The following lemma gives another view point of the normal value of an element
x of the valuation ring Vr K v.
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lemma ideal_apow_ n_val:“[| field K; valuation K v; x € carrier (Vr K v) |] =
(Vr K v) o X = (VP K V)(Vr K v)(nval K v x)»

From this lemma we see the principal ideal (x) is equal to the power of vp K v with
exponent “n_val K v x” i.e. the normal value of x.

Two valuations v and v’ are called if and only if n.val K v and n_val K v’ are equal. If
v and v are equivalent, we see Vr K v and Vr K v/ are equal and two ideals vp K v and
vp K v/ are the same. An equivalence class of a valuation v is called a prime divisor, and
we see the valuations in the same prime divisor determine the same ideal. That is, if two
valuations v and v’ are equivalent and if x is an element of Vr K v, then (Vr K v) o x =
(VrKv') o x.

We have formalized an interesting lemma concerning the equivalence of the valuations.

lemma valuations_equiv: || field K; valuation K v; valuation K v'; ¥x € carrier K.

0<(vx) = 0< (v x)]] = vequivKvv”

Formalization of a proof to this lemma is not very short. The proof is completed with
9 steps 51 lines.
We present one more lemma implying the dimension of the valuation ring is 1:
lemma Vring_prime_maximal:“[| field K; valuation K v; prime_ideal (Vr K v) I;
I# {0k v} || = maximalideal (Vr K v) I”

5 Topology determined by a valuation

We noted that the valuation ring Vr K v is a local ring with the maximal ideal vp K v.
We can consider (vp K v) -adic topology in Vr K v. This topology can be formalized in
some ways, but in this report, we formalized the topology by using the valuation. And we
formalized the completion in a naive way by using Cauchy sequence. This is because the
type becomes complicated if we discuss the completion as an inverse limit.

The essential lemma are the following lemmas, because to discuss the topology, we have
only to discuss the convergence of an infinite sequence.

lemma n_value x_1:%[| field K; valuation K v; 0 < n; x € (vp K v)(

n < {(nval K v x)”

VrKv)nH=>

lemma n_value x.2:“[| field K; valuation K v; x € carrier (Vr K v); n < (nval K v x};
0<n|]=xe (vpKy)VrEvm

(vp K v) - adic topology is the topology determined by a system of neighborhoods {(vp
K v)o(rKvjn | natural number n}. Above lemma shows an element x belongs to (vp K
v)(VT K ¥) 2 if and only if n < n.val K v x. Therefore we can discuss the (vp K v)-adic
topology by using the normal valuation n.val K v,

A Cauchy sequence is formalized as:

Cauchy_seq::"[’b FieldType, ’b => ant, nat = ’b] = bool"
("(3Cauchy. - )" [90,90,91190)
"Cauchy ¢ v £ == (¥n. (f n) € carrier K) A
(VN. 3M. (Vnm. M<n AM<m ((fn)+ ( (£m))
€ (VP K v)(Vr KGai vian N)))n



Note that all numbers N M n m are of type nat. Although we do not specify the type
of N M, since types of n m are required by the type conditions given as above, f is of type
nat = ’b, the type of n and the type of m should be nat. And inequality M <m should
have elements of the same type, M should have the type nat. The type inference is done
automatically, we needn’t specify types explicitly.

A convergent sequence is a Cauchy sequence, and this fact is formalized as:

lemma has_limit_Cauchy:“[| fleld K; valuation K v; ¥j. fj € carrier K; b € carrier K;
lim K v fb |] = Cauchy x v f* :

As noted above, we formalized the completion of a given field with respect to a valuation
by using Cauchy sequence. You see the type of the original field is the same as the type
of the completion. In the definition, Complete v K' means K’ is complete with respect
to the valuation v/ (or more precisely, Complete .+ K’ is a function returning true if K'is
complete and returning false otherwise). ‘

v_completion::"[’b =ant, ’b = ant, ’b FieldType,
’b FieldType] = bool"
("(4Completion. _ . - _ - - )¢ [90,90,90,91]190)
“Completion , v K K’ == subfield K K’ A Complete K’
A (Vx € carrier K. v x = v’ x) A
(Vx € carrier K’. (3f. Cauchy x v £ A lim g £ x))"

I am afraid the formalization of the completion above is frustrating for some mathe-
maticians, because it is not constructive. But, if we treat an equivalence class of Cauchy
sequence as an element of the completion, the type of the element is (nat =’b) set and
the completion field is of type “(nat =’b) FieldType”, therefore even an inclusion map
should have complicated type. This is why we adopted formalization above.

6 Approximation

In this section, we show formalization of approximation. Some lemmas on approximation
require calculation of algebraic formula, hence it is taken that this section presents ex-
amples how Isabelle/HOL executes formula manipulation. Compared to existing formula
manipulation language such as Maple, Mathematica and Reduce, in Isabelle calculation
of formulas is executed step by step and each step is executed with a given instruction.
However, we see that we can obtain nice result fit to a given problem.

Approximation lemma is “given nonequivalent valuations vi, v, ... , Vn and elements
¥1, ¥2, - 5 ¥u of K, then for any natural number m there exists an element y of K such
that m < v (y;- y) foreachj=1,2, ..., n".

To present approximation, we need nonequivalent valuations formalized:

valuations::"[’'r FieldType, nat, nat = (’r = ant)] =bool"
wyaluations K n vv == Vj € Nset n. valuation K (vv })"

vals_nonequiv::"[’r FieldType, nat, nat = Cr = ant)]
= bool"
"yals_nonequiv K n vv == valuations K n vv A (Vj€liset n.
VieNset n. j # 1 — — (v_equiv K (vv j) (vv 1)))"
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We use Ostrowski element to show there exists an approximation element.

Ostrowski_elem::"[’b FieldType, nat, nat = (’b = ant), ’b]
= bool"
“Ostrowski elem K n vv x == (0 < (vv 0 (ig +x (—x x)))) A
(Vj € nset (Suc 0) n. 0 < (vv j x))"

In this formalization, we give nonequivalent valuations vv 0, vv 1, ..., vv n, because we
use mathematical induction “induct.tac” which is already prepared in Isabelle/HOL.
The following lemma is an example how Isabelle manipulates a formula:
lemma tail of expansionl:“[| ring R; x € carrier R || = (1g +g x) & 5% ) =
x g {(nsumO R (A 1. ((Suc n)c(Suc i) XR xR I)) n) +r Ir”

Here, “nsum0 (A i ((suc 0)Csuc 1) XR x"® 1)) n” is a sum
x"Rn +R (Suc n)Cn XR x B (a-1) +r ' +r 1r

Approximation theorem is formalized as follows:

lemma ApproximationTrd:“[| field K; vals_nonequiv K (Suc n) vv; Vj € Nset (Suc n).
x j € carrier K |] = 3L YN. 1 < N — (¥j € Nset (Suc n).
(anm) < (vvj (e . K {A] € Nset (Suc n}.
(x§) 'k (1x +x -k (Ik +k K (Q K vy (seen)) J) KN EN)
(Suc n) +x -k (xj))))”

theorem Approximation_thm:“[| field K; vals_nonequiv K (Suc n) vv; Vj € Nset (Suc n).
(x j) € carrier K |] = Jy € carrier K. Vj € Nset (Sucn). (anm) < (v ] (y +x - (xj)))”

In ApproximationTr4 we presented a constructive proof, and in Approximation_thm we
formalized ordinary proposition given in a textbook.

7 Note on formalization

Although there are some exceptions, formalization is possible in many fields of pure math-
ematics. And we can make their logical structure clear and check their logic is correct or
not. Therefore it will be useful to formalize mathematical concepts in some formalization
language, and check proofs whether it is correct or not. At present, we have no advanced
automated prover and we have to give instruction at each step of proof. But after accumu-
lating mathematical knowledge in a huge database, it will be possible to choose a correct
tactic to prove a problem automatically.
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