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ON THE SEMISIMPLICITY OF BRAUER ALGEBRAS

HEBING RUI

ABSTRACT. In this note, we give a necessary and sufficient condition for a Brauer algebra
to be semisimple. This is the main result in [9].

The Brauer algebra $\mathscr{B}_{n}(\delta)$ was introduced by R. Brauer in 1937 in order to study the

tensor representations of orthogonal groups and symplectic groups. In order to recall its

definition, we need the notion of Brauer diagrams.
A Brauer diagram is a graph with $2n$ vertices and $n$ arcs, arranged in two lines of $n$

vertices each. Each arc belongs to exactly two vertices. The composite $D_{1}\circ D_{2}$ of two
Brauer diagrams $D_{1}$ and $D_{2}$ can be obtained as follows.

(1) Putting $D_{1}$ over $D_{2}$ and identifying the i-th lower vertex of $D_{1}$ to the i-th upper

vertex of $D_{2}$ , we get a diagram $P$ ,
(2) Removing all the closed circles which appear in $P$ , we get the Brauer diagram

$D_{1}\circ D_{2}$ .

Let $n(D_{1}, D_{2})$ be the number of closed cycles removed above.

Definition 1. (Brauer) [1] The Brauer algebra $\mathscr{B}_{n}(\delta)$ is an associative algebra over the
complex field $\mathbb{C}$ with a linear basis which consists of all Brauer diagrams. The multipli-
cation is defined by setting

$D_{1}$ . $D_{2}=\delta^{n\langle D_{1},D_{2})}D_{1}\circ D_{2}$ .

Let $R$ be a commutative ring containing $\delta$ and the identity 1. If we use $R$ instead of $\mathbb{C}$ ,

we will get the Brauer algebra over $R$ . There is another definition for $\mathscr{B}_{n}(\delta)$ as follows.
See, e.g. [8].

Definition 2. Let $R$ be a commutative ring containing a and the identity 1. The Brauer
algebra $\tilde{\mathscr{B}}_{n}(\delta)$ is the unital associative $R$-algebra generated by $s_{1}$ , $\ldots$ , $\mathrm{s}\mathrm{n}_{-}\mathrm{i}$ , $e_{1}$ , $\ldots$ , $e_{n-1}$

which are subject to the relations:

$s_{i}^{2}=1$ , $s_{i}s_{i+1}s_{i}=s_{i+1}s_{i}s_{i+1}$ , $s_{i^{\mathrm{S}}j}=Sj\mathrm{S}i$

$e_{\dot{\mathrm{t}}}^{2}=\delta e_{i}$

$e_{i}e_{i+1}e_{i}=e_{i}$ , $e_{i}e_{\mathrm{j}}=e_{j}e_{i}$

$e_{i}e_{i}=e_{i}=e_{i}e_{i}$ $e_{i+i}e_{i}e_{i+1}=e_{i+1}$ $e_{i}ej=ejei$

$e_{i}e_{i+1}e_{i}=e_{i+1}e_{i}$ $e_{i+1}e_{i}e_{i+1}=e_{i+1}e_{i}$ if $j\neq \mathrm{i}$ , $\mathrm{i}+1$ .
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Using seminormal representations over $\mathbb{C}(\delta)$ in [7], one can prove

(2.1) $\mathscr{B}_{n}(\delta)\cong\tilde{\mathscr{B}}_{n}(\delta)$ .

In other words, Definition 1 is equivalent to Definition 2.

Hanlon and Wales conjectured that the complex Brauer algebra $\mathscr{B}_{n}(\delta)$ is semisimple if
$\delta\not\in \mathbb{Z}$ . This conjecture was proved by Wenzl [13].

Theorem 3. (Wenzl) [13] The complex Brauer algebra $\mathscr{B}_{n}(\delta)$ is not semisimple for only

finite number of integers $\delta$ .

Another proof was later given by $\mathrm{D}\mathrm{o}\mathrm{r}\mathrm{a}\mathrm{n}-\mathrm{W}\mathrm{a}\mathrm{l}\mathrm{e}\mathrm{s}$-Hanion in [3]. In fact, by their results

together with some arguments on cellular algebras, we can give an algorithm to determine

all pairs $(n, \delta)$ such that $\mathscr{B}_{n}(\delta)$ is semisimple. We need the notion of cellular algebras in

[5].

Definition 4. (Graham-Lehrer) [5] Let R be a commutative ring with identity 1. An

associative R algebra A is called a cellular algebra over the poset $(\Lambda, \leq)$ if it has an R-basis

{ $c_{i,j}^{\lambda}|\mathrm{i},j\in I(\lambda)$ , A $\in\Lambda$ }

which satisfies the following conditions

(1) The $R$-Linear map $\sigma$ : $Aarrow A$ with $\sigma(c_{i,j}^{\lambda})=c_{j,i}^{\lambda}$ is an anti-Involution of $A$ .

(2) For each $a\in A$ , $c_{i,j}^{\lambda}a \equiv\sum_{k\in I(\lambda)}r_{a}(j, k)c_{i_{t}k}^{\lambda}$ mod $A^{>\lambda}$ , where $A^{>\lambda}$ is the free R-

module generated by $c_{l,m}^{\mu}$ with $\mu>$ A and 1, $m\in I(\mu)$ . Furthermore, the coefficients
$r_{a}(j, k)\in R$ do not depend on $i$ .

For a cellular algebra, there are a class of modules $\Delta(\lambda)$ , A $\in\Lambda$ , called ceil modules.

On each cell module $\Delta(\lambda))$ there is an associative, symmetric bilinear form $\phi_{\lambda}$ . Let $G_{\lambda}$ be

the Gram matrix for $\Delta(\lambda)$ with respect to the bilinear form $\phi_{\lambda}$ .

Theorem 5. (Graham-Lehrer)[5] Let A be a cellular algebra over the field R.

(1) The quotient module $\Delta(\lambda)/Rad\phi_{\lambda}$ is either (absolutely) irreducible or zero, where

Rad $\phi_{\lambda}=\{v \in\Delta(\lambda)|\phi_{\lambda}(v, w)=0,\forall w\in\Delta(\lambda)\}$ .

(2) The set $\{\Delta(\lambda)/Rad\phi_{\lambda}|\phi_{\lambda}\neq 0\}$ consists of all non-isomorphic irreducible $A-$

modules.
(3) $A$ is semisimple if and only if $\det G_{\lambda}\neq 0$ for all A $\in$ A.

A partition A of $n$ is a weakly decreasing sequence $(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{r})$ of non-negative

integers with $\sum_{i=1}^{r}\lambda_{i}=n$ . In this case, write $\lambda\vdash n$ . Let $\Lambda=\{(k, \lambda)|0\leq k\leq\lfloor n/2\rfloor$ , $\lambda\vdash$

$n-2k\}$ . write $(k, \lambda)\leq(l, \mu)$ if either $k<l$ or $k=l$ and $\lambda\underline{\triangleleft}\mu$ , where $\underline{\triangleleft}$ is the dominance

order defined on the set of partitions of $n$ -2&. Then $(\mathrm{A}, \leq)$ is a poset. The following

result is due to Graham-Lehrer
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Theorem 6. (Graham-Lehrer)[5 Let R be a commutative ring containing $\delta$ and the iden-
tity 1. Then $\mathscr{B}_{n}(\delta)$ is a cellular algebra over the poset $(\Lambda, \leq)$

Remark 7. Fishel and Grojnowski constructed a basis for $\mathscr{B}_{r\iota}(\delta)$ in [4] which is in fact $a$

cellular basis.

The Young diagram $Y(\lambda)$ with respect to the partition A of $n$ consists of $n$ boxes placed

at the matrix entries $\{(\mathrm{i},j)|1\leq j\leq\lambda_{i}\}$ . If the coordinate of the box $p$ is $(i, j)$ , define
the content of $p$ by $c(p)=j-\mathrm{i}$ . We say a partition $\mu$ is contained in the partition A and
write $\mu\underline{\subseteq}\lambda$ if $\mu_{t}\leq\lambda_{i}$ for ali $\mathrm{i}$ . Define $Y(\lambda/\mu)$ to be the sub-diagram of $Y(\lambda)$ , which
consists of the boxes in $Y(\lambda)\backslash Y(\mu)$ .

Motivated by [10] and [11], we think that the cell modules $\Delta(1, \lambda)$ of $\mathscr{B}_{n}(\delta)$ play the
key role. This leads author to prove the following result.

Theorem 8. (Rui) [9] For any positive integer $n_{J}$ let

$\mathbb{Z}(n)=\{r\in \mathbb{Z}|r=1-\sum_{p\in Y(\lambda/\mu)}c(p), \mu @ k-2, \lambda\vdash k, 2\leq k\leq n\}$

where two boxes of $Y(\lambda/\mu)$ are not in the same column.

(a) Suppose $\delta\neq 0$ . The complex Brauer algebra $\mathscr{B}_{n}(\delta)$ is semisimple if and only if
$\det G_{1,\lambda}\neq 0$ , VA $\vdash k$ - 2, $2\leq k\leq n$ .

(b) Suppose $\delta\neq 0$ . There $\mathscr{B}_{n}(\delta)$ is semisimple if and only if $\delta\not\in \mathbb{Z}(n)$ .
(c) $\mathscr{B}_{n}(0)$ is semisimple if and only if $n\in\{1_{7}3,5\}$ .

By considering the pairs of partitions A $=$ $(2, 1^{k-2})$ and $\mu=(1^{k-2})$ , we have $k-2\in \mathbb{Z}(n)$

for atl $2\leq k\leq n$ . Notice that $n-2$ is the maximal integer in $\mathbb{Z}(n)_{7}$ we have that $i\in \mathbb{Z}(n)$

and $\mathrm{i}>0$ if and only if $1\leq \mathrm{i}\leq n-2$ . This result was proved by Brown in [2].

Theorem 9. (Brown) [2] Suppose $\delta$ is a positive integer. Then complex Brauer algebra
$\mathscr{B}_{n}(\delta)$ is semisimple if and only if $\delta\geq n-1$ .

It is not difficult to see that the minimal integer in $\mathbb{Z}(n)$ is $-2n+4$. In this case, $\lambda=(1^{n})$

and $\mu=(\mathrm{l}^{\mathrm{n}-2})$ . However, we can not say $\mathscr{B}_{n}(\delta)$ is not semisimple if $-2n+4\leq\delta<0$ .
For example, $\mathscr{B}_{3}(\delta)$ is semisimple if and only if $\delta$ $\not\in\{-2,1\}$ .

In order to prove Theorem 8, we need several results due to $\mathrm{D}\mathrm{o}\mathrm{r}\mathrm{a}\mathrm{n}-\mathrm{W}\mathrm{a}\mathrm{l}\mathrm{e}\mathrm{s}$-Hanlon in
[3].

Theorem 10. (Donm-Wales-Hanlon)[3] There is a non-trivial $\mathscr{B}_{n}(\delta)$ -homomorphism
$\Delta(0, \lambda’)arrow\Delta(1, \mu’)$ if and only if $\delta=1-\sum_{\mathrm{p}\in Y(\lambda/\mu)}c(p)$ where two boxes in $Y(\lambda/\mu)$

are not in the same column.

Remark 11. The cell module $\Delta(k, \lambda)$ is different from that considered in [3] . Doran,
Wales and Hanlon use classical Specht modules for symmetric group $\mathfrak{S}_{n}$ . We use cell
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modules for $\mathfrak{S}_{n}$ . Therefore, we have to use $\lambda_{f}’$ the dual partition of A instead of their
partition A.

Using certain arguments on cellular algebras together with Theorem 10, we know all

the roots of the determinants $\det G_{1,\mu’}$ for $\mu\vdash n-$ $2$ . More explicitly, we have

Corollary 12. Suppose $\mu\vdash n-2$ . Then $\det G_{1,\mu’}\neq 0$ if and only if $\delta\neq 1-\sum_{p\in Y(\lambda/\mu)}c(p)$

for all $\lambda\vdash n$ with $\lambda\supset\mu$ such that two boxes in $Y(\lambda/\mu)$ are not in the same column.

The following result sets up a relation between two Brauer algebras with different ranks.

Theorem 13, (Doran- Wales-Hanlon) [3] Suppose $\delta\neq 0$ . Then there is a non-trivial

homomorphism $\Delta(k, \lambda)arrow\Delta(k+l, \mu)$ if and only if there is a monomorphism $\Delta(0, \lambda)\mathrm{c}arrow$

A $(l, \mu)$ .

Doran, Wales and Hanlon also gave the result on $\delta=0$ . We do not state it here since

we will not use it to prove Theorem 8.

Suppose $\lambda\vdash n$. The node $p=(\mathrm{i},j)$ of $Y(\lambda)$ is called a removable node if $Y(\lambda)\backslash \{p\}$

corresponds to another partition $\mu\vdash n-1$ . In this case, we write either $\muarrow$ A or $\lambdaarrow\mu$ .

For any $\mathscr{B}_{n}(\delta)$ modules $M$ and $N$ , let

$\langle M, N\rangle_{\ovalbox{\tt\small REJECT}_{n}(\delta)}=\dim_{\mathbb{C}}\mathrm{H}\mathrm{o}\mathrm{m}_{\ovalbox{\tt\small REJECT}_{n}(\delta)}(M, N)$ .

It is known that $\mathscr{B}_{n-1}(\delta)$ is a subalgebra of $\mathscr{B}_{n}(\delta)$ . For any $\mathscr{B}_{n}(\delta)$-module $M$ , let $M\downarrow$

be the restriction of $M$ to the $\mathscr{B}_{n-1}(\delta)$-module.

Theorem 14. (Doran-Wales-Hanlon)[3] Let $\lambda$ $\vdash$ $n$ and $\mu$
$\vdash$ $n-2k$ . If

$\langle \Delta(0, \lambda), \Delta(k, \mu)\rangle_{\ovalbox{\tt\small REJECT}_{n}(\delta\}}\neq 0$, then for every $\lambda^{0}arrow\lambda$, $\langle \Delta(0, \lambda^{0}), \Delta(k, \mu)\downarrow\rangle_{\iota}\ovalbox{\tt\small REJECT}_{n-1}\langle\delta)\neq$

$0$ . Furthermore, either $\langle \Delta(0, \lambda^{0}), \mathrm{a}(k - 1, \mu^{0})\rangle_{\ovalbox{\tt\small REJECT}_{n-1}(\delta)}\neq 0$ for same $\mu^{0}arrow\mu$ or

$\langle \Delta(0, \lambda^{0}), \Delta(k, \mu^{1})\rangle_{\ovalbox{\tt\small REJECT}_{n-1}(\delta)}\neq 0$ for $\mu^{1}arrow\mu$ .

The following result follows from Theorems 13-14 immediately.

Corollary 15. Suppose $\delta\neq 0$ . if \langle$\Delta(k, \lambda), \Delta(l, \mu)\rangle_{\ovalbox{\tt\small REJECT}_{n}(\delta)}\neq 0$, then there are a pair of
partitions $\tilde{\lambda}\vdash m$ and $\tilde{\mu}\vdash m$ -2 with m $\leq n$ such that $\Delta(\mathrm{O},\overline{\lambda})\llcornerarrow\Delta(1,\tilde{\mu})$ .

In general, we do not know the explicit relations between A and A etc. Now, we give

the sketch proof of Theorem 8.

Proof of Theorem 8 It is not difficult to see that (b) follows immediately from (a)

and Corollary 12. Suppose $\delta=0$ . If $n$ is even, then $G_{n/2_{\}}(0)}=0$ , and consequently, by

Theorem $5(\mathrm{c})$ , $\mathscr{B}_{n}(0)$ is not semisimple. Suppose $n\in\{1, 3, 5\}$ . By computation, we see

that the determinants for all Gram matrices are not equal to zero. Consequently, $\mathscr{B}_{n}(0)$
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is semisimple. Suppose $n\geq 7$ and $n$ is odd. It follows from Theorem 10 that there is a
non-trivial homomorphism from $\Delta(0, (421)’)$ to $\Delta(1,$(32) $)$ . By Theorem 13,

(15.1) $\langle \Delta((n-7)/2, (421)’), \Delta((n-5)/2,$(32) $)\rangle_{\ovalbox{\tt\small REJECT}_{n}(0)}\neq 0$ .

If $\mathscr{B}_{n}(0)$ is semisimple, then different cell modules must be non-isomorphic irreducible,

contradicting to (15. 1).
Finally, we prove (a). Suppose $\det G_{1,\lambda}\neq 0$ for all A $\vdash k,$ $2\leq k\leq n$ . If $\mathscr{B}_{n}(\delta)$ is not

semisimple, then we can find a cell module, say $\Delta(k, \mu)$ such that $\det G_{k,\mu}=0$ . Take an
irreducible submodule $M\subset$ Rad $\Delta(k, \mu)$ . By Theorem 5, $M$ must be isomorphic to the
simple head of a cell module, say $\Delta(l, \lambda)$ with $(l, \lambda)<(k, \mu)$ . Furthermore, we have a
non-trivial homomorphism from $\Delta(l, \lambda)$ to $\Delta(k, \mu)$ . By Corollary 15, there are A and $\tilde{\mu}$

such that $\Delta(0,\tilde{\lambda})(-\rangle \mathrm{A}(1,\tilde{\mu})$ for some A $\vdash m$ , $2\leq m\leq n$ . Consequently, $\det G_{1,\overline{\mu}}=0$ , a
contradiction.

Suppose that $\mathscr{B}_{n}(\delta)$ is semisimple. If the result were false, then $\det G_{1,\mu’}=0$ for some
$\mu’\vdash k-$ $2$ and $k<n$ . By Theorem 10, We have $\Delta(0, \lambda’)\mathrm{c}_{-arrow\Delta(1,\mu’)}$ .

Case 1: $n-k=2f$ By Theorem 13, $\langle \Delta(f, \lambda’), \Delta(1+f, \mu’)\rangle_{\ovalbox{\tt\small REJECT}_{n}(\delta)}\neq 0$ , a contradic-
tion since different cell modules of a semisimple cellular algebra must be non-isomorphic
irreducible.

Case 2: $n-k=2f+1$ Since $\Delta(0, \lambda’)\mathrm{L}arrow\Delta(1, \mu’)$ , $\delta=1-\sum_{p\in Y(\lambda/\mu)}c(p)$ . Furthermore,
two boxes in $Y(\lambda/\mu)$ can not be in the same column. Suppose A $\neq(2,1)$ and $\mu\neq(1)$ .

Then we can find a pair of partitions $(\overline{\lambda},\tilde{\mu})$ such that $6=1- \sum_{p\in Y(\overline{\lambda}/\tilde{\mu})}c(p)$ . Furthermore,
$n-|\tilde{\mu}|$ is even. This is a contradiction by Case 1:.

If A $=(21)$ and $\mu=(1)$ , then $n$ is even and $\delta=1-1+1=1$ . By computation,
$\det$ Cr2,(o) $=0$ . This implies that there is a non-trivial $\mathscr{B}_{4}(1)$ homomorphism from $\Delta(k, \lambda’)$

to $\Delta(2,$(0) $)$ . Consequently, by Theorem 13,

$\langle \Delta(n/2+k-2, \lambda’), \mathrm{A}(n/2,0)\rangle_{d_{n}(1)}\mathit{6}\neq 0$ .

This implies $\mathscr{B}_{n}(1)$ is not semisimple, a contradiction. $\square$

Remark 16. When $F$ is a filed with positive characteristic $p$ , we can add $p\{n!$ in the
theorem to get a criterion on the semisimplicity of $\mathscr{B}_{n}(\delta)$ over F. The reason is that, if
$\mathscr{B}_{n}(\delta)$ is semisimple, then all $\Delta(0, \lambda)$ are non-isomorphic irreducible, which implies $F\mathfrak{S}_{n}$

is semisimple. In this case, Doran-Waies-Hanlon’s results we need are still valid since
their results depend on ordinary representations of symmetric groups. Our argument is
about cellular algebra. This will give the proof

The cyclotomic Brauer algebra $\mathscr{B}_{m}$, $n$ was introduced by Haering-Oldenburg in [6]. In
[12], we gave a result on the semisimplicity of a cyclotomic Brauer algebra, which can
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be considered as a generalization of Theorem 3. It would be interesting to generalize

Theorem 8 to find a necessary and sufficient condition for $\mathscr{B}_{m,n}$ .
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