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In the asymptotic setting, the optimal test for hypotheses tesing of the maximally entangled
siate is derived under several locality conditions for measurements. The optimal test is obtained in
several special cases with finite samples. In addition, the experimental scheme for the optimal test

is presented.
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I. INTRODUCTION

Recently various quantum information processings are
proposed, and many of them require maximally entan-
gled states as resources|6, 7, 9]. Hence, it is often desired
to generate maximally entangled states experimentally.
In particular, it must be based on statistical method to
decide whether the state generated experimentally is re-
ally the required maximally entangled state.

Now, entanglement witness is often used as its stan-
dard method [14, 19]. It is, however, not necessarily the
optimal method from a viewpoint of statistics. On the
other hand, in mathematical statistics, the decision prob-
lem of the truth of the given hypothesis is called statis-
tical liypothesis testing, and is systematically studied.
Henee, it is dosired to treat, under the frame of statisti-
cal hypotheses testing, the problem deciding whether the
given quantum state is the required maximally entangled
state. In statistical hypotheses testing, we suppose two
hypotheses (null hypothesis and alternative hypothesis)
to be testod a priori, and assume that one of both is true.
Based on observed data, we decide which hypothesis is
true. Most preceding studies about quantum hypothe-
ses testing concerned only guantum Neymann Pearson
lemma [3, 12} and quantum Stein’s lemma[11, 13, 201,
except Tsuda et al. {1]. In these settings, they treated
the case when both of the null and the alternative hy-
potheses consist of a single quantum state, i.e., they are
sitple.

However, in our issue, it is unnatural to specify both
hypotheses with one quantum state. Hence, we cannot
directly apply quantum Neymann Pearson theorem and
quantuin Stein’s lemma, and we have to treat composite
hypotheses, i.e., the case where both hypotheses consist
of multiple quantum states. It is also required to re-
strict our measurements for testing among measurements
based on LOCC (local operations and classical communi-
cations) because the tested state is maximally entangled
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state.

Recently, based on quantum statistical inferenco(3, 4,
12}, Tsuda et al{l] discussed this testing problem un-
der statistical hypotheses testing. They treated test-
ing problem where the null hypothesis consists only of
the required maximally entangled state. Especially, they
studied the optimal test and the existence of the uni-
formally optimal test (whose definition will be presented
later) when one or two samples of the state to be tested
are given. Their analysis mainly concentrated the two-
dimensioual case.

In this paper, we treat the null hypothesis consisting of
quantum states whose fidelity for the desired maximally
entangled state is less than e, and discuss this tosting
problem with several given samples of the tested state
in the following three setting concerning the range of our
measurements. M1: All measurements are allowed. M2:
Only classical communications are allowed as our oper-
ations between two distinet parties, but any operations
among sawples are available. M3: As well as measuring
apparatus with quantum correlation between two distinct
partics, those with quantum correlation among local sam-
ples are forbidden. The restretion M3 for measurement
is discussed by Virmani and Plenio [21], the first time.
Tsuda et al[1] treated the settings M2 and M3, more
systematically.

This paper maiuly treats the case of sufficiently many
samples, i.e., first order asymptotic theory. As a result,
we find that there is no difference in performances of
both settings M1 and M2. Especially, the test achiev-
ing the asymptotical optimal performance can be realized
by quantum measurement with quantum correlations be-
tween only two local samples. That is, cven if we use
any higher quantum correlations among local samples,
no further improvement is available under the first or-
der asymptotic frame work. In the two-dimensional case,
the required measurement with local quantum correla-
tions is the four-valued Bell measurement between the
local two samples. In the setting M3, we treat the null
hypothesis consisting only of the maximally cntangled
stato. Then, it is proved that cven if we use classical
correlation between local samples for deciding local mea-
surement, there is no further improvement. That is, it
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is optimal to repeat the optimal measurement in the one
sample case in the setting M3.

Concerning non-asymptotic setting, we derive the op-
timal tost with arbitrary finite number of samples under
a suitable group symmetry. This result can be trivially
extended to hypothesis testing of arbitrary pure state.
Moreover, we derive the optimal test with two samples
under the several conditions, and calculate its optimal
performance.

Furthermore, we treat the case when two or three dif-
ferent quantum states are prepared, and obtain the opti-
mal test with one sample in both settings M2 and M3.
(In this assumption, even if the number of samples is
one, every party consists of multiple systems. Hence, the
setting M2 means the setting where the quantum corre-
lation among these system are available in the measuring
apparatus, and the setting M3 means the setting wherc
such a correlation is forbidden in the measuring appara-
tus. Tt is proved that repeating the optiinal ineasurement
for one sample gives the test achieving the asymptotically
optimal performance. Moreover, it is shown that for this
purpose, we can replace the optimal measurement of one
saunple by four-valued Bell measurement in the two-state
case. (Indced, it is difficult to perform the quantum mea-
surcment with quantum correlation between two samples
because we need to prepare two samples at the same time.
Hence, it is easier to fealize quantum measurement with
one sample of two different quantum states.) In the three
statos case, the optimal measurement can be described by
the GHZ state ~\}~Z S, 1885}, where d is the dimension of
the system. This fact seems to indicate the importance
of the GHZ state in the three parties.

Concerning locality restriction of our measurement, it
is natural to trcat two-way LOCC, but we treat one-
way LOCC and separable measurement. This is because
the separability condition is easier to treat than two-way
LOCC. Hence, this paper mainly adopts separability as
a useful mathematical condition. It is contrast that Vir-
mani and Plenioc[21] used the PPT condition and Tsuda
et ol.{1} partially used the PPT condition.

This paper is organized as follows. The mathemati-
cal formulation of statistical hypotheses testing is given
in section II and, the group theoretical symmetry is ex-
plained in section IIIB. In section HIC, we explain the
restrictions of our measurement for our testing, for ex-
ample, one-way LOCC, two-way LOCC, separability, etc.
In section IV, we review the fundamental knowledge of
statistical hypotheses testing for the probability distri-
butions as preliminary. In section V(section VI, section
VII), the setting M1(M2, M3} is discussed, respectively.
Further results in the two-dimensional case are presented
in section VIII. Finally, in section IX (section X), we
discuss the case of two {three) different quantum states,
respectively. All proofs are omitted because of the limit
of the page.

II. MATHEMATICAL FORMULATION OF
QUANTUM HYPOTHESIS TESTING

Let H be a finite-dimensional Hilbert space corre-
sponding to the physical system of interest. Then, the
state is described by a density matricx on H. In the
quantum hypothesis testing, we assume that the current
state p of the system is unknown, but is known to belong
to a subset Sg or S of the set of donsities. Hence, our
task is testing

Hy:peSy versus Hy:ped (1)
based on an appropriate measurement on H. That is,
we are required to decide which hypothesis is true. We
call Hy o null hypothesis, and we call Hy an alternative
hypothesis.

A test for the hypothesis (1) is given by a Positive Op-
erator Valued Measure (POVM) {5, T1 } on H composed
of two elements, where Ty + T3 = I. For simplicity, the
test {Th, 71} is described by the operator T = Tp. Our
decision should be done based on this test as follows: We
accept Hy (=we reject Hy) if we observe Ty, and we ac-
cept H; (=we reject Hy) if we observe Ty. In order to
treat its performance, we focus on the following two kinds
of errors.: A type 1 error is an event such that we accept
H, though Hy is true. A type 2 error is an eveut such
that we accept Ho though Hj is true. Hence, we treat the
following two kinds of crror probabilities: The type 1 or-
ror probability a(7’, p) and the type 2 error probabilitics
B(T, p) are given by

o(T, p) = Te(pTy) = 1 — Te(pT) (p € o),
BT, p) = Tr(pTy) = Te(pT) (p € S1).

A quantity 1 — (T, p) is called power. A test T" is said
to be level-o if o(T, p) < « for any p € Sp.

In bypothesis testing, we restrict our test to tests
whose first error probability is greater than a given con-
stant « for any element p € Sy. That is, since the type
1 error is considered to be more serious than the type
2 error in hypothesis testing, it is required to guarantee
that the type 1 error probability is less than a constant
which is called level of significance or level. Hence, a test
T is said to be level-ar if (T, p) < ¢ for any p € Sp.

Then, under this condition, the performance of the test
is given by 1 — (T, p) for p € Sy, which is called power.
Therefore, we often optimize the type 2 error probability
as follows:

del .
Ba(Sollo) = i B(T, py,

d '
7:1,50 ér {7

0<T<I, o,p)<a¥peSo}

for any p € Si. Especially, a test T € Ty s, is called
o Most Powerful (MP) test with level o at p € & if
B(T, p) < B(T", p) for any level-ce test T' € To,s,, that is,

B(T, ,U) = Ba(Soll0)-



Moreover, a test T € Ty s, is called a Uniformly Most
Powerful (UMP) test if T is MP for any level-¢v test p €
Sy, that is,

ﬂ(Ta P) = ﬂu(sonﬂ),

However, in certain instances, it is natural to restrict our
testings to those satisfying one or two conditions (Cy or
Cy and Cy). In such a case, we focus on the following
quantity in stead of (T, p):

882, (Sollo) &

Vp e Sy.

Cmin {8(T, p)|T satisfies C; and Cy.}.
1 E?:.szg)

If a test T €€ Ta s, satisfles conditions Cy, Cy, and

BT, p) = B, (Sollp),  Vp € Sy,

it is called q Uniformly Most Powerful Cy,Cy (UMP
Cy, Cy) test.
be T,

III. OUR PROBLEMS
A. Hypothesis

Ouwr problem in this article is the hypothesis testing of
the maximal entangled state

Z|2A®|Z

z-—O

[$as) =

on the tensor product space Ha,p of the two
d-dimensional  systems Ha4 and Hp spanned by
10) 4,11} Ay ooy [ — 1) 4 annd 0}, 1) B, .., |[d — 1), respee-
tively. Note that we refer to {|i)a} and {|i)p} as the
standard basis. Suppose that n independent samples are
" provided, that is, the state is given in the form

7

for n unknown densitics oy, ...0,. We also assume that
these densities o1, ..., 0, equal & density o. In this case,
the state p is called n-independent and identical density
(n-i.i.d.). In the following, we consider two settings for
our hypothescs:

def

Ho: 06€8< Z {01~ ($hplolohp) <e€}
Versus
Hy: oce8c

and

Hy: o€85 {0l — (¢%5l0lé%s) > €}
Versus
Hi: o ES;_’e.
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When the null hypothesis is “o € S<.”, the sct of levol
o-tests is given in the n-fold i.i.d. case by

n  def

w<e = {T|0<ST <1, Yo€S8c, 1-Tra®" T <a}.

Similarly, when the null hypothesis is “o € S5, the sct
of level o-tests is given in the n-fold Lid. case by

def
reA b Isal
o,Ze T {I

0<T<I, Yre€8s 1-Tro® T <a}.

In this paper, we only treat the null hypothesis S<..
Howevor, a large part of obtained results can be trivially
extended to the case of the null hypothoesis S>e.

B. Restriction I: group action

In this paper, we treat these two cases with the in-
variance conditions for the following group action, which
preserve the two hypotheses Hg and Hy. The naturalness
of this condition will be discussed later,

LU{1)-action:

p—=Upp, dcHap, FeR
where Up is defined b
def ;
Up = e®|¢hn)(¢hn] + (I~ 6%p)(80s).

For a vector [u) orthogonal to (¢% 5| and a positive num-
ber 0 < p < 1, the entanglement properties of the two
sates /B9 ) + VI = plu) and e /plgY 5) + T = plu)
are essentially equivalent. Hence, this symmetry is very
natural. We can casily check that this action prescrves
our hypothcses. The U(1)-action is so small that it is
not suitable to adopt this invariance as our restriction.
However, this invariance can be, often, treated so easily
that it be adopted only by a technical reason.

2)SU(d)-action: We consider the unitary action on
the teusor product space Ha,p = Ha ® Hp:

¢ — U(g)¢, ‘;b S HA,B7 g € SU(d)v

where
e —
Ulg) Y07,

and g is the complex conjugate of g concerning the stan-
dard basis [0Y5,|1)5,....|d — 1) on the system B. In-
deed, this action preserves the maximally entangled state
|¢Y% ). Hence, this action preserves our hypotheses. Fur-
thermore, this action preserves the entanglement prop-
erty. Similarly to the U(1)-invariance, the SU(1)-action
ig o small that it will be adopted ounly by a technical
reason.

3)SU(d) x U(1)-action: Since the SU(d) action and
the U(1)-action preserve the entanglement property, the
following action of the direct sumn product group SU(d) x
U(1) of SU(d) and U(1) also preserves this property:

¢ Ulg,0)¢ d€Han, (g€ €SUM)=xU),
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where

U(g,8) < U(g)Us = UsU(g).

Thus, this condition is most suitable as our restriction.

4)U(d? — 1)-action: As a stronger invariance, we
can consider the invariance of the U(d* — 1)-action, i.e.,
the following unitary action on the orthogonal space of
16% ) (¢% ], which is a d* — 1-dimensional space.

b V(g)p, d€HMHap geU@ —1)

where

Vig) % g7 — 16%5) (%50 + 18%5) (¢!

This group action contains the U(1)-action aud the
SU(d)-action. Hence, the invariance of the U(d? — 1)-
action is stronger than the invariances of above three
actions. This action does not preserve the entanglément
property. Thus, based on this definition, we cannot say
that this condition is natural for our setting while it is
natural if we are not care of entanglement.

Furthermore, in the n-fold i.id. setting, it is suitable
to assume the invariance of the n-tensor product action of
the above actions, i.e., UF™, U(g)®™, U(g,8)®™, V(9)?",
etc.

C. Restriction II: lecality

When the system consists of two distinct parties 4
and B, it is natural to restrict our testing to LOCC mea-
surements between A and B. Hence, we can consider
several restrictions concerning locality condition. Hence,
in section IV, as the first step, in order to discuss the
hypotheses testing with the null hypothesis S<., we will
treat the following optimization: -

Ba.c(L ello) o Flin {B(T,0®™)|T is G-invariant. } ,

o, 3

where G = U(1),8U(d), SU(d) x U(1), or U(d* — 1).
However, since our quantur system consists of two dis-
tant system, we cannot neccessarily use all measure-
ments. Heoce, it is natural to restrict our test to a class
of tests. Iu this paper, we focus on the following seven
classes.

#: No condition

S(A, B): The test is separable between two systems HS™
and HE", i.e., the tost T has the following form:

T=>Y alleTP,
i
where a; > 0 and the matrix T/ (7}%) is a positive

senii-definite matrix on the system HG"™ (HE"), re-
spectively.

L{A 5 B): The test can be realized by two-way LOCC
between two systems HE™ and Hy™.

L(A — B): The test can be realized by one-way LOCC
from the system H3™ to the system HE".

S(At,...,An,B1,...,Bn):  The test Iis
among 2n systems Ha,, ..., Ha,, Hs,, -
i.e., the tost T has the following form:

separable
s HB” s

T:ZaiTiAl®"'®EAn®TiBl®"'®TiB”5
%

where a; > 0 and the matrix Ti"k (i!’iB’“) is a posi-
tive semi-definite matrix on the system Ha, (Hn,),
respectively.

The test can be realized by
* HAﬂ, bl

L(Al, e ,An,,Bl, e ,Bn):
two-way LOCC among 2n systems Ha,, .-
Hpyy ---» HB,-

The test can be realized
.y HA;M HB] s

L(A4,...,Ap — Bi,..., By}
by LOCC among 2n systems Ha,, ..
..., Hp,. Moreover, the classical communication
among two groups Ha,, ..., Ha, and Ha,,. ..,
Hp, is restricted to one-way from the former to
the later.

Based on the above conditions, we define the following
quantity as the optimal second error probability:

7C del : m BN
ﬁ“*”’c(s ello) = q‘én'fl'l'vl . {ﬂ(f’a ) and satisfics C

<

T is G-invariant,}

As is easily checked, any LOCC operation is separa-
ble. Hence, the condition L(A < B) is stronger
than the condition S(A4,B).  Also, the condition
L(Ay, ..., A, — Bi,...,By) is stronger than the con-
dition S(A1,...,An — B1,..., Byn). The relation among
these conditions can be illustrated as follows.

Next, we focus on the trivial relations of the optimal
second error probability. If a group G is greater than
Gy, the inequality

BY ni (< €llo) 2 Bam,c,(< ello) @

holds. Morcover, if a condition €y is stronger than an-
other condition Cy, the similar inequality

S, (< ello) > B52, o< ello) (3)

holds.

Similarly, we define 85, (= €llo) by replacing < e by
> ¢ in RHS.

Indeed, if the condition is invariant for the action of G,
it is very natural to restrict our test among G-invariant
tests, as is indicated by the following lemma.



Lemma 1 Assume thot o set of test satisfying the con-
dition C is invariant for the action of G, Then

Banc(S ello) = (Fla)af(a)h)®")

min  max 3(T
TETN G

e !

= [ B0 ie e,

where ve is the invariaont measure ond f denotes the ac-
tion of G.

In the following, we sometimes abbreviate the invariant
measure Ve by v. This lemma is a special version of quan-
tum Hunt-Stein lemma [2, 3]. The condition @ is invariant
for the actions U(1), SU(d), SU(d) x U(1),U(d? — 1).
But, other conditions S(A,B),L{A S B),L (A -
B),S(Ay,...,An, By,...B,), L{As, ..., A, B1,...By), L
Bi, ... By) are invariant only for SU(d). Hence, Lemma
1 cannot be applied o the pair of these conditions and
the actions U(1), SU(d), SU(d) x U(1),U{d* - 1). The
following lenuna is useful in such a case.

Lemma 2 Assume that the group Gy includes another
group Gy which sotisfies the condition of Lemma 1. If

cvn(’;(< GHO) Ig((;n (‘o(< EH{J’) Vo

then

C
/Bw,n.,G'l(S 5”0‘)
o , . . \®n
= pIg  iax BT, (f(g)o F(@)1)®™)

= min 3
TeTY <. Ja, g

T, (£(9)a F(9)")®™)va, (dg).

1IV. TESTING FOR BINOMIAL
DISTRIBUTIONS

In this paper, we use several knowledges about test-
ing for binomial distributions for testing for a maximally
entangled state. Hence, we review them here.

A. One-sample setting:

As a preliminary, we treat testing for the coin flipping
probability p with a single trial. That is, we assume
that the event 1 happens with the probability p and the
event 0 happens with the probability 1 — p, and focus
on the null hypothesis p € [0,€]. In this case, our test
can be described by a map T from {0,1} to {8, 1}, which
means that when the data k is observed, we accept the
null hypothesis with the probability T'(k). Then, the
minimum second error probability among level-cv tests is
given by

BL(< €llg) def 1'1;_1}1 {q(’f) [Vp e0,¢,p(T)>1- a}

p(F) & (1 — pyT'(0) + pT(1)

Al’
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When we define the test 7}, b

- g .
a1 N i g ife<a 0 fe<q
Teal0) { 1 ife>a’ Teall) = { 2 ife > q
the test 17!, satisfies
(1= eIl 0) + el (1) =1 - e (4)

Moreover, if p < ¢,

(1 _p)Tel,a(O) +pTel,a(1) z 1-q
Hence the test T2,
check that the minimun of q(T) with the condition (4)
for T can be attained by 7' = Te{ o if ¢ > e. Henee,

U=a){l-g)

ﬁrx‘(qe Hq _q ca) = { 1_19:;

is level-a. Purthermore, we can casily

ife<a x
. 5
ife > a. (%)

B. n-sample setting:

In the n-trial case, the data & = 0,1,...,7 obeys the
distribution P} (k) def (1) (1= p)*p* with the unknown
parameter p. Hence, we discuss thc hypothesis testing
with the null hypothesis PZ, e BlH{k)lp < €} and the
alternative hypothesis (P2 )C In this case, our test 7" can
be described by a function from the data set {0,1,...,n}
to interval [0, 1]. In this case, when the data & is observed,
we accept the null hypothesis P2, with the probabil-
ity T(k). Then, the minimum second error probability
among level-ar tests is given by

B(< ellg)  min { (T

[0,€],1— P;(T) < a}

PRI S Pr(kyT (k).

k=0
We define the test nga as follows.

I k<l
Tea(k) = '

where the integer 17, and the real number 7, > 0, are
defined by

’l”l(l r o
Z PMk)y <1—-a< ZP”(A
l:'ﬁ
Ye, rzpn(lr (\e) =l-a- Z P(n(k)
k=0

Theorem 1 The test nga is level-cc UMP test with the
null hypothesis P2 . Hence,

1
L=

= P}(Te0) = Z Prk) + el (Ea)-

k=0

(< ella)
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C. Asymptotic setting

In asymptotic theory, There are two settings at least.
One is the large deviation setting, in which the parameter

is fixed, hence we focus on the expounential component of

the error probability. The other is the small deviation
setting, in which the parameter is close to a given fixed
point in proportion to the number of samples such that
the error probability converges to a fixed number. That
is, the parameter i8 fixed in the former, while the error
probability is fixed in the later.

1. Small deviation theory

1t is useful to treat the neiborhood around p = 0 as the
small deviation theory of this problem for the asymptotic
discussion of testing for an maximally entangled state.
Hence, we focus on the case that p = %: Since the prob-

(k) = (R (L=E)n* (£)* convergences to the

dr -
Poisson distribution Py(k) = ‘ﬁc Hence, our testing

problem Wlth the null hypothesm Ps and the alternative

ability

hypothesm . is asymptotically equivalent with the test-
ing of Poisson distribution P,(k) with the null hypothesis
t € [0,8] and the alternative hypothesis ¢'. That is, by
defining

n def . , =~
Bal< oIt & ugfin{PL !Vte[() 5,1~ P(T) < }

P(T) & Z Py(k)T (),
k=0

the following theorem holds.

Theorem 2

6
2 7 <
tim 83 ( - l

"") Bal< B,

Similarly to the test TE"a, we define the test fg,a as

B 1 E<lsn
Tsalk) =1 Y0 k=lsa
0 k> 35,(,“

where the integer /5o and the real number 5, > 0, are
defined by

l&ya-‘l l&,r\'
Z Ps(k) <l—-a< ZPg(k)
k=0 k=0
tg,m_l
vs,aPslse) =1—a— Y Ps(k)
k=0

Similarly to Theorem 1, the following theorem holds.

Theorem 3 The test f};,(, is level-oo UMP test with the
null hypothesis P<s def {P|t < 6}. Hence,

l51”~1
n(< Sl = Y Pu(k) +vs,0Pullse)-
k=0

2. Large deviation theory

Next, we proceed to the large deviation theory. Using
the knowledge of mathematical statistics, we can calcu-
late the exponents of the 2nd error probabilitics 37, (el[p)
and 82 (ellp) for any o > 0 as

lim :— log (< ellp) = dle|lp), ife <p
d(ellp), if e > p,

hm — log "(> ellp) =

where the binary relative entropy d(eﬂp) is defined as

d(elp) & 61% 1 (1-e)logs —

In the case of a = 0, we have

—logptel) = { %G V)

ife=0
if € # 0.

V. GLOBAL TESTS

First, we treat the hypotheses testing with a given
group invariance condition with no locality restriction.

A. One-sample setting:

When only one sample is prepared, the test
|¢ %,5) (0% 5l is a level-0 test for the null hypothe-
sis So. If we perform the two-valued measurement

{16% 80 ¢% pl, T - |¢A73)<¢A)B§} the data obeys the dis-
tribution {1 — p,p}, where

def
pE1- <¢’(/)1,Bl‘7;¢OA,B>'

Hence, applying the discussion in subsection IVA, the
test Tl(fqﬁA B)(¢A ghe€) is a level-o test for the null hy-

pothesis S¢., where the operator 15(T) €) is defined by

l-o

dof T—¢
To(T,e)'= {T+f—;@-(1—T)

fe<aw
ife > au.

B. n-sample setting:

In the n-sample setting, we construct a test for the
null hypothesis S<. as follows. First, we p(‘rform the two-

valued measuremnent ﬂqﬁA B)(qﬁ,; alh 1 |¢A B)(¢A pl} for



respective n systems. Then, if the number of counting
I- 19, ) (69, 5| is described by k, the data k obeys the
binomial distribution P(k). In this case, our problem
can be reduced to the hypothesis testing with the null

hypothesis P2, which has been discussed in subsection
IVB. a

For given « and ¢, the test based on this measurement
and the classical t(\qt T,"(k is described by the operator

Tfn(x dif (v (th,B,) (¢A,BE7 )7 where T&L(T’ F') is defined by

1M{c)~1

THT,e ) € S
k=0

P, ES®-- 050 T® - &T
k n——k
41907058 - ®S.
n—k :‘.r

P]:L(T,I - T) + ’Ya( )'Pl”(s)(TvI - T)

Note that the above sum contains all tensor products of
& times of S and n — & timoes of T°.
; atora b0 0 ) 0
Siuce the operators [¢% 5){(¢ pl and I —|9% ) (P4 sl

are U{d? — 1)-invariant, the test TP is level-ao U(d? —1)-

€,€X
invariaut test with the hypothesis Sge~ Hence,

B a1y (< elo) < BR(< elp). (6)

B oy (< elio) = A< ellp). m

Since U(1) € SU(d) x U(1) € U(d? — 1), the relations
(6) and (7) yicld the following theorem.

Theorem 4 The equation
ﬁa n, (;(< EHJ) Q(S Eﬂp) (8)
holds for G = U{1),SU(d) x U(1),U(d? - 1).

Therefore, The test 77, is the UMP G-invariant test, for
G = U(1),SU(d) x U(1) or U(d? — 1). Moreover, we can
derive the same results for the hypothesis S>..

C. Asymptotic setting

Next, we proceed to the asymptotic setting. In the
small deviation theory, we treat the hypothesis testing
with the null hypothesis Sc;/,,. in this setting, Theorem
2 and Theorem 4 guarantee that the limit of the optimal
socond error probability of the alternative hypo‘rheqm Tn,

is given by B (6||t") if (qu’BlanlqﬁA,B) 1— L. That is,
]

o (<0

hrn[iu’c (_ -

for G =U(1),SU(d) x U(1},

an) ~ Bal(< 51t ©)

U(d®-1).
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In the large deviation setting, we can obtain the same
results as subsection IVC, i.e.,

1 dlelim) ifao>0
lin — log Bh (< €llo) = ¢ —log(l—p) fa=0,e=0
’ 0 ifao=0,¢ >0
(10)

ife <p=1-(¢%plol¢% p). Morcover, we can derive
similar results with the null hypothesis Sy..

V1. A-B LOCALITY

In this sectiow, we treat optimization problemns with
soveral conditions regarding the locality between A and
B.

A. One-sample setting

First, we focus on the simplest case, i.e., the case of
€ = 0 and « = . For this purpose, we focus on a POVM
with the following form on H4

M o= {ps|us) (uil}s,

where such a POVM is called rank-one. Based on a rank-
one POVM M, a suitable test T'(AM)

fludl =1, 0<p <1,

(M) E S pilus © ) (s @ 7). (11)
£

can be realized by the following one-way LOCC protocol.
From the definition, of course, we can casily chock that
T'(M) satisfics the condition of test, 4.c.,

0<T(M)<I. (12)

One-way LOCC protocol of T'(AM):
1) Alice performs the measurement {ps|us){us]}s, and
sends her data ¢ to Bob.
2) Bob performs the two-valued measurement
{|[%) (G}, I — w5) ()}, where T is the complex conjugate
of u; concerning the standard basis [0) g, 1) g, ..., [d=1)s
3) If Bob observes the event corresponding to |%;) (%l
the hypothesis [¢% 5) (6% gl is accepted. Otherwise, it is
rejocted. '

This test satisfies

(&%, 51T (M5 5) = 1, (13)
T T(M) = sz T Ju; @ ) {us ® ]

- Z piTrlud(u =d.  (14)

Honce, it is a level-0 test with the null hypothesis
193, B)(fi’)A 5l- In particular, in the one-way LOCC set-
ng, our test can be restricted to this kind of tests as the
following scnse.
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Lemma 3 Let 1" be a one-way LOCC (A — B) level-0
test with the null hypothesis |¢% )(¢% |- Then, there
exists a POVM with the form M = {pz]uz)\ull}z such
that

T > T(M), (15)
i.e., the test T{M) is better then the test T

Moreover, concerning the separable condition, the fol-
lowing lemma holds. Heunce, Corollary 1 indicates that
it scoms natural to restrict our test to the test with the
forui (11) even if we adopt the separable condition.

Lemma 4 Assume that a separable test T': satisfies

($%.5/T19% 8) = 1. (16)

When we describe the test T as

T=d Zpi]u@ ®@u'){u; @ u'i] + 2 gl @ V) (v @ vy,
i

j
(17)

such that (% plu ® u's) =
we obtain

75 and (¢} plvi @ v's) =0,

1 4]
S piw @' = —=¢% 5.
- 1w ? \/a

Note that we can easily obtain the same statement if
we replace the summation ), by the integral [ at (17).
Since any separable test 7' has the form (17), the fol-
lowing corollary holds concerning the completely mixed
state =

Corollary 1 If a separable test T satisfies the conditions

<¢%,B]T|¢9§,B> =1

I
Tt T =d= min

I
!
d? T'€S(A,B {Trf

(% BIT"1¢% 5) = 1}

then the test T has a form (11).

Next, we focus on the covariant POVM M} ,:

=l (plv( dp),

where v(dp) is the invariant measure in the set of
pure states with the full measure is 1. Then, the test

d
M(}mr( d(p)

ThA=B <AL Y has the following form
13" = [dipawite owib(de)
1
=1¢% 5 (% 5l + d+1( —16% 5 (% 51)-

(18)

Note that the POVM M., can be realized as follows:
Realization of M} :

1) Randomly, we choose g € SU(d) with the invariant
measure.

2) Perform POVM {g|i)a a(ilg'};. Then, the realized
POVM is M}

cov’

Since the equation (18) guatan‘roe‘q the U(d? - 1)-
invariance of the test T:nf , we obtain

po_ W

1,A-RB
=1-— ,
T Tl g p+ P

inv d+1~_

which implies

dp
d+1

Next, we apply the di%uqqmn in ‘;ubsoth()n IVA to
the probabmty distribution {-2-,1 — 221, Then, the

ﬁL(A——vB)

0,1,{1(:12_1)(0110) <1l-

A+ a1
1,A-B def p1 el A-B - de 2
test T To(Tiny s i) is & levela U(d® — 1)-
iuvariant test. Since the test T2~ % can be performed
H : . rp - r B
by randomized operation with I;;f Band I - lllmf ,
we obtain
AL(A—=13) .1, A—B
Batua-n(S ello) S TeIy ™ a
(L—(v)(l—a—fhp) d €<
= (_Bdi.e) d+1 - (19)
83
1-% if d+1f >

On the other hand, concerning SU (d)—invariance and
separable tosts, the equation

B2 50 (< elo) = T 5o (20)
holds. The equation in the case of ¢ = 0,e = 0 is ob-
tained by Tsuda et al.[l [ ]- A similar result with the PPT
condition is appeared in Virmani and Plenio [21].

Since U(d?—1) is a larger group action than SU(d) and
the condition L(A — B) is stricter than the condition

S(A, B), the trivial inequalitios

S(A,B S(A.B
ﬁa,(l,SU)(d)(S eflo) < ﬁa(l U(;z 1)(< ello)
L{A—B
< rt,l,U((F)-l)(S ello)
hold. Therefore, relations (19) and (20) yield

(1—a)(1- 745 p)
—__(1—#7; f“) if ¢+1E
122 if 3_%6 > a,

€

(0%

851 o< ello) = , (21)

for G = SU(d), SU(d)xU(l) U(d"‘ 1),and C = L(A —

B),L{A 5 B),S(A, B). That is, the test T}:#~% is the
UMP G- uwwnant C test with level & for the null Ly-
pothesis S¢e. Furthermore, similar results for the null

hypothesis S»¢ can be also obtained.

B. Two-sample case

In this section, we construct a SU(d) x U(1)-invariant
test which is realized by LOCC betwoen A and B, and



which attains the asymptotically optimal bound (9) For
this purpose, we focus on the covariant POVM M2

A{ézov(dgl dga)
La2(g1 ® go)lud(ul(g1 ® g2)*v( dg1)v( dga),

where the vector u is maximally entangled and v is
the invariant measure on SU({d}. Then, the operator

2,A— B 1Lf .
,'Tznv ‘ (A[(ZGH) has the form:

2, A—B
“[ir;v

=1¢%,1) (00,5 ® 9 1) (94,51

1 .
+ (= 160,8) (80,61) ® (I — [60,5)(@h,5))-
(22)
This equation implies that the testing T(M2) does not

depend on the choice of the maximally entangled state
. It also guarantees the U({d? — 1)-invariance of the test

TAA=B e also obtain the equation
2 d'z, 2

T T340 = (1—p) 4 e =1 2p + o
inv ( p) +d2_1 1 p+d3_1

(23)

Since the test Tfn{,“’B is a level-0 test with the null hy-

pothesis Sy, the inequality

afp

L{A—B)
B - 20+ = o

o,z,U(dLU(()HU) <1

Liolds. Next, we apply the discussion of subsection [V A.
Then, the test T2~ 5 f i (r2A=B 9 gffl) is a

Ny
level-a U(d? — 1)—1nva1 iant test. Since the test chf‘”B

112 A B

can be porforined by randomized operation with 157

and [ — THA—B

e, we obtain
L{A—B) . m2,A-B Q2
Banar (S elle) STr T 0
(1-a){1- 2f7+—2——d 2_y 2.2
£ if 2¢ — gTj-—l <«

1—- 2(+
= 2
tx(2p+7—) . 2.2
1 - —55 1f2e———d"%i > .
2e— o

Furthermore, as a generalization of (23), we obtain the
following lomma, which is more useful in the asymptotic
setting from an applied viewpoint.

Lemma 5 Let M = {pilu;){u;|Y(lui]l = 1) be o POVM
on A’s two-sample space HE?. If every state |u;) is
mazximally entangled state on H%z, the test T(M) satis-

fies

($hsloldhs)? < Tro®*T(M)

< (%sloldds)? + (1 — (4plolebhs))®.
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Indeed, it is difficult to realize the covariant

POVM M2 . The Bell measurement M3, d_:er
{l¢Ts )(é?ﬂ}gi_’;)d—(é){)) can be constructed more

msﬂy, where ¢7%" is defined by

d—1

ZU ald)a

3=0

M E Xz e D
d—1 -
def g
MRS B DICES
j=l1
d—1
z 23 2 ) .

Jj=0

() 0 def

the test

2,A—8
of 170

As will be mentioned in subsecction VID,
T(M3%,,;) can be used as the alternative tost
in an asymptotic sense.

C. n-sample setting

Next, we construct a U(d? — 1)-invariant test when 2n
samples of the unknown state o are prepared. It follows
from a dm( ussion similar to subsection V B that the test

12 d -
7 in T2(THAE 9e _42__5__) is levol-a for given a and

€. The U(d? — 1)-invariance of the test Tfm/} 8 implies
: . . T
the U(d? — 1)-invariance of the test 177, Since the test

T’f ., can be realized by onc-way LOCC A - B, the

inequality

ﬁMAqB

r 1/27? 782
e, 2n, U (d2— 1)(< ello) < Tr1" "

d?e?
=B ( R

Lolds. In addition, we can derive a similar bound for the
hypothesis Sye.

Concerning the casc of € = 0, we have another bound

as follows. For this purpose, we focus on the test 1 fm/]‘%’g

in the case when Hp = ’H®” and Hp = HE". Denoting
®n_,
this test by Tp A B® , we have

iny
1L,A® L, gOn 0 ]
Tiny - =]¢%,B><¢A,Bl®w

d?p?
v i)

(24)

i 0 0 1®@n
b (= 8 Y1)
Tyl A® BE" g _dMl-p)"+1
muv - d‘n’ + 1

because Tr |¢% ;) (9% p|®"o®" = (1—p)". Siuce this test
is U(d? — 1)-invariant, we obtain

d’!!( )7!. __I_l

AL{A—B)
A O

(1,1'1,,1}({12—1)(01!0-) (25)
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D. Asymptotic setting

We proceed to asymptotic setting. First, we show that
even if our test satisfles the A-B LOCC condition, the
bound (8) can be attained in the asymptotic small devi-
ation setting. Indeed, since P, 2 (k} — Pi(k),

()
5@ s\ e & N
. <9 L | — oanisr anasrl W
lim 37 (_22” dg_l(Qn) 2277/ d2v1(2n
= Ba{< 4]it")

can be proven similarly to Theorem 2. Hence, from (2)
and (3), we have

the equation

S

Ba(< 8]t)

for G = U(l),SU(d) x U(L),U(d? -1),C=0,L(A —
B),L(A = B),S(A, B). However, it is difficult to real-
ized tho covariant POVM M2 on H%?. Even if th(* test
T2 is replaced by T'2% poy & THIT(M3,.), 26~ 5<7),
the bound Ba(< §|it'} can be attained in the following
asymptotic sense. The test 17 ;%_? o, Ber May be not level-

o with the null hypothesis S<;s/2n, but is asymptotically
level-a, i.e.,

lim B 5, (< ||crn)

Lt 2n 2 .
T %,rv,Bello'?;z e 6 (2())
1 - &

i (@ slonld) 5) n

= Moveover, if
(¢91)B|0nj(f>91,5) =1-% and ¢ > §, the relation

hil — KN Bell¥n

o Bal(< 8[1t") (27)

holds. These relatious (26) and {27) follow from Lemuna
5. Henece, there is no advantage of use of entanglement
botween H 4 and Hp for this testing in the asymptotic
small deviation setting. Similar results for the null hy-
pothesis 855/, can be obtained.

Next, we proceed to the large deviation setting. The
inequality (25) yields

—log(l-p) if1-p>4
logd if1-p <y

(28)
Ilience, the relations (3) and (10) guarantee that if 1—p >
@

-1 L{A—B)
lim—1logf”
n ogf

oy (ai—-1) (Ollo) 2 {

(A
hm — iog di‘n U ’32 1)(()HU)

— log(1 — p),

for G = U(l),SU(d) x U(1),U(d? -~ 1), C = §,L(A —
B),L{(A s B),S(4, B). Hence, we can conclude that if
1—-p2> é, there is no advantage of use of entanglement
between H 4 and Hp for this testing even in this kind of
the asymptotic large deviation setting.

VII. A-B LOCALITY AND SAMPLE LOCALITY

In this section, we discuss the locality among
A1, Bi,..., An, By Siuce the case n = 1 of this setting
is the same as that of the sctting section VI. Hence, we
treat the case n = 2, at first,

A. Two-sample setting

We construct a level-0 .S U{d)-invau tant test for the null
hypothesis So = {|¢% 5){9% 5|} as follows. For this pur-
pose, we define a POVM ML>? on Alice’s space H$?,
which can be realized by onc-way LOCC A; — Az from
the first system M4, to the sccond system Ha,.
Construction of M}

1) Alice performs the covariant POVM MY, on the first
system H,4,, and obtain the data corresponding to the
state i) (il

2)We  choose  the  Projection-valued

{ui{@)){ut(p)|}: satisfying that

measure

) =0, Wl = @)

3) Alice randomly chooses g € U(d — 1) which acts on
the space orthogonal to ¢, and performs the Projection-
valued measure {|gut(p)) (gut(¢)|}: on the second system
Ha,.

Since Bob’s measurement of the test T(A%, %) can be
also realized by one-way LOCC on Bob’s space, this test
isa L{A{, Ay — By, By) test. Its POVM is given by

ML (dg) = g ® g)us ® us){ur ® ual(g ® g)'v( dg),

where we choose uy and uy satisfying |(uglug)]? = 1.

Thus, the SU(d)-covariance of M17?% guarantees the

SU(d)-invariance of the test T/Ar—42—5 o T{M!>?).

®2 nv <o
r; 1A1 —bA;—?B :
the test 17,2

equality

is U(1)-invariant. Hence, the in-

L(A,Az—B,,B2) . AL — Ag—s B®? ®2
Boasviamxuy Ollo) < TeTi, =

holds. On the other hand, the equation

L(A,,Ay—B,,B
Brsleita ™ olo) =

Ay - A BO2 o®?2
0,2,5U{d) I T~ (30)

inv
holds. Tsuda et al.{1] have obtained a similar result in
the two-dimensional case. Thus,

L(AL,A2—B),B2) (A, Az—By,B2)
ﬁo,z,slti(é) P 0le) = Bos SJU(?!)XUJ(I)A (0fo)

- Ty TA,_.A,,-.B@‘ ®2

nv

Therefore, the test Tzﬁ;'*AZ'*B is a UMP L{A,, Ay —
By, By) G-invariant test with level-0 for the null hypoth-

esis Sp, where G = SU(d), SU(d) x U(1).



B. n-sample setting

Next, we proceed to n-sample setting. Since the test
g, d f 3 1 b d
1t S THIEATE ey s Jovel-o U(d2 — 1)-invariamt

cx T inu 4l
test with the hypothesm S<6, and satisfies the coudition

of L(Ay,...,An — By,..., By), the inequality

L{As, . Ap—By,..,By
6{! 78 111([2—-1) " )(S 6“0)

) de
< T)I/T ®n _ n <
r Xl d +1

)

holds.
Conversely, as a lower bound of [is(,f fg’U(’;;"‘B“ B )(

¢llo}, we obtain

<

S{A1,0hAn, B,y Ba)
1 i ﬁcz,n,jS’U(d) ! (()“J)
—log

7 1—a

> min
u,u’ | (uful =1, ]lu|l=1

/ log d{gu @ gu'lo|gu @ gu')v(dg). (32)
SU(d)

C. Asymptotic setting

Taking the limit in (31), we obtain

Syl
- n

hnlﬁL(Al) ,An"’Bl) B

)

a,n,U(d?2-1)
ds dt’
< . .
ﬁ”( d+1 d+1) (33)

if (6% plolel p) =1 - &, Conversely, by using the iu-

equality (32), the compactness of the sets {u, v/|[{ufu’)] =
1, Jlull = 1} and SU{(d) yields

S(Al vv-:An)Bl 7“.,]3
,m,SU(d)

1l—-—a

. "’)(QH‘%)
lim log

> min / limn
w,u’:j{uju Y =1, ul=1 J5U(d)

log d{gu ® gu'lonlgu ® gu')v{dg)
=- 1uin /
wa’ [ (ulu’)| =1, ull=1 J SU(d)
limn (1 — d{gu @ gu'|on|gu @ gu')) v(dg)

= — min limn Tr(d — Ty 0 )0,

! {ufuly =1 Jlulj=1
where

lef
Tu,u’ ‘=

[ dguem)iguagiivl).
SU(d)

Since Ty o is SU(d)-invariant. The test Ty . has the
form 0|49 5) (8% l+t1 (=169 5){d%, p1). The condition
[{u[u/)| = 1 guarantecs that to = 1. The definition of
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Ty,w guarantecs that 1Tv1y, v > d, which hnplies £; >

1T
741 Hence,

r by d’ fay :
Tr(f — Ty )on < drl Tr(l — IQS(/)Q,B)W)(/)!,BE)UTL
d d t

= (1 — (¢, O )y = —— = :

(= (ol ) = 0 (34)

Thus, we have
S(A1yeAn, By B
lim log (x,n,:SU(,z) ' (Ollon) _ dt’
& I —o - d4+1

which implies

i aS(ALyen A, Bi e, By, .

lim ﬂcx,(n,j?U((l) ' Y(0lfom) > (1 - a)e™#,
Combining (33) in the case of €, we obtain

fim G5 AP B (0 6,) = (1 — a)e~#
for G = 8SU(d),SU) x ULy U - 1), C =
S(Al,...,An,Bg,,.‘,Bn),L(AI,A;.,An,Bl,...,Bn), (44,
Bi,....,B,). Since (1 — (x)e_ﬁ—l < (1 —aet =

Ba(0))t"), there is an advantage to use of quantum
correlation among samples.

VIII. TWO-SAMPLE TWO-DIMENSIONAL

SETTING

Next, we proceed to the special case n = 2 and d = 2.
For the analysis of this case, we define the 3 x 3 real
symmetric watrix V = (v ;)1<s,5<3 88

lef i i
V4,4 < §R<¢7A,Blﬁl¢fﬁ,3>

P p % (110) + 10}),
]11}).

# ;}5 (l00) -

o ~j—§ (~#[10) -+ ]10))

Wlhen o satisfies the following condition p < % the equa-

tion
052 sty Olo)

2
a-ppa Lo (nvomgve) )
3 5 3 3

holds, where C = L(A — L(A s B),S(4,B). bm((‘
the quantity Trdv:— (TriV)?is glmﬂ‘x than 0, its 3
times give the wdentage of th1s optimal test against the
test introduced in subsectionVI B. Hence, this merit van-
ish if and only if the real symmetric matrix V is constant.
In addition, the optimal test T is given as follows. First,
we define a covariant POVM

def

M,p(dg) E “u(dg),

O atop) (Uopl (g®
9(1(2
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where the vector ue, is defined as

fer 1
Uop < 5 (!Un/h,/b - E]'O)/h,/lz)

3
+ -g (’OO>A1:A2 + ‘11)A1,A3) .

the relation
ﬁ(c)z:Z,SU(Z)xum (Ollo) = TI'T(-ZVIO;D)UW (36)

holds. That is, the test T(Mop) is the UMP SU(2)xU(1)-
invariant C test with the condition p < %, where C =
L(A — B),L{A = B),S(4, B).

On the other hand, the RHS of (30) is calculated as

[jL(Al,AZ"’Bl,BQ) ((]”0) — L(A1,Ax—By 732)(0!10-)

'6(),2,SU(2)>< U1)

4,2,5U(2)
2 5 1/ I o . I .
=(1- Ep)2 -z (ngvz - (ﬂ-gV)*) . (37)

That is, the quantity £ (Tr 1v? —(Tx éV)z) presents the

5
effect of use of classical communication between Ay and
As.

IX. TWO DIFFERENT STATES

In section VI, we showed that if we can prepare the two
identical states simultanecusly and we can perform Bell
measureinent on this joint system, the asymptotically op-
timal test can be realized. However, it is a bit difficult to
prepare two identical states sirnultaneously. However, a8
is discussed in this scetion, if we can prepare two quan-
tum states independently, even if these are not identical,
this Bell measurement is asymptotically optimal.

A. Formulation

Since the state on H%% can be described as o1 ® o9,
our hypothescs are given as

2 def
Hy: Séf = {01®02

(1= ($) plorldh 5)) }
+(1 — (¢% plo2ldd p)) <€
versus

e del
H,: Séc( = {01@;02

(1= (9% ploalda g)) }
+(1 = (0% ploal¢a ) > € [

For any group action G introduced in subsection I B,
these hypotheses are invariant for G x G-action defined
as

¢ (1 ®g2)¢ Y(g1,92) € G xG.

When only two particles Ha, B, ® Ha,,p, are
prepared, similarly to subsection IIIC, we can
define the quantities ﬂfig’cxc(g elor ® oo) for
the condition C = §,5(4,B),L(A < B),L{A —

B),S(A1, Ag, By, By), L(Ay, Ag, By, Ba), (A1, 42 —
By, By), in which, “2” means two particles, i.e.,
there is only one sample of o1 ® go. When n
samples (07 ® 02)®" arc prepared, we also de-
fine the quauntitics ﬁg%’cxc(g ellor ® g9) for
the coundition C = §,S(4,B),L{A & B),L(A —
B)»S(AlaA2)BlyBQ)$L(AI:AQ’BDB2),L(A17A2 -
By, Ba).

B. One-sample setting

In this section, we treat the case of one — sample and
e = 0 case. In the first step, we focus on the case of
C = (. In this case, the relations

B8 2 axcOllos @ 02) = (@5 ® 6% plor © 7216% 5 ® 6% 5)
=1 —-p)(1 -p2)

bold for G = §,U(1),SU(d) x U(1),U{d?* — 1), where
pi=1- <¢%,B10i|¢%,B>A

Next, we focus on the case of C = L{A — B),L{A S
B), S(A, B). When we use the test 7247F the second
error is
bip2
dz -1

Bl P o1 @03) = (1—pi)(1—p2) +

Morcover, the optimal sccond error can also be calculated
as

P1p2
d? ~1

ﬁgz,(:xcmugl ®oz) = (1-p1)(1—p2)+ (38)

for C = L(A — B),L(A 5 B),S(A,B) when 5 <
(1= py)p2, p1{1 — pa). Hence, the test Ti22™" is the C-
UMP G-invariant test. Using the PPT coudition, Tsuda
et al.[1] derived this optimal test in the case of op =
ag, d=2.

Finally, we proceed to the case of C = L(A1,4s —
By, By), L{Ay, Ay, By, By), S(A1, Ay, By, Bz). When we
use the test oA =P @ ThA2=Be 116 second error is

Y wny

ﬁ(TLAl—»B; ® T.I,AQ*“BZ, o1 ® 0_2)

Y Ny

—{1- dpl 1— dpg
- d+1 d+1/°

the optimal secoud error is calculated as

; dpy dpsy
¢ _{q_ B
Boa,cxc(Ollor ® 0a) = (1 P 1) (1 P 1>,
(39)

for G = SU(d), SU(d) x U(1),U(d? — 1). Thus, the test
TLA =B @ ThA2=B jg the C-UMP G-invariaut test.
Tsuda et al|1] derived this optimal test in the case of

0'l=(72,d:2.



C. Asymptotic setting

In the small deviation asymptotic setting with 7 sam-
ples, we focus on the case ¢ = 2 and & = 1 -

(6%,8100a100,5)-

= Ba (< dllt; +t3)
(40)

N, g
lim B onoxo(S = lf‘ﬂ,n ® 05.0)
n

for G =U(1),SU(d) x U(1),U(d? — 1).
Next, we consider the case of C = L(A — DB).

2, A
When we perform the test 17,7 =5 for all systems

Ha, ® Hp,, ..., Ha, ® Hp, whose state is 0], ® 03 ,,,
the number & of detecting TjufﬂB almost obeys the

Poisson distribution e*“'“ﬁgﬁ{—t")— This is because
i
1-(1- 4 (1 - —é) + 3 —E—L ~ t} +th. Treating the

hypothesis testing of this Poissen distribution, we can
show that the L(A — B) U(d* — 1) x U(d® — 1)-invariant
tost 772 & po(rA-E

. d%p,p;
i MAXp {po—e D1 + P2 — SHEE)
satisfies that

lim B(1377 01010 ® T.0) = Ba(< 0I5 + 15).

Henee, combining (40), we obtain

0 8 am s (< 2 70 © 040 ) = Bl 818 41
for C=0,L{A— B),L{A S B),S5(4,B), G = 5U(d) x
U(1),U(d* - 1). Therefore, the test 1722 is C-UMP G-
invariant test in the asymptotic small deviation setting.

Moreover, if we use the test based ou the Bell mea-
surement in stead of the test Tfnfj‘“’ﬁ the bound (<
Sllt} + t5) can be attained because a lemma similar to
Lemma, 5 holds.

X. THREE DIFFERENT STATES

Finally, we treat the case of three quantum states arce
prepared independently. Similarly to section IX A, we
put two hypotheses

HO 8(5 - {®0_@

versus
ger | &
» Qe
AR NIAE
i=1

where  the given state is  assumed to  be
g, ® 03 ® og. Similarly we define the quantities
853 axaxc(S €lor ® 02 ® o3) for the condition
C =49,54,B),L(A s B),L(A — B),L{A;1, A3, A3 —

3
- Z(qb%i,BilU’ild’?Ai,B,;) S E}

ge=1

3
— > (%, miloildh, 5 > e} ,

i=1

2317

Bl’ Bg,B;’«)),L(A[,A‘),A{;,Bl,BQ,B_‘;),S(Al,A2,A3,Bl, B2) B

under the similar G x G x G-invariance.

Similarly to subsection IX B, we focus on the case of
C =L{A— B),L(AS B),S(A,B) with one sample.
In this case, as is mentioned, the GHZ state |GHZ) dof
v\/li Ef:_(i [8) A, 18) A5 18) 45 Plays an important role. Since
the SU(d) x SU(d) x SU(d)-action on Ha, ® Ha, @ Ha,
is irreducible, the following is a POVM:

cov(dgia‘igzadg?)
g ® g2 ® 93| GHZY(GHZ|(g1 ® g2 ® g3)'
v(dg)v(dgz)v(dgs).
The test 12478 € p (M3

pied o) has the form

3, A—B
lin?)

{d+ 2)Pf @ P§ ® P§
A+ 1% (d=-1)
+P1®Pg ®P3 +P1 @P)®P3 erl ®P(®p';
@+ 12d=1)

=P Q@ P, ® P3 -+

(41)

where P; = 9%, 5, ){(8%, 5,1, ¥ = I~ P;. Thus, this tost
is U(d? - 1) x U(d? - 1) x U(d? — 1)-invariant. Hence,

when we use the test T;Lf”B the second error is

BITEAE 5 @ 0y © 03)

mv
, (d+ 2)?11’27)3
n [)UJ)(l - p;) + 1 (1 —p;)p; + (1 —])1):});])3
(d+1)%d-1)
Morcover, the optimal second crror can be also caleulated
as

B§s.axaxa(Ollor ® o3 @ 03)
_ ) (d +2)2)11)2p3
pipa(l —pa) +pi(l —pa)ps + (1

A2 d-1)

for C = L(A — B), L(A < B), 5(A, B) when p; < 45
Hemnce, the test Tfn;‘ =B is the C-UMP G-invariant test

Oun the other hand, the case of C = L{Ay, Ay, A3 —

N — P1)pap3 (42)

By, By, Bs),L(AlaA‘z,Ars,Bl,B‘z;Bs), S(Ai, Ay, A3, By, B2, B

Similarly to (39), we can show the optimality of the test
TLAE g TZITWA_’B THA=E - Morceover, we can derive
the same result in the small deviation asymptotic setting

with n samples.

XI1. DESIGN FOR TESTS

In this paper, we propose several tests. However, these
require a infinitc-valued measurement on Alice’s space,



238

which is difficult to realize. In this section, we seck finite-
valued POVMs on Alice’s space realizing the desired test
instead of infinite-valued measurements.

A. Design for the test T} A-B

iny

In order to design the test l’zlm’?“'g, we focus on
the concept “symmetric informationally complete POVM
(SIC-POVM)”. A rank-one POVM {p;jus){us|} on Ha =
€4 is called a symmetric informationally complete POVM

(SIC-POVM), if it satisfics the following conditions:

#{i} =d?,
S
bi _d
Hauglu)|? = d+1 for i # j (43)
Currently, an SIC-POVM analytically is con-

structed when the dimension d is 2,3[23, 25,422,
25],5(25],6[24],7(26], 8(23], or 19{26]. Also, its existence
is numerically verified up to d = 45[22]. Any SIC-POVM
Mgie = {pilus){usl}: satisiies

T(Myie) = Tort ™", (44)

my

that is, the test lllm’?_’s can be realized by an SIC-
POVM. Moreover, if a POVM M = {M;}; on H, satis-

fies

T(M) =TLA78,
the inequality
#{i} > d?

holds. This is because the rank of the operator lem‘? -8

(which equal d?) is less than the number of the elements
of POVM M;. Honce, we obtain

min{ #{iH1({Mi}:) = Ly 7} = d

if there exists an SIC-POVM on C.

However, any SIC-POVM is not a randomized combi-
nation of projection valued measures as well as a pro-
jection valued measure. Siuce projection valued mea-
sures are more realizable than other POVM, it is more
desired to design Alice’s POVM as a randomized combi-
nation of projection valued measures. For this purpose,
we focus on mutually unbissed bases. d + 1 orthonormnal
bases {By,...,Bqy1} are called mutually unbiased bases
(MUB) if

. 1
|<uh})|2 = E,V’U, € B;,Yv € B]’,’I; 7é 7

The existence of MUB is shown when d is a prime(27] or
a prime power[28]. Bandyopadhyay et af. gave a more

explicit form in these cascs {29]. Any mutually unbiased
bases {Bi,...,B441} nake the POVM Mg, ... B, i€,

1
A{Bx,u.,B,LH - {d+1!u’1,]>< 7]!}. >
K3

37

where B; = {u1,...,Ud /f} This POVM always pro-
duces the desired test va a

T(A/IBJ:"-aﬁd+l) Tzln;?_’B (45)

This constraction of the test I;lnf_’g is optimal in the
following sense. Let {M7} be the set of pro J(\(non-valuod
measures. A randomized combination of {M7}, i.e., M =
>_; piM; satisfies

T(M) =Ty " (46)
Then,
45} > d+1, (47)

which implics the optimality of the POVM consisting of
MUB. Heunce,

T (3 pshy) = ThiP Y =d o+l

if d is & prime or a prime power.

min {#{j}

M PV M

r[1.2 A DB
Y

B. Design for

Next, we proceed to the construction of the fost

2, A . . .
13 ,,’f,\ B Let f be an irreducible action of group G acts

to Ha, = C% By regarding Ha, as the dual space of
Ha,, the matrix f(g) can be regarded as an element of
Ha, @Ha,. Since the irreducibility of the action f guar-
antecs that

Z CROINGHOILY

qe(‘

& S HWIF) | 1K)

g€l
={k|(V|K') = g p b,

we obtain

2

ag 1 By .f(9)>

tL, i (kL @I UL ()K"



which implics

612 |7 (a0 = e

$5@) (Fal @)}, is 2 POVM.

Furthermore, we assume that the action f ® f of G
t0 HA, ® Ha, has only two irreducible components, i.¢.,
the irreducible subspaces of Ha, ® Ha, are only the onc-
dimensional space < ¢% LA, > and its orthogonal space

< 459,“ As >+, In this case, The tost T'(My) satisfies

Hence, M, = {]iéii

2,A—-B

T(wa) = Tiny : (48)
In particular, the action of Clifford group on C satisfies
this condition when d is prime[26]. Hence, we can cou-
struct a finite-valued POVM producing the test T2A-8

inv
XI1I. CONCLUSION

In this paper, we treated the hypotheses testing prob-
lem when the null hypothesis consists only of the required
entangled state or is its neighboor hood. In order to treat
the structure of entanglement, we consider three settings
concerning the range of accessible measurements as fol-
lows: M1: All mesasurement is allowed. M2: A measure-
ment is forbidden if it requires the quantum correlation
between two distinet partics. M3: A measurement is for-
hidden if it requires the quantuin correlation between two
distinct parties, or that among local samples. As aresult,
we found that there is difference between the accuracies
of M1 and M2 in the first order asymptotics. The proto-
col achieving the asymtotic bound has been proposed in
the setting M2. In this setbing, it is required to prepare
two identical samples at the same time. However, it is
difficult to keep their coidentity. In order to avoid this
difficulity, we proved that even if they do not conincide,
this proposed protocol works effectively. In particular,
this protoc! can be realized in the two-dimensional sys-
tom if the four-valued Bell measurement can be realized.
Moreover, concerning the finite samples case, we derived
optimal testing in several examples.

In this paper, the optimal test is constructed based
on continuous valued POVM. However, any realizable
POVM is finite valued.

The obtained protocol is essentially equivalent with the
following procedure based on the quantum teleportation.
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Fisrt, we perform quantum teleportation from the system
A to the system B, which succeed when the ture state is
the required maximally entangled state. Next, we check
whether the state on the systemn B is the initial state
on the system A. Hence, an interesting relation between
the obtained results and the quantuin teleportation is
expected, and it will be treated in another forcoming
paper [33].

As a related research, the following testing problem has
been discussed [30, 31]. Assume that N qubits state are
given, and we can measure only M qubits. The required
problen is testing whether the remaining N — M qubits
are the desired maximally entangled state. Indeed, this
problem is iinportant not only for gurarantee of the qual-
ity of the prepared maximally entangled state, but also
for the security for the quantum key distribution. The
problem discussed in this paper is different from the pre-
ceding probelew iu testing the given state by measuring
the whole systenr. In order to apply our result to the pre-
coding problem, we have to ramdomly choose M qubits
among the given N qubits, and test the N qubits. When
the given N qubits do not satisfy the independent and
identical condition, their method {30, 31] is better than
our method. Since their mothod [30, 31] requires the
the quantum correlation among whole M qubits, it is
difficult to realize their method for testing the prepared
maximally entangled state, but it is possible to apply
their method to testing the sceurity of quantum key dis-
tribution [30]. This is because the maximally entangled
state is only virtually discussed in the latter case. Hence,
for testing the prepared maximally entangled state, it is
natual from the practical viewpoint to restrict our tost
among ramdon sampling method. Since our results can
be applied this setting, they can be expected to be ap-
plied to the check of the quality of maximally entangled
state.

As another problem, Acin et ol. [5] discussed the prob-
lein testing whether the given n-i.i.d. state of the unkown
puire state is the n-tensor product of a pure maximally cn-
tangled state (not the specific maximally entangled state)
in the two-dimensional system. Its d-dimensional case is
discussed in Matsumoto and Hayashi [32], and this prob-
lem is closely related to universal entanglement concon-
tration.

This problem is different from our setting, but is very
important. Hence, it is necded to discuss this setting
with the mixed state case.
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