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Extended Abstract: Spherical designs attached to extremal lattices
and the modulo p properties of the Fourier coefficients of extremal
modular forms

Eiichi Bannai, Masao Koike, Masashi Shinohara, Makoto Tagami,
all at Kyushu University.

Theorem of Venkov (cf.[5],[6]), which is an analogue of Assmus-Mattson theorem for
codes, says that each nontrivial shell of an extremal even unimodular lattice in the Euclidean
space R" is (at least) a spherical 11-design (resp. 7-design, 3-design ) in R", if n is a multiple
of 24 (resp. congruent to 8 modulo 24, congruent to 16 modulo 24). It is an interesting
problem, posed by Venkov, de la Harpe and Pache (cf.[2]), when does it become a t-design,
for a bigger value of ¢ than mentioned above. This innocent looking problem is not easy to
solve, as it is seen for example from the fact that the statement that no shell of the Eg-lattice
can become an 8-design is equivalent to the famous Lehmer’s conjecture (cf.[4]) in number
theory that the Ramanujan function 7(m) can never become 0 for any positive integer m.

In the first part of this paper, we consider more specific problem when do all the shells of
an even unimodular lattice become t-designs for a bigger value of ¢ than mentioned above.
We will show that, when n = 0 (mod 24) this does not happen in many cases. Namely, we
prove the following experimental result:

Theorem 1. Let A be an extremal even unimodular lattice in R® with 1 = 24p. If u < 150
and y is not in B, where B = {5,10, 15,17, 20, 25, 28,30, 39, 40,45, 50, 52, 55, 61, 65, 70, 72,
75,80,83, 90,94, 95,100,103, 115,116, 120,125, 127, 128,130,135, 138, 140, 145, 147, 149, 150}
then at least one shell Ay, of A is not a 12-design.

?

In proving Theorem 1, we use the following:
Fundamental Equation (Venkov [5],[6]). A subset X(= —X) in S5"7r) is a t-design
(where S™~(r) is the sphere of radius 7 with the center at the origin) if and only if for all
a € R™,
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forallk=1,2,... [£].

By taking k£ = 6 and taking o and z from Agp, for each 1 < 150 (u # 6) not in the set
B, we can find an odd prime p and m which satisfy the following conditions:
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The existence of such integer m clearly implies that Ag, is not a 12-design, by comparing
the order of the p-power of both sides of the Fundamental Equation.

The extremal modular form (of weight & = 124 + ko with k € {0, 4,6, 8,10, 14}) is the

modular form »
) =" amg™, (g=e*"),

m>0

with a; = a3 = -+ = a, = 0. { Note that the theta series of an extremal even unimodular
lattice in R™ is the extremal modular form of weight k = n/2. Also, note that the extremal
modular form exists for each &k with k even and > 4, independent of the existence of extremal
even unimodular lattices.)

Motivated by Theorem 1, we are interested in studying the modulo p property of the
Fourier coeflicients of the extremal modular forms. Namely, we are interested in dividing for
each pair of k£ and prime p, which of the following three (exclusive) cases holds:

Case (1) pla;, for all 7 > 1,
Case (2) p fa;, for all 1 > 1 with p fi, and there exists at least one j > 1 with p Ja;,
Case (3) there exists at least one j > 1 with p /j such that p fa;.

We first prove that Case(1) holds, if and only if (p — 1)|k. (These primes p in Case(1) are
called Bernoulli type primes for &.)

We also obtain several conditions which guarantee that Case (2) holds. For example, we
prove the following theorem, by using the method of Serre[3].

Theorem 2. Let k; to be the number in {4,6,8,---,p—1,p+1} such that k = k;(mod p—1).
Let (p—1) fk. Let [y satisfy : pl; < p+1 < p(l;+1), and let k; to be the smallest integer with
ko = ki(mod p—1) and dimMj, > I;+1. Then ry is determined by k& = ka+(p—1)r. If 74 > kg
holds for p, then the extremal modular form f of weight k& is expressed as f = g(p7)(mod p),
where g(7) is the extremal modular form of weight k;. Moreover, we have p | ay, 11

Theorem 2 is used to prove the following result, which was motivated by Theorem 1.
(Note that the the property in Theorem 3 is true for the theta series of extremal even
unimodular lattices (by using the theorem of Venkov), but we anticipated that this property
may hold for extremal modular forms.

Theorem 3. Let k= 12y, and let fr =14+0-¢+0-¢*++--+0-¢* + aus1¢*™ +- - - be the
extremal modular form of weight k. Let p be a prime number greater than or equal to 13.
Suppose that p divides 2k(2k + 2)(2k + 4)(2k + 6)(2k + 8)(2k + 12). Then Case (2) holds for
p, and we get p|a, 1.

We believe that when p is in Case (2) might be characterized by the following:



Conjecture 4. Let f be the extremal modular form of weight k = 12u. Suppose that p is
in Case (2). (i) Then f is expressed as

f(r) = g(p7)(mod p).

for a modular form ¢(7) of smaller weight.
(ii) Moreover, there exist the extremal modular form g(7) of a smaller weight, and a natural
number 7 such that

f(r) = g(p'r)(mod p).
(It would be very interesting either to prove or disprove this conjecture. We proved this in
many cases, including all the cases of u < 150. )

Remark. We obtained a similar result as Theorem 1 for extremal Type II codes, by
using the method of Bachoc[l], which gives an alternative proof of the Assmus-Mattson
theorem by using the invariants theory of finite groups. Also, we note that in this code case,
we can prove that each nontrivial shell of the code has the constant strength ¢. However,
this property cannnot easily be generalized for extremal lattices so far.
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