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The behavior of the number of solutions of
the difference equations coming from power

functions over finite fields

HJ1] 3k (Nobuo Nakagawa)
K% (Kinki University)

[PARTI]
Finite projective planes and finite affine planes which admit transitive collineation groups
on the set of points.

[PARTII]
Planar functions and bent functions.

[PARTII]]

‘The behavior of the number of solutions of the difference equations coming from power
functions over finite fields

PARTI]

hat are finite projective planes and finite affine planes which
admit transitive collineation groups on the set of points?

Theorem 1(Kantor) |
Let P be a projective plane of order n. Suppose that a collineation
group G acts tansitively on the set of flags of P, and n®? +n + 1 is
not a prime. Then P is Desarguesian.
(When n? +n + 1 is a prime, it is solved except the case
n = 0(mod 8) by Feit and others. )
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Open problem 1
Suppose that a colliniation group G acts imprimitively on the set of
points of a finite projective plane. Then detemine this plane.(Prove
this plane is Desarguesian.)
Specially prove when G is a cyclic group and G acts regularly on
the set of points.
(Ott and Ho solved partially when a cyclic group acts regularly,

under additinal conditions.)

Theorem 2(Hiramine)
Let P be a finite affine plane. Suppose that a collineation group G
acts primitively on the set of points of P. Then P is a translation
plane.

Open problem 2
Suppose that a colliniation group G acts imprimitively on the set
of points of a finite affine plane P of order n. Then detemine P

and G.
Specially prove when G acts regularly on the set of points.

Concerning this problem, when G acts regularly on the set of
points and G is abelian, it is known that n is a prime power and P
is a translation plane, a dual translation plane or a type (b) plane
with special three orbits of points and lines under action of G.
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(Dembowski,Piper,Andre, Blokhuis,Jungnickel and Schmidt.)

Moreover about type (b) plane, if n is even, then exponent(G)=4
(Ganley).

And if n is odd and G = H x K where H is a elation group of
P of order n, then a planar function (from K into H) is con-
structed and the affine plane reconstructed by this planar function
is isomorphic to P.

PARTII
(Definition)
Let G and H be groups of order n. For a mapping

f:G— H, z+— f(x)
and u € G,the mapping f, is defined as
fu: G — H, > f(uz)f(z)™"

Then f is called a planar function if and only if f, is bijective for
each u € G except u = 0.

From a planar function (f:G — H), we can construct an
affine plane A(f; G, H) as the followimg.
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the set of points: G X H

the set of lines: (g,H) = {(g9,h) | h € H } wkere g € G and
{ L{g,h) | g€ G, h € H}where L ={ (z, f(z)) |z € G }.
Obviously G x H acts on A(f,G, H) as a regular group on the
set of points.

Remark that G and H are odd order groups if there is a planar
function from G into H.(Ganley)

[Examples]

(1):
f:GF(q) — GF(q) z+— z°

where GF(q) is the additive group for an odd prime power ¢. (An

affine plane corresponding this function is Desarguesian.)

(2):
f:GF(3Y — GF(3Y) z+— a(z® + 20 4 %) — 710 — 218

where a? = —1.
(An affine plane corresponding this function is a semifield plane(not

Desarguesian.))
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(3):

3%4+1

f:GF(3%) — GF(3f) zr—x 2

where ged(a,2e) = 1 and 1 < a < 2e.
(An affine plane corresponding this function is not a translation
plane.)

All known examples of planar functions untill now are elementary

abelian groups type.

Open problem 3
(1):Prove that there are no planar functions of nonabelian groups
type.
(2):Prove that there are no planar functions of abelian but nonele-
mentary abelian groups type or construct a planar function of this

type.

Theorem 3(Hiramine,Ronyai and Szonyi)
Suppose that there exists a planar function f from G into H where
|G| = |H| = p for an odd prime p, then f is a quadratic polynomial
and an affine plane corresponding to f is Desargusian.
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Theorem 4(Blokhuis, Jugnickel, Schmidt, Ma,Fung and Siu)
Suppose that there exsits a planar function from Z,, into Z,, then
n 1s an odd prime.

Theorem 5(N.N.)
Suppose that G and H are finite abelian groups of order p" for

an odd prime p and there exists a planar function from G into H.
Then

exp(H) = Pt (n: odd)
PR = p?  (n: even)

Moreover G is not cyclic if 2 < n.

I would like to determine all monomial polynomials over the ad-
ditive group GF(p™) which are planar functions.

For f(z) = 2%, (z+u)?—z¢ is bijective if and only if (z+1)¢— 24
is bijective if u =£ 0.
Therefore when we put

N(b) =4{ze GF{") | (m+l)dmxd=b}
, f(z) = 2% is planar if and only if N(b) = 1 for each b € GF (p").
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Theorem 6(N.N.)
Let f(z) = z¢ be a power function over GF(p"™). Suppose that
one of the following conditions is satisfied. (1):ged(d, p” — 1) # 2
(2):p" — Lis divisible by d — 1, d # 2 and d is not divisible by p.
(85 <pandd= Ba{—l(a =0,1,2,--) Then f(z) is not a planar

function.

(Definition) |
Let f be a function from GF(p™) into GF(p) and w be a primitive
p-th root of 1. Fourier transform f is defined as

f(a) = ¥ wf(a:)-l—Tr(am)
2eGF(pn)

where a € GF(p").
Then f is called a bent function if | f(a)| = p& for all a € GF (p™).
(This definition is also available for p = 2)

For example, a nondegenerate quadratic form over GF(p) is al-
ways a bent function.

Theorem 7(N.N.)



89

Let f(X) be a function over GF(p™). We identify the additive
group GF(p") and n dimensional vecter space (Z,)" over GF(p)
for a fixed basis of GF(p").
We put X = (1,9, , Tn).
Then f(X) = (fi(X), fo(X),- -+, fu(X)) is a planar function if
and only if

sifi+safo+---+snfn

is a bent function for each (s1,89,--,8,) € (Zp)"™ such that
(813327"'357&) 7é (anaao)

PARTIII
The behavior of the number of solutions of the difference equa-

tions coming from power functions over finite fields

[Definition]

Suppose that a function f(z) = =
finite field F,.
We consider the difference equation
fla+)—fl@)=(z+1)8—z=0b of f(z).
Let

4 i5 a power function over the

N ={zeF,|(z+1)*-2"=b}
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N(q, d) .= mazyer, N (b)

Note that f(z) is a planar over F, if N(¢,d) =1

Problem 4
Detemine all ¢ and d such that N(q,d) <4

(Significant from the view point of the cryptography(cipher))

The case g is odd.
We will examine the vehavior of the number of solutions of the
eqations (z + 1)¢ — z¢ = b for a while regardless of the problem

abovewhered——-q—;—l—, ﬂ-;—l%—l, 4—5—1—1,%%.

Theorem 8(N.N.)
Let d be 95—1
Then (1):the case of ¢ = 1(mod 4).
—3 —
NGOy =125 N@=N-9 =127, N =n(-1) =1

and N(b) = 0 for other b € F,,.



a1

(2): the case of ¢ = 3(mod 4).
q—3 qg+1 q—3

NO) =12= N9 =1 N@ =15, N =2

and N(b) = 0 for other b € F,,.

Theorem 9(N.N.)

Let d be l;—l + 1 and x be the quadratic character of F,. Then
(1):the case of ¢ = 1(mod 4)

q—+3 qg—1
N(1> :Ta N(—l) :Ta

N{b)=2 for x(b+1)=x(2) and x(b—1)=—x(2)
(There are 2+ these b.)
and N(b) = 0 for other b € F,,.
(2):the case of ¢ = 3(mod 4)
_at!
4

(There are 4> these b.)
and N(b) = 0 for other b € F,,.

N(1) = N(-1) , N(0)=1, N() =1 for x(b*-1)=—1

Theorem 10(Helleseth and Sandberg)
Let d be q—;—l— + 2 and g = p° be an odd prime power. Then

N(g,d)=1 for g=3" wheren is even.
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N(q,d)=3 for p#3 and ¢ = 1(mod 4)
N(q,d) =4 otherwise.

Theorem 11(Helleseth and Sandberg)
Let d be 5= — 1,9 = 3(mod 4) and ¢ > 7. Then

N(g,d) =1 for q=3°

N(q,d) =2 if x(5)=—1.

N(q,d)=3 if x(5) = 1.
Here x be the quadratic character of F,.

Theorem 12(N N.)
Let d be 5= — 1,q = 1(mod 4). Then
N(g,d) <8.
Specially,

N@) <4 if x(b) = —1.

N({®) <4 if x(b—4)= -1 and X(b+4)

Here x be the quadratic character of F,,.

This Theorem shoud be improved more sharply My conjecture is
that N(q,d) = 4 holds.
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Problem 5

(1): Detemine N(q,d) for d = p' + p’ such that all 0 < 4,7 < e
where g = p°.

(2): Suppose that ¢ — 1 is dividable by 3.Then
Detemine N(q,d) for d = g%l—, % +1 and q3;1 — 1.

The case ¢ is even.
We remark that N(q,d) = 1 does not occur if ¢ is even.

Theorem 13
The power function f(z) = z% on GF(2") are almost perfect
nonlinear(APN) for the following n and d. Namely the mapping
(z+1)% — z¢ is two-to one mapping from GF(2") into GF(2").
Especially N(q,d) = 2.
In the case of n is odd (n = 2m + 1),
(1):d = 2F + 1, where gcd(k,n) = 1(1 < k < m)(prove by Gold)
(2):d = 2% — 2% + 1, where ged(k,n) = 1(2 < k < m)(prove by
Kasami)
(3):d = 2™ + 3, (conjectured by Welch, prove by Gold)

3m+1

(4):d=2"+2% —1ifmiseven,d =2"+2"2 —1if misodd.
(conjectured by Niho, prove by Dobbertm)

(5):d = 2™+t — 1, (prove by Helleseth and Sandberg)

(6):d = —1, (prove by Beth, Ding and Nyberg).

In the case of n is even (n = 2m),

(1):d = 2 + 1, where ged(k,n) = 1(1 £ k < m)(prove by Ny-
berg)

(2):d = 2% — 2% + 1, where ged(k,n) = 1(2 < k < m)(prove by
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Dobbertin)
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