obooo0o0oOooOoooO 14400 20050 48-57

48

On Strongly Closed Subgraphs
with Diameter Two
and ()-Polynomial Property

EEREEH AL - EEAE - BER 9K B (Hiroshi Suzuki)
Division of Natraul Sciences, College of Liberal Arts,
International Chrisitian University

1 Introduction

Let T = (X, R) be a distance-regular graph (DRG) of diameter D with vertex
set X and edge set R. For vertices z and y, 9{(z,y) denotes the distance
between z and ¥, i.e., the length of a shortest path connecting z and y. For
avertex u € X and j € {0,1,..., D}, let

Ij(u) = {z € X | 9(u,z) =7} and I'(u) = T'y(u).
For two vertices u and v € X with 0(u,v) = j let

Clu,v) = T;_1(u)NT{(v),

Alu,v) = Tjuw)NI(v), and

Blu,v) = Tiu(u)nI{v).
The cardinalities ¢; = |C(u,v)|, a; = |A(y,v)| and b; = |B(u,v)| depend
only on j = O(u,v), and they are called the intersection numbers of I'. The

number k = by = |T'(u)] is called the valency of T.
A subset Y of the vertex set X is said to be strongly closed if

Clu,v)UA(u,v) CY forallu,veY.

We often identify a subset of X with the induced subgraph on it. In particu-

lar, when Y is strongly closed, Y is referred to as a strongly closed subgraph
of I,



A parallelogram of length 7 > 2 is a four-vertex configuration (w,z,y, )
such that

Ow,z) = 0(y,2) =37 —1=08(z,2),
Oz, y) = 0O(z,w)=1and d(w,y) = J.

A distance-regular graph I' of diameter D is called a regular near polygon
if there is no parallelogram of length 2 and that

a; =cayfori=1,2,...,D—1.

In addition, if ap = cpay, then T is called a regular near 2D-gon.

Recently, in [7] P. Terwilliger and C. Weng showed that if 6, is the second
largest eigenvalue of a regular near polygon with diameter D > 3, valency k&
and intersection numbers a1 > 0, ¢3 > 1, then

k— ay — Co .

6 < P (1.1)
Equality is attained above if and only if I' is ¢-polynomial with classical
parameters with respect to 6.

Every regular near polygon contains a strongly closed subset ¥ such that
the induced subgraph on Y is strongly regular, Le., distance-regular of di-
ameter 2. We noticed that the inequality in (1.1) and its equality condi-
tion are closely related to the existence of tight vectors that we defined in
[4). In this exposition, we shall explain the relation, apply the theory to
parallelogram-free distance-regular graphs, and give a generalization of the
results of Terwilliger and Weng above.

2 Terwilliger Algebra and Tight Vectors

Let I = (X, R) be a distance-regular graph of diameter D. Fori € {0,1,..., D}
let A; denote the i-th adjacency matriz in Matx (C) whose (z,y)-entry is de-
fined by

(A = {

Let Ey, F1, . .., Ep be primitive idempotents corresponding to the eigenvalues
O >0y > > 0p of A.

Let Y be a nonempty subset of X. Ef = E}Y) € Matx(C) (i =
0,1,...,D) is defined by

o [ 1 ifz=yand d(z,Y) =1,
(E‘i)m)y - { 0 otherwise, '

1 if d(z,y) =14,
{} otherwise.
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and E* = E. Then the Terwilliger algebra with respect to ¥ is a semisimple
subalgebra of Matx (C') defined by:

T =T(Y) = (A EE!\... Eb).

Let V = CX, and W = E*V. For z € X, let £ denote the element of V
with a 1 in the z-coordinate and 0 in all other coordinates. Then W is the
vector subspace of V spanned by the set {§ |y € Y}

Let w(Y) = max{d(y,v") | v,y € Y} denote the width of Y. Then we
have the following.

Proposition 1 ({4, Propbsition 9.2]) ForO#veW,
Hilie{0,1,...,D}, Bow =0} <u(). (2.2)

Now a nonzero vector v € W is said to be tight (with respect to V), if
equality is attained in (2.2), i.e.,

[{i |7 €{0,1,...,D}, B =0} = w(Y).

3 Strongly Closed, Strongly Regular Case

In this section, we review a result to guarantee the existence of strongly
closed strongly regular subgraph Y, and inequalities related to the existence
of tight vectors with respect to Y.

Proposition 2 ([10, Theorem 1], [3, Theorem 1.1]) LetI' = (X, R) be
a distance-regular graph of diameter D > 3. Suppose by > by and ag # 0.
Then the following are equivalent.

(i) For every pair of vertices z and y with 8(z,y) = 2, there is a strongly
closed subgraph containing x and y of diameter 2.

(ii) There is no parallelogram of length 2 or 3.

Moreover, if the conditions are satisfied, then strongly closed subgraphs quar-
anteed to exist are strongly reqular.

Let Y be a strongly closed subset of X. Suppose the induced subgraph
onY is strongly regular, ie., w(Y) = 2.

Set A = E*AE*. Then there are three distinct eigenvalues 79, 71,72 of A
on W, and they satisfy

M=c+a > >—1>n.



Let 1y denote the characteristic vector of ¥ defined by

1y =) geEW.
YeY

Let Wy, Wi and W, be the eigenspaces of Ain W corresponding to
eigenvalues 7, n1 and 7, respectively.
Then Wy = (1y), and

W:WDEBWl@WQ.

Note that if v € W, @ W, then Egv = 0. Hence an eigenvector v of A in
W, @ Wy is tight if E;v =0 for some i > 0 as w(Y) = 2.

Proposition 3 ([4, Proposition 11.7]) Let v € W; (j = 1 or 2) be an

eigenvector of A,

(1) Forie {0,1,...,D},

UE@?  mak — 6((1 + ;) (1 + 6) + by)
PR FhiIX] =0

(2) The following hold.

by by
6 < -1 — —— andfp > -1 — .
b= 1+ b= 1+m

(3) The following are equivalent.

(a) v s tight.
(b) Onme of the following holds.

2
0, =—1-
(1) 1 1+n2,0r
by
i) 0p = —1—
(i) o L+m

Proof. The inequality in Proposition 3 (1) can be obtained by simple com-
putation, and both (2) and (3) follow from (1) as 6; > m > —1 and
fp <mp < —1. n

Suppose I = (X, R) is a regular near polygon of diameter D > 3. Then it
is known that T* does not contain parallelograms of any length. In addition,
assume that a; > 0 and ¢3 > 1. Then by Proposition 2 there is a strongly
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closed subset Y such that the induced subgraph on Y is strongly regular. It
is called a quad, and it has the following intersection array.

C; * 1 Co
a; = 0 a1 CoQhy
b,; Cz(al + 1) (Cg - 1)(&1 + 1) *

Hence in this case the eigenvalues can be expressed in a very simple form.
Mo = a1+ 1) >m=a1 >m=—c.

Now the inequalities of Proposition 3 (2) yield

bl bl
6 <-1——— andbp>—-1- .
b= — Cy an b= 1+&1

The first inequality can also be expressed as

6, < —1— b, - k“‘*al‘:CQ. (33)
1—(32 Cy — 1

4 A Theorem of Terwilliger and Weng

Theorem 4 (Terwilliger-Weng (7]} Let I' denote a regular near polygon
with diameter D > 3, wvalency k and intersection numbers a; > 0, ¢ > 1.
Let 8, denote the second largest eigenvalue of I'. Then
k—ai—cy

Co — 1 '

6 <

(4.4)

Moreover, the following (1) - (iii) are eguivalent.
(i) Equality is attained in (4.4).
(it) T' s Q-polynomial with respect to 6.

(iii) T is a dual polar graph or a Hamming graph.

The inequality in (4.4) is nothing but the one in (3.3). Terwilliger and
Weng obtained it using a so-called balanced condition and showed that T
satisfies the Q-polynomial property if equality is attained.

In view of Proposition 3, the theorem above asserts under the same as-
sumption that the following are equivalent.

(i) There is a tight vector in Wh.



(ii) I" is @-polynomial with respect to ;.
The following theorem identifies typical tight vectors in W, and Wj.

Theorem 5 Let I’ = (X, R) be a distance-regular graph with diameter D >
3, and an intersection number as > 0. Let Y be a strongly closed subset
of X of width 2. Then the induced subgraph on Y is strongly regular with
eigenvalues ng = co + as > m1 > —1 > 19, and the following are equivalent.

(1) There is a nonzero vector v € E*V such that Eqv = E;v = 0 for some
ie{1,2,...,D}.

(i) Either one of the following holds.

(a) For every z,y € Y with 8(z,y) = 2, Fyu = 0 and 6, = -1 —
bi/(1+ n2), where

u= Y i- 3 d-m@E-9) o

z€A(y,x) weA(2,y)

(b) For every z,y € Y with 8(z,y) = 2, Epu =0 and p = —1 —
bi/(1 4 m), where

u= Y, 22— Y. d-m(E-19).

2€A(y,z) wEA(z,y)

" The conditions in (i) are related to a balanced condition in the following
theorem.

Theorem 6 (Terwilliger [5]) Let I' = (V, R) be a distance-regular graph
of diameter D > 3. Let

E; = ! X] Zﬂh
be a primitive idempotent such that ¢:(j) # ¢:(0) for every j = 1,...,D.
Then the following are equivalent.
(1) T is Q-polynomial with respect to E;.
(ii) The following two ‘balanced’ conditions are satisfied.
(a) Forall z,y € X with 8(z,y) =2,
' Ez- Y, Edwe(E(E-19).

z€A(y,z) we Alz,y)
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(b) For all z,y € X with 0(z,y) = 3,
Z E;2 ~ Z B e (B(E—13)).

2€C{y,z) weC({zy)

In view of Theorem 6, there is a tight vector in W if and only if I" satisfies
(ii)(a), the first half of the condition for I' to be Q-polynomial.

5 Parallelogram Free DRGs

Recall that every regular near polygon is parallelogram-free. If we assume
that ' is of parallelogram free, we can prove a bit more. Before we state
our result, we review the definition of a distance-regular graph with classical
parameters. Such graph is always @Q-polynomial. See [1].

Definition 1 Let T' denote a distance-regular graph with diameter D 2>

3. We say I" has classical parameters (D,q, a, ) whenever the intersection
numbers are given by

c¢=[21] (1+a[ﬁlD (0<i<D),
() oo

where
H =14g+g+- o+

Now we assume the following.

Hypothesis 1 Let ' = (X, R) be a parallelogram-free distance-regular graph
with diameter D > 3. Suppose ag > 0 and b; > bs.

Then by Proposition 2, I contains a strongly closed subset Y such that
the induced subgraph on Y is strongly regular. Let

o =Cz+ Q2 >Th >N

be its distinct eigenvalues.

Theorem 7 Under Hypothesis 1, the following hold.



by
1+m

. by
6 < —1-— , d fp > -1~
(1) 1S 1+m ang Up =

(i1) Suj’)paéé 6 € {6,,0p} attains one of the bounds above. Let ¢ = by /(6 +
1). Then the following hold.

(a) The intersection numbers of I' are such that
ge; — by — q(geiy — biy)

is independent of 1 (1 <1 < D).

(b) e3> (ca —q)(g* + g+ 1).

(¢) If 0 = 01, then g+ 12 ¢y and ¢* + ¢+ 1 > ¢c3, and if 6 = b, then
g+1< —ar.

(d) The equality holds in (b) if and only if ' is Q-polynomaial with clas-
sical parameters (D, q, o, ) with suitable choices of real numbers
o and S.

If T is a regular near polygon, then 1y = —¢; and ¢ = ¢; — 1. Hence by
(b), c3 > ¢*+¢+1 and by (¢), ¢* + ¢+ 1 > ¢5. Therefore T is Q-polynomial
with classical parameters by (d).

As a by-product, we obtained the following result as well.

Proposition 8 LetT' = (X, R) be a parallelogram-free distance-regular graph
with diameter D > 3 and intersection numbers a3 = s —1 > 0, by = by, Sup-
pose for all z,y € X with 8(z,y) = 2,

S Ez— Y Ede(Bi(E-9)
2€A(y,x) weA(w,Y)

Then T is a reqular near 2D-gon and c3 > 1 — g3, where ¢ = —s = (a1 +1).
If equality holds, then T is a classical distance-regular graph with parameters

s k(l+s) ) '
1-5"1—(—s)P”

(D7Q7a7/3) = (Df—S:

If D = 3, then T is a generalized hexagon. No examples are known if
D> 3.
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6 Examples

1. If T contains a strongly closed subgraph isomorphic to (the collinearity
graph of) a generalized quadrangle, fp attains the bound if and only
if 91) = —k/(al + 1).

2. Dual polar graphs and Hamming graphs are the only )-polynomial
regular near polygons of diameter D > 4 with intersection numbers
¢z > 1 and a; > 0 and these are distance-regular graphs having classical
parameters with o = 0 and a; # 0. These graphs are Q-polynomial
with respect to §; and attain both of the bounds.

3. Let T" be a parallelogram-free (-polynomial distance-regular graph of
diameter D > 4 with ay > 0. Then I has classical parameters (D, ¢, @, §)
and I' is either a regular near polygon or ¢ < —1. Distance-regular
graphs having classical parameters (D, q, @, ) with ¢ < —1 are said to
be of negative type. These graphs satisfy the bound for 6p.

Finally we include a table of the list of known parallelogram-free Q-
polynomial distance-regular graphs taken from [1]. There is a series of excel-
lent articles on parallelogram-free distance-regular graphs by C. Weng and
others. See [2. 8, 8, 9, 10, 11]. We hope that our observations may shed light
on the classification of this class of distance-regular graphs.

Known Parallelogram-¥Free (-DRGs

Name Diom. b a+1 8+1
H(D,q) D 1 1 q
DP(D,q,e) D q 1 ¢ +1
U(2D,r) Doy ke Ll
Herp(r) D —r —r  —(-7)P
GH(q,4% 3 —¢ 1 dHg+l
Moy 3 -2 =3 11
Mas 3 -2 -1 6
ExtTGolay 3 -2 =2 9
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