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Abstract

In this letter we describe a phase field model of polycrystalline solidification and grain structure
evolution. Our model is constructed by introducing a orientation variable to the conventional
phase field model. The orientation is expressed by the element of the group 50(2) in $2\mathrm{D}$ case,
and by the element of SO(3) in $3\mathrm{D}$ . The singular diffusivity theory was developed to derive
the evolution equation of the orientation variable.

Introduction and Preliminaries

Phase field model was originally designed as a model of solidification of pure materials.
It could reproduce complicated patterns such as dendrites although it is written in the very
simple form. This model had become popular in the society of material science since it is
extendable to the alloys, multi-component systems, multi-phase systems and so on. These
approaches can express inter-phase boundaries and its motion successfully, while they can not
handle grain boundaries since they have no information of crystalline orientation.

The study of grain boundary formation and dynamics is central to materials science. All but
the most perfect single crystals have grain boundaries, and the behavior of these interfaces can
have an enormous influence on the many of the materials properties of interest to the materials
engineer. Thus, over the years, there have been a number of approaches to the modeling of
grain boundaries, all of which have limitations and advantages. Of particular interest are phase
field models, which have gained popularity as their ability to compute realistic microstructures
has been demonstrated. For an overview of this approach, the reader is recommended some of
the review articles on this topic. [3]
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A basic model of grain boundaries in $2\mathrm{D}$ {see $[4, 5])$ can be derived from the total free

energy

$\mathcal{F}$ $= \oint dV[f\cdot(\phi_{7}T)+\frac{\alpha^{2}}{2}|\nabla\phi|^{2}$

$+sg( \phi)|\nabla\theta|+\frac{\epsilon^{2}}{2}h(\phi)|\nabla\theta|^{2}]$ , (1)

where $f( \phi, T)+\frac{\alpha^{2}}{2}|\nabla\phi|^{2}$ are the terms found in classical phase field models of solidification,

namely the bulk free energy density, which depends on the phase field $\phi$ and the temperature
$T$ , with minima in the liquid and solid phases $\phi=0,1$ plus a gradient penalty for interfaces.

For this discussion we have omitted terms accounting for interface energy anisotropy, although

such effects are both important and can be accounted for with well known extensions to this

theory. [4]

The final terms in the free energy are functions of the gradient in the orientation, $\theta$ ;

introduced to allow for grain boundary energy misorientation penalties. These terms inclusion

also provides a realistic description of related phenomena such as polycrystalline growth and

nucleation. [6] , [7] The couplings $g(\phi)$ and $h(\phi)$ are chosen so there are no energy penalties in

the liquid (i.e. $g(\mathrm{O})=\mathrm{g}(0)=0.$ ) The dynamics of the system are found by imposing the

thermodynamic requirement that $\phi$ and 0 evolve so as to minimize the free energy $F$.

In mathematical sense, the evolution equation of the orientation variable 0 is not an usual

partial differential equation but an extended one. We had developed the singular diffusivity

theory for the convex and non-differentia 1 energy.[l] The evolution equation derived from

such an energy includes a non-local interaction through the infinitely large diffusivity, which

keep the value of orientation variable constant in each grain. Such an unusual situation is

justified by the singular diffusivity theory.

In numerics, there are difficulties to solve the equation, not only becuase it includes very

strong singularity but also because it takes values in the manifold 50(2).[2] We developed the

numerical code by resolving all these difficulties, which we will demonstrate in the last figure

for $5\mathrm{O}(3)$ -valued simulation.

Extension to 3D: Formulation and Solution

We note that a single angle cannot represent an orientation in $3\mathrm{D}$ , and thus this concept

must be replaced with a more robust mathematical description of orientation. Specifically, 0

must be replaced with an object that captures the three rotational degrees of freedom available

in $3\mathrm{D}$ . Additionally, we must also define the norm of this object. With these two mathematical
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concepts the transition to three dimensions is fully posed.

Formulation

There are many ways to represent orientations in $3\mathrm{D}$ , most quite familiar to $\mathrm{c}\mathrm{r}\mathrm{y}\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{l}\mathrm{l}0\sim$

graphers: Euler angles, rotation vectors, Rodrigues vectors, quaternions, etc. All of these
representations are mathematically equivalent representations of the group 50(3) (special or-
thogonal group $3\mathrm{D}$), but retain advantages and disadvantages, depending on the application.
If we call a member of this group $P$ , then $P$ is a $3\cross$ $3$ orthogonal matrix $(P^{T}P=/,\mathrm{w}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{e}$

I is the identity matrix), and $P$ has a positive determinant $\det P=1$ . Thus, we say 50(3)
is naturally embedded in $R^{9}$ , as it can be represented as a nine-dimensional object (with 6
constraints originating from the orthogonality condition).

To proceed, we must find the $3\mathrm{D}$ analog to the fundamentally $2\mathrm{D}$ quantity |V&|. A gradient
is simply a difference over an infinitesimal distance, thus we need to compute the norm of the
difference, in some sense, betw $\mathrm{e}en$ two $\mathit{3}D$ orientations. We consider two possible choices for
this measure, employing a function of two SO(3) matrices $\rho(P, Q)$ :

Type I : $\rho(P, Q)=|P-Q|=|PQ^{-1}-I|$

Type II : $\rho(P, Q)=$ a$\cos^{-1}\frac{\mathrm{t}\mathrm{r}PQ^{-1}-1}{2}$

Note that, $PQ^{-1}$ is the misorientation between two crystals. The meaning of the Type I
measure is trivial, as it measures the distance between two matrices in $R^{9}$ . The Type II
measure, on the other hand, measures the length of the geodesic in 50(3) connecting two
matrices. These two measures coincide when $P$ and $Q$ are infinitesimally close, but they will
yield different values when there is a discontinuity between $P$, $Q$ as is often the case for discrete
computations on a lattice

With these definitions we can now write down our model, by simply substituting $|\nabla\theta|arrow$

$|\nabla P|$ in Eqn. 1:

$\mathcal{F}$ $= \int dV[f(\phi, T)+\frac{\alpha^{2}}{2}|\nabla\phi|^{2}$

$+sg( \phi)|\nabla P|+\frac{\epsilon^{2}}{2}h(\phi)|\nabla P|^{2}]$ ,

A more explicit form can be obtained using $|\nabla P|=\sqrt{|\nabla P|^{2}}=$ where $p_{i,j}=$

$[P]_{i,j}$ .
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Solution

Having posed the above free energy, we must now perform a minimization, to derive equations

of motion for both the phase field $\phi$ and the orientation. We must proceed with care to ensure
that the equations of motions keep the variables in 50(3). There are several ways to proceed:

(1) Derive equations for the constrained free energy, which has only 3 degrees of freedom or
(2) derive equations on $R^{9}$ , and project the results back into 50(3). For both methods we
need to derive the variational derivative of the free energy with respect to orientation, which

is simply

$\frac{\delta \mathcal{F}}{\delta P}=-\nabla\cdot(sg(\phi)\frac{\nabla P}{|\nabla P|}+\epsilon^{2}h(\phi)\nabla P)$ .

In deriving the equations of motion for the constrained free energy, an element of 50(3)

is written in the form $P=P(u, v, w)$ where the triplet $(uv, w)\}$ is some local coordinate, for

example, the Rodrigues vector. The equations of motion for these variables should be

$\tau_{P^{\frac{\partial u}{\partial t}=}}\langle-\frac{\delta F}{\delta P}$ , $\frac{\partial P}{\partial u}\rangle$ (2)

with identical equations for $uarrow v$ , $w$ . Note that the quantity $\langle\cdot, \cdot\rangle$ is the usual inner product

in $R^{9}$ (a fully contracted matrix product), and $\tau_{P}$ is an inverse mobility

Alternatively, to use a projective formulation, we develop 9 equations of motion in $R^{9}$

keeping the solution within 50(3) by taking a projection of driving force onto the tangential

plane of 50(3). It is given in the form $\tau_{P}\partial P/\partial t=\pi_{P}(-\delta \mathcal{F}/\delta P)$ where $\pi_{P}$ is the projection

operator. This approach allows for substantially improved numerical efficiency. However, we

reserve discussion of this technique for a later publication.

Following the preceding arguments we can derive the evolution equation for $\phi$ and $P$ ,

implement the equations in computer code and solve. Our first calculations were for a thin

film where the grains are nearly $2\mathrm{D}$ objects, but their orientation is $\mathit{3}D$, and the dynamics

will be governed by the evolution of all of these angles. There are numerous experimental

systems analogous to this calculation (see Fig.1.) Our results showing growth, impingement

and coarsening are given in Fig. 2. Also fully 3 dimensional simulation is shown in Fig.3
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Figure 1: Coarsening process of grain structure of succinonitrile. The grain structure is almost
$2\mathrm{D}$ , while the orientation of each grain is necessarily $3\mathrm{D}$ . (courtesy of Drs. Lee and Losert, U.
Maryland)

Figure 2: Simulation of solidification and coarsening process {the color indicates one of the
three Euler angles (all of which were solved for)
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Figure 3: Simulation of fully 3 dimensional coarsening process

Herein, we have extended our previous work in $2\mathrm{D}$ to $3\mathrm{D}$ . For a complete formulation to

be obtained, we must also include the important consequences of anisotropy, In other words

we have examined the consequences of misorientation, but not the consequences of inclination

on the statics and dynamics of grain boundaries. Additionally, we have yet to account for the

underlying crystal symmetries These effects can be included, and will be discussed in future

work.
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