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ABSTRACT. In this article, we introduce two nonlinear operators of monotone
type and nonexpansive type, i.e., inverse-strongly-monotone operators and rel-
atively nonexpansive operators. Then, we obtain weak and strong convergence
theorems for the nonlinear operators in a Hilbert space or a Banach space. Us-
ing these results, we consider some applications,

1. INTRODUCTION

Let $H$ be a real Hilbert space with inner product $\langle\cdot$ , $\cdot\rangle$ and norm $||\cdot$ $||$ , and let $C$

be a closed convex subset of $H$ . An operator $A$ of $C$ into $H$ is said to be monotone
if

$(x-y$ , $Ax-Ay\rangle\geq 0$

for all $x,y\in C$ . An operator $A$ of $C$ into $H$ is said to be inverse-strongiy-monotone
if there exists a positive real number a such that

$\langle x-y, Ax-Ay\rangle\geq\alpha|\}Ax-Ay||^{\sim}.$
? -

for all $x,y\in C$ . Such an operator $A$ is said to be $\alpha- \mathrm{i}\mathrm{n}\mathrm{v}\mathrm{e}\mathrm{r}\mathrm{s}\mathrm{e}$ -strongly-monotone. An
operator $A$ of $C$ into $H$ is said to be strongly monotone if there exists a positive
real number $\alpha$ such that

$\langle x-y, Ax-Ay\rangle\geq\alpha||x-y||.arrow\supset$

for all $x$ , $y\in C_{-}$ Such an operator $A$ is said to be a-strongly monotone. An operator
$A$ of $C$ into $H$ is said to be Lipschitz continuous if there exists a positive real number
$\beta$ such that

$||Ax-Ay||\leq\beta||x-y||$

for all $x,y$ $\in C$ . Such an operator $A$ is said to be $\beta$-Lipschitz continuous. If $A$ is
an a-strongly monotone and $\beta$-Lipschitz continuous operator of $C$ into $H$ , then $A$

is $\alpha/\beta^{2}- \mathrm{i}\mathrm{n}\mathrm{v}\mathrm{e}\mathrm{r}\mathrm{s}\mathrm{e}$-strongly-monotone. The variational inequality problem is to find a
. point $u\in C$ such that

$\langle v-u$ , Au$\rangle$ \geq O

for all $v\in C$ . Variational inequalities were initially studied by Stampacchia $[20,23]$ .

The set of solutions of the variational inequality is denoted by $VI(C, A)$ . A mapping
$S$ of $C$ into itself is said to be nonexpansive if

$||Sx-Sy||\leq||x-y||$
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for all $x$ , $y\in C$ . We denote by $F(S)$ the set of fixed points of $S$ . Yamada [50]
proved the following strong convergence theorem for strongly monotone and Lips-
chitz continuous operators in a Hilbert space.

Theorem 1 (Yamada [50]). Let $H$ be a real Hilbert space. Let $S$ be a nonexpansive
mapping of $H$ into itself such that $F(S)\neq\emptyset$ and let $A$ be an $\alpha$ strongly monotone
and $\beta$ -Lipschitz continous operator of $H$ into itself. Suppose $x_{1}.--x\in H$ an $d\{x_{n}\}$

is given by

$x_{n+1}=Sx_{\tau\iota}-\alpha_{n+1}\lambda ASx_{n}$

for every $n=1,2$ , $\ldots$ , where $\{\alpha_{\tau\iota}\}$ is a sequence in $[0, 1]$ and A is a positive real
number. If $\{\alpha_{n}\}$ and A are chosen so that A $\in(0,2\alpha/\beta^{2})$ ,

$\lim_{narrow\infty}\alpha_{n}=0$ , $\sum_{n=1}^{\infty}\alpha_{n}=\infty$ and $\lim_{narrow\infty}\frac{\alpha_{n}-\alpha_{n+1}}{\alpha_{n+1}^{9}}.=0_{\mathrm{J}}$

then $\{x_{n}\}$ converges strongly to the uniquely existing solution of $VI(F(S), A)$ .

On the other hand, Nakajo and Takahashi [30] proved the following strong con-
vergence theorem by using the hybrid method in mathematical programming.

Theorem 2 Nakajo and Takahashi [30] $)$ . Let $C$ be a closed convex subset of $a$

real Hilbert space $H$ and let $S$ be a nonexpansive mapping of $C$ into itself such that
$F(S)\neq\emptyset$ . Suppose $x_{1}=x\in C$ and $\{x_{n}\}$ is given by

$\{$

$y_{n}=(1-\alpha_{\tau\iota})x_{n}+\alpha_{n}\mathit{3}x_{\mathrm{n}}$,
$C_{n}=\{z\in C : ||y_{n}-z||\leq||x_{n}-z||\}$ ,
$Q_{n}=\{z\in C : \langle x_{n}-z, x-x_{\tau\iota}\rangle\geq 0\}$ ,
$x_{n+1}=P_{C_{n}\cap Q_{n}}x$

for every $n=1,2$, . . . , where $Pc_{n}\cap Q_{n}$ is the metric projection from $C$ onto $C_{n}\cap Q_{n}$

and $\{\alpha_{n}\}$ is chosen so that $\alpha_{n}\in[a, 1]$ for some $a$ with $0<a\leq 1$ . Then $\{x_{n}\}$

converges strongly to $P_{F(S)}x$ , where $P_{F(S)}$ is the metric projection from $C$ onto
$F(S)$ .

In this article, motivated by Yamada [50], vxe first introduce four iterative schemes
for finding a common element of the set of fixed points of a nonexpansive map-
ping and the set of solutions of the variational inequality for an inverse-strongiy-
monotone operator in a Hilbert space. Then we obtain weak and strong convergence
theorems for the iterative schemes. As in the above paragraph, if an operator is
strongly monotone and Lipschitz continuous, then it is inverse-strongly-monotone.
Further, we know important examples of inverse-strongly-monotone operators. So,
using these results, we consider some applications; see Section 2. In Section 3,
we define the notion of relatively nonexpansive mappings in a Banach space which
generalizes nonexpansive mappings in a Hilbert space. Then we obtain two con-
vergence theorems for relatively nonexpansive mappings in a Banach space. One
of them solves a problem posed at the Symposium on Mathematical Economics
sponsored by the Research Institute for Mathematical Science, Kyoto University,
which was held during November 29\sim December 1, 2002; see [46]
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2. PRELIMfNARIES

Let $H$ be a real Hilbert space and let $C$ be a closed convex subset of $H$ . We
write $x_{n}-\mathrm{A}x$ to indicate that the sequence $\{x_{n}\}$ converges weakly to $x$ . $x_{n}arrow x$

implies that $\{x_{\eta}\}$ converges strongly to $x$ . We denote by $\mathrm{N}$ and $\mathbb{R}$ the sets of all
positive integers and all real numbers, respectively. For every point $x\in H$ , there
exists a unique nearest point in $C_{7}$ denoted by $Pc^{x}$ , such that $||x-Pcx||\leq||x-y||$

for all $y\in C$ . $Pc$ is called the metric projection form $H$ onto $C$ . We know that $Pc$

is a nonexpansive mapping from $H$ onto $C$ . It is also known that $P_{C}$ satisfies

$\langle x-y, P_{C}x-P_{C}y\rangle\geq||P_{C}x-P_{C}y||.arrow)$

for every $x_{\mathrm{I}}y\in H$ . Moreover, $Pcx$ is characterized by the properties: $Pcx\in C$ and

$\langle x-P_{C}x, P_{C’}x-y\rangle\geq 0$

for all $y$ $\in C$ . In the context of the variational inequality problem, this implies that

$u\in VI(C, A)\Leftrightarrow u=P_{C}(et-\lambda Au)$

for all A $>0$ , where A is a monotone operator of $C$ into $H$ . It is also known that
$H$ satisfies Opial’s condition [32], that is, for any sequence $\{x_{n}\}$ with $x_{n}arrow x$ , the
inequality

$\lim_{narrow}\inf_{\infty}$ $||x_{n}-x||<$ $\lim_{narrow}\inf_{\infty}$
$||x_{n}-y||$

holds for every $y\in H$ with $y\neq x$ . A set-valued monotone operator T. $Harrow$ $2^{H}$

is maximal if the graph $G(T)$ of $T$ is not properly contained in the graph of any

other monotone operator. It is known that a monotone operator $T$ is maximal if

and only if for $(x_{\mathrm{J}}f)\in H\mathrm{x}H$ , $\langle x-y, f-g\rangle\geq 0$ for every $(y_{1}g)\in G(T)$ implies

$f\in Tx$ . An operator $A$ of $C$ into $H$ is said to be hemicontinous if for all $x,$ $y\in C$ ,

the mapping $[0, 1]\ni t\vdash+A(tx+(1-t)y)\in H$ is continuous, where $H$ has the weak
topology. We denote by $Ncv$ the normal cone to $C$ at a point $v\in C$ , that is,

$N_{C}v=$ {$w\in H$ : $\langle v-u$ , $w\rangle\geq 0$ , Vu $\in C$ }.

We know the following theorem [36]:

Theorem 3 (Rockafellar [36]). Let $C$ be a closed convex subset of a Hilbert space
$H$ and let $A^{J}$ be a monotone and hemicontinuous operator of $C$ into H. Let $T$ : $Harrow$

$2^{H}$ $be$ an operator defined as follows:

$Tv=\{$
$Av+N_{C}v_{1}$ $v\in C$,
(l), $v\not\in C$ .

Then $T$ is maximal monotone and $T^{-1}0$ $=VI(C, A)$ .

Let $E$ be a real Banach space with norm $||\cdot$ $||$ and let $E^{*}$ be the dual of $E$ . We

denote by $\langle\cdot, \cdot\rangle$ the duality product. The normalized duality mapping $J$ form $E$ to
$E^{*}$ is defined by

$Jx=\{x^{*}\in E^{*} : \langle x, x^{*}\rangle=||x||^{2}=||x^{*}||^{2}\}$

for $x\in E$ . A Banach space $E$ is said to be strictly convex if $|| \frac{x+y}{\supset}.||<1$ for

ali $x$ , $y\in E$ with $||x||=||y||=1$ and $x\neq y$ . It is also said to be uniformly

convex if $\lim_{\tau\iotaarrow\infty}||x_{n}-y_{n}||=0$ for any two sequences $\{x_{r\mathrm{z}}\}$ , $\{y_{n}\}$ in $E$ such that
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$||x_{n}||=||y_{n}||=1$ and $\lim_{narrow\infty}||\frac{x_{n}+y_{\pi}}{2}||=1$ . Let $U=\{x\in E : ||x||=1\}$ be the
unit sphere of $E$ . Then the Banach spase $E$ is said to be smooth provided

$\lim_{tarrow 0}\frac{||x+ty||-||x||}{t}$

exists for each $x,y\in U$ . It is also said to be uniformly smooth if the limit is
attained uniformly for $x$ , $y\in U$ . It is well known that if $E$ is smooth, then the
duality mapping $J$ is single valued. It is also known that if $E$ is uniformly smooth,
then $J$ is uniformly norm-to-norm continuous on each bounded subset of $E$ . Some
properties of the duality mapping have been given in [7, 43, 44]. A Banach space
$E$ is said to have the Kadec-Klee property if $x_{n}arrow x\in E$ and $||x_{n}||arrow||x||$ , then
$x_{n}arrow x$ . It is known that if $E$ is uniformly convex, then $E$ has the $\mathrm{K}\mathrm{a}\mathrm{d}\mathrm{e}\mathrm{c}arrow \mathrm{K}\mathrm{l}\mathrm{e}\mathrm{e}$

property; see [7, 43, 44] for more details. Let $E$ be a smooth Banach space. The
function $\phi:E\mathrm{x}$ $Earrow \mathbb{R}$ is defined by

$\phi(y, x)=||y||^{\underline{J}}.-2\langle y, Jx\rangle+||x||^{\gamma}.arrow$

for $x$ , $y\in E$ . It is obvious from the definition of the function $\phi$ that
$(||y||-[|x||)^{\mathrm{o}}\sim\leq\phi(y, x)\leq(||y||+||x||)^{2}$

for all $x$ , $y\in E$ . If $E$ is a strictly convex and smooth Banach space, then for
$x$ , $y\in E$ , $\phi(y, x)=0$ if and only if $x=y$ . If $\phi(x, y)=0$ , we have $||x||=||y||$ . This
implies $\langle y, Jx\rangle=||y||^{2}=||Jx||^{2}$ . From the definition of $J$, we have $Jx=Jy$ . Since
$J$ is one-to-one, we have $x=y$ ; see [7, 43, 44] for more details. Recently, Kamimura
and Takahashi [18] proved the following result. This plays an important role in the
proof of Theorem 16.

Proposition 4 (Kamimura and Takahashi [18]). Let $E$ be a uniformly convex and
smooth Banach space, and let $\{y_{n}\}$ and $\{z_{n}\}$ be two sequences ofE. if $\phi(y_{n}, z_{n})arrow 0$

and either $\{y_{n}\}$ or $\{z_{n}\}$ is bounded, then $y_{n}-z_{\tau\iota}arrow \mathrm{O}$ .

Let $C$ be a nonempty closed convex subset of $E$ . Suppose that $E$ is reflexive,
strictly convex and smooth. Then for any $x\in E$ , there exists a point $x_{0}\in C$ such
that

$\phi(x_{0}, x)=\min_{y\in C}\phi(y_{)}x)$ .

The mapping $Pc$ defined by $Pcx=x_{0}$ is called the generalized projection $[1, 18]$ .
The following are well-known results. For example, see $[1, 18]$ .

Proposition 5 (Alber [1], Kamimura and Takahashi [18]). Let $C$ be a nonempty
closed convex subset of a smooth Banach space $E$ and $x\in E$ . Then, $x_{0}=Pcx$ if
and only if

$\langle x_{0}-y, Jx-Jx_{0}\rangle\geq 0$

for $y\in C$ .

Proposition 6 (Alber [1], Kamimura and Takahashi [18]). Let $E$ be a refleive,
strictly convex and smooth Banach space, let $C$ be a nonempty closed convex subset
of $E$ and let $x\in E$ . Then

$\phi(y, P_{C}x)+\phi(P_{C}x, x)\leq\phi(y,x)$

for all $y\in C$ .
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3. INVERSE-STRONGLY-MONOTONE OPERATORS

Let $H$ be a Hilbert space and let $C$ be a nonempty closed convex subset of $H$ .
An operator $A$ of $C$ into $H$ is said to be inverse-strongly-monotone [5] if there exists
a positive real number $\alpha$ such that

$\langle x-y, Ax-Ay\rangle\geq\alpha||Ax-Ay||^{2}$

for all $x$ , $y\in C$ . Such an $A$ is said to be $\alpha- \mathrm{i}\mathrm{n}\mathrm{v}\mathrm{e}\mathrm{r}\mathrm{s}\mathrm{e}$ -strongly-monotone. There are
many examples of inverse-strongly-monotone operators. If $A=I-T$, where $T$ is
a nonexpansive mapping of $C$ into itself, then $A$ is 1/2-inverse-strongly-monotone;
see [16]. Let $f$ be a continuously Frechet differentiable convex functional on $H$

and let $\nabla f$ be the gradient of $f$ . If $\nabla f$ is $1/\alpha$-Lipschitz continuous, then $\nabla f$ is $\alpha-$

\’inverse-strongly-monotone; see [3]. We first establish a strong convergence theorem
for inverse-strongly-monotone operators and nonexpansive mappings in a Hilbert
space.

Theorem 7 (Iiduka and Takahashi [13]). Let $C$ be a closed convex subset of a real
Hilbert space H. Let $A$ be an $\alpha- \mathrm{i}nversearrow strongly$-monotone mappeng of $C$ into $H$

and let $S$ be a nonexpansive mapping of $C$ into itself such that $F(S)\cap VI(C, A)\neq\emptyset$ .

Let $\{x_{n}\}$ be a sequence generated by

$\{$

$x_{1}=x\in C$ ,
$x_{\mathit{7}1+1}=\alpha_{n}x+(1-\alpha_{n})SP_{C}(x_{n}-\lambda_{n}Ax_{n})$

for every $n=1,2$ , $\ldots$ , where $\{\alpha_{n}\}\subset[0, 1)$ and $\{\lambda_{n}\}\subset[a, b]\subset(0,2\alpha)$ satisfy

$\lim_{narrow\infty}\alpha_{n}=0$ , $\sum_{n=1}^{\infty}\alpha_{n}=\infty$ , $\sum_{n=1}^{\infty}|\alpha_{n+1}-\alpha_{n}|<$ oo and $\sum_{n=1}^{\infty}|\lambda_{n+1}-\lambda_{n}|<\infty$ .

Then, $\{x_{n}\}$ converges strongly to $P_{F(S)\cap VI(C,A\rangle^{X}}$ .

Using Theorem 7 we obtain Wittmann’s theorem [49].

Theorem 8 ([49]). Let $C$ be a closed convex subset of a real Hilbert space $H$ and let
$S$ be a nonexpansive mapping $C$ into itself se $ah$ that $F(S)\neq\emptyset$ . Suppose $x_{1}=x\in C$

and $\{x_{\tau\iota}\}$ is given by

$x_{n+1}=\alpha_{n}x+(1-\alpha_{n})Sx_{n}$

for every $n=1_{0}2$ , $\ldots$ , there $\{\alpha_{n}\}$ is a sequence in $[0, 1)$ . ij $\{\alpha_{n}\}$ is chosen so that

$\lim_{narrow\infty}\alpha_{n}=\infty$, $\sum_{n=1}^{\infty}\alpha_{n}=\infty$ and $\sum_{n=1}^{\infty}|\alpha_{n+1}-\alpha_{n}|<\infty$ ,

then $\{x_{\tau}‘\}$ converges strongly to $P_{F(S)}x$ , where $P_{F(S)}$ is the metric projection from
$C$ onto $F(S)$ .

Proof. In Theorem 7, put $Ax=0$ for all $x\in C$ . Then $A$ is inverse-strongly-

monotone. We have $C=VI(C, A)$ and
$x_{n+1}=\alpha_{n}x+(1-\alpha_{n})\mathit{3}P_{C}(x_{n}-\lambda_{n}Ax_{n})$

$=\alpha_{n}x+(1-\alpha_{n})SP_{C}x_{n}$

$=\alpha_{n}x+$ (1- a $n$ ) $Sx_{n}$ .

Using Theorem 7, $\{x_{n}\}$ converges strongly to $P_{F(S)^{X}}$ . $\square$
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A mapping $T$ : $Carrow C$ is called strictly pseudocontractive if there exists $k$ with
$0\leq k<1$ such that

$||Tx-Ty||^{\underline{?}}\leq||x-y||^{2}+k||(I-T)x-(I-T)y||^{\underline{9}}$

for all $x$ , $y$ $\in C$ . Such a mapping $T$ is said to be $k$-strictly pseudocontractive. If
$k=0$ , then $T$ is nonexpansive. Put $A=I-T$, where $T$ : $Carrow C$ is a k-strictiy
pseudocontractive mapping. Then, $A$ is $\frac{1-k}{2}$

. inverse-strongly-monotone; see [5].
Actually, by the definition of $T$ , we have, for all $x$ , $y\in C$ ,

$||(I-A)x-(I-A)y||^{2}\leq||x-y||arrow?+k||Ax-Ay||^{2}$ .

On the other hand, since $H$ is a real Hilbert space, we have
$||(I-A)x-(I-A)y||^{2}=||x-y||^{2}+||Ax-Ay||^{\underline{?}}-2\langle x-y, Ax-Ay\rangle$ .

Hence we have
$\langle$$x-y$ , Ax-Ay) $\geq\frac{1-k^{\wedge}}{2}||Ax-Ay||^{2}$ .

Using Theorem 7 we can also prove a strong convergence theorem for a common
fixed point of a nonexpansive mapping and a strictly pseudocontractive mapping.

Theorem 9. Let $C$ be a closed convex subset of a real Hilbert space H. Let $S$ be
a nonexpansive mapping of $C$ into itself and let $T$ be a $k$ strictly pseudocontractive
mapping of $C$ into itself such that $F(S)\cap F(T)\neq\emptyset$ . Let $\{x_{n}\}$ be a sequence
generated by

$\{$

$x_{1}=x\in C$,
$x_{n+1}=\alpha_{n}x+(1-\alpha_{n})S((1-\lambda_{n})x_{n}+\lambda_{n}Tx_{n})$

for every $n=1,2$ , $\ldots$ ) where $\{\alpha_{n}\}\subset[0, 1)$ and $\{\lambda_{n}\}\subset[a, b]\subset(0, 1-k)$ satisfy

$\lim_{narrow\infty}\alpha_{n}=0$ , $\sum_{n=1}^{\infty}\alpha_{n}=\infty$ , $\sum_{n=1}^{\infty}|\alpha_{n+1}-\alpha_{n}|<\infty$ and $\sum_{n=1}^{\infty}|\lambda_{n+1}-\lambda_{n}|<\infty$ .

Then, $\{x_{n}\}$ converges strongly to $P_{F(S)\cap F(T)^{X}}$ .
We obtain another strong convergence theorem by using the hybrid method in

mathematical programming.

Theorem 10 (Iiduka and Takahashi [11]). Let $C$ be a closed convex subset of $a$

real Hilbert space H. Let $A$ be an $\alpha- \mathrm{i}nverse$-strongly-monotone operato” of $C$ into $H$

and let $S$ be a nonexpansive mapping of $C$ into itself such that $F(S)\cap VI(C, A)\neq\emptyset$ .
Suppose $x_{\mathrm{I}}=x\in C$ and $\{x_{n}\}$ is given by

$\{$

$y_{n}=(1-\alpha_{n})x_{n}+\alpha_{n}SP_{C}(x_{n}-\lambda_{n}Ax_{n})$ ,
$C_{n}=\{z\in C:||y_{\tau\iota}-z||\leq||x_{n}-z||\}$ ,
$Q_{n}=\{z\in C : \langle x_{n}-z, x-x_{n}\rangle\geq 0\}_{7}$

$x_{n+1}=P_{C_{n}\cap Q_{\mathfrak{n}}^{X}}$

for every $n=1$ , 2, $\ldots$ , where $\{\alpha_{n}\}$ is a sequence in $[0, 1]$ and $\{\lambda_{n}\}$ is a sequence
in $[0, 2\alpha]$ . if $\{\alpha_{n}\}$ and $\{\lambda_{n}\}$ are chosen so that $\alpha_{n}\in[c, 1]$ for some $c$ with $0<$
$c\leq 1$ and $\lambda_{n}\in[a_{f}b]$ for some $a$ , $b$ with $0<a<b$ $<2\alpha$ , then $\{x_{n}\}$ converges
strongly to $P_{F(S)\cap VI(C,A\rangle}x$, where $P_{F(S\rangle\cap VI(C,A)}$ is the metric projection from $C$

into $F(S)\cap VI(C, A)$ .

Using Theorem 10 we can prove the following strong convergence theorem in a
Hilbert space,
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Theorem 11. Let C be a closed convex subset of a real Hilbert space H. Let T be
a $k$ -strictly pseudocontractive mapping of $C$ into $\tilde{\iota}tself$ and let $S$ be a nonexpansive

mapping of $C$ into itself such that $F(S)\cap F(T)\neq\emptyset$ . Supporse $x_{1}=x\in C$ and
$\{x_{n}\}$ is given by

$\{$

$y_{n}=(1-\alpha_{n})x_{n}+\alpha_{n}S((1-\lambda_{n})x_{n}+\lambda_{n}TAx_{n})$ ,
$C_{n}=\{z\in C:||y_{n}-z||\leq||x_{n}-z||\}$ ,
$Q_{n}=\{z\in C : \langle x_{n}-z,x-x_{n}\rangle\geq 0\}$ ,
$x_{n+1}=P_{C_{n}\cap Q_{n}}x$

for every $n=1,2$ , $\ldots$ ; where $\{\alpha_{n}\}$ is a sequence in $[0, 1]$ and $\{\lambda_{n}\}$ is a sequence in
$[0, 1-k]$ . If {an} and $\{\lambda_{n}\}$ are chosen so that $\alpha_{n}\in[c, 1]$ for some $c$ with $0<c\leq 1$

and $\lambda_{n}\in[a, b]$ for some $a$ , $b$ with $0<a<b<1-k_{2}$ then $\{x_{n}\}$ converges strongly to
$P_{F(S)\cap F(T\}}x$ , where $P_{F(S)\cap F(T)}$ is the metric projection from $C$ onto $F(S)\cap F(T)$ .

We can also prove the following weak convegence theorem for inverse-strongly-
monotone operators and nonexpansive mappings in a Hilbert sapce.

Theorem 12 (Takahashi and Toyoda [48]). Let C be a closed convex subset of $a$

real Hilbert space H. Let $A$ be an $\alpha- inverse$ -strongly-rnonotone operator of $C$ into
$H$ and let $S$ be a nonexpansive mapping $C$ into itself such that $F(S)\cap VI(C, A)\neq\emptyset$ .

Supporse $x_{1}=x\in C$ and $\{x_{n}\}$ is given by
$x_{\tau\iota+1}=\alpha_{n}x_{n}+(1-\alpha_{n})SP_{C}\cdot(x_{n}-\lambda_{n}Ax_{n})$

for every $n=1,2$ , $\ldots$ , where $\{\alpha_{n}\}$ is a sequence in $[0_{2}1]$ and $\{\lambda_{n}\}$ is a sequence in
$[0, 2\alpha]$ . if {an} and $\{\lambda_{n}\}$ are chosen so that $\alpha_{n}\in[a, b]$ for some $a$ , $b$ with $0<a<$
$b<1$ and $\lambda_{n}\in[c, d]$ for some $c$ , $d$ with $0<c<d<2\alpha$ , then $\{x_{n}\}$ converges weakly
to some element $z$ of $F(S)\cap VI(C_{1}A)$ . Further, $z= \lim_{narrow\infty}P_{F(S)\cap VI(C,A)^{X}n},$ ,

where $P_{F(S)\cap VI(C,A)}$ is the metric projection from $C$ onto $F(S)\cap VI(C, A)$ .

In this section, we finally establish a weak convergence theorem which generalizes
Baillon’s nonlinear ergodic theorem [2].

Theorem 13 (Iiduka and Takahashi [14]). Let $C$ be a closed convex subset of $a$

real Hilbert space H. Let $A$ be an $\alpha- \mathrm{i}nverse$-strongly-monotone operator of $C$ into .

$H$ and let $S$ be a nonexpansive mapping $C$ into itself such that $F(S)\cap VI(C, A)$ $\neq\emptyset$ .
Supporse $x_{1}=x\in C$ and $\{z_{n}\}$ is given by

$\{$

$x_{n+1}=SP_{C}(x_{n}-\lambda_{n}Ax_{n})_{7}$

$z_{n}= \frac{1}{n}\sum_{\mathrm{t}=1}^{n}.x_{k}$.

for every $n=1,2$ , $\ldots$ 2 where $\{\lambda_{n}\}$ is chosen so that $\lambda_{n}\in[a, b]$ for some $a$ , $b$ with
$0<a<b<2\alpha$ . Then $\{z_{n}\}$ converges weakly to some element $z$ of $F(S)\cap VI(C, A)$ .
Further, $z= \lim_{narrow\infty}P_{F(S)\cap VI(C,A)^{X}n}$ , where $P_{F(S)\cap VI\{C,A)}$ is the metric projec-

tion from $C$ onto $F(S)\cap VI(C, A)$ .

Baillon’s nonlinear ergodic theorem [2] is as follows:

Theorem 14 ([2]). Let $C$ be a closed convex subset of a real Hilbert space $H$ and let
$S$ be a nonexpansive mapping $C$ into itself such that $F(S)\neq\emptyset$ . Suppose $x_{1}=x\in C$

and $\{z_{n}\}$ is given by

$z_{n}= \frac{1}{n}\sum_{k=1}^{\tau\iota}S^{k-1}x$
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for every $n=1,2$, $\ldots$ . Then $\{z_{n}\}$ converges weakly to some element $z$ of $F(S)$ .
Further, $z= \lim_{narrow\infty}P_{F(S)}x_{n}$ , where $P_{F(S)}$ is th$\iota e$ metric projection from $C$ onto
$F(S)$ .

Proof, In Theorem 13, put $Ax=0$ for all $x\in C$ . Then $A$ is inverse-strongly-
monotone. We have $C=VI(C, A)$ and

$x_{n+\mathrm{I}}=SPc(x_{n}-\lambda_{n}Ax_{n})$

$=SP_{C’}x_{n}=Sx_{n}$

$=S^{n}x$ .

So, by Theorem 13, $\{z_{n}\}$ converges weakly to some element $z$ of $F(S)$ . $\square$

Using Theorem 13, we can also obtain the following theorem.

Theorem 15. Let $H$ be a red Hilbert space. Let $A$ be an $\alpha- \mathrm{i}nverse$-strongly-
monotone operator of $H$ into itself and let $S$ be a nonexpansive mapping $H$ into
itself such that $F(S)\cap A^{-1}0\neq\emptyset$ . Supporse $x_{1}=x\in H$ and $\{\mathrm{z}\mathrm{n}\}$ is given by

$\{$

$x_{n+1}=S(x_{n}-\lambda_{n}Ax_{n})$ ,
$z_{n}= \frac{1}{n}\sum_{\mathrm{t}=1}^{n}.x_{k}$

for every $n=1,2$, . . $-$ , where $\{\lambda_{n}\}$ is chosen so that $\lambda_{n}\in[a, b]$ for some $a$ , $b$ with
$0<a<b<2\alpha$ . Then $\{z_{n}\}$ converges weakly to some element $z$ of $F(S)\cap A^{-1}0$ .
Further, $z= \lim_{narrow\infty}P_{F(S)\cap A^{-1}0}x_{n}$ , where $P_{F(S)\cap A^{-1}}0$ is the metric projection
from $H$ onto $F(S)\cap A^{-1}0$ .

Proof. We have $A^{-1}0=VI(H, \wedge 4)$ . So, putting $P_{H}=I$ , by Theorem 13, we have
that $\{z_{n}\}$ converges weakly to some element $z$ of $F(S)\cap A^{-1}0$. $\square$

4. RELATIVELY NONEXPANSIVE MAPPINGS

Let $C$ be a closed convex subset of $E$ , and let $T$ be a mapping from $C$ into itself.
We denote by $F(T)$ the set of fixed points of $T$ . A point $p$ in $C$ is said to be an
asymptotic fixed point of $T[35]$ if $C$ contains a sequence $\{x_{n}\}$ which converges
weakly to $p$ such that the strong $\mathrm{h}.\mathrm{m}_{narrow\infty}(x_{n}-Tx_{n})=0$. The set of asymptotic
fixed points of $T$ will be denoted by $\hat{F}(T)$ . A mapping $T$ from $C$ into itself is called
relatively nonexpansive if $\hat{F}(T)=F(T)$ and $\phi(p, Tx)\leq\phi(p, x)$ for all $x\in C$ and
$p\in F(T)$ .

The following is a strong convergence theorem for relatively nonexpansive map-
pings in a Banach space which generalizes Nakajo and Takahashi’s theorem [30] in
a Hilbert space.

Theorem 16 (Matsushita and Takahashi [28]). Let $E$ be a unifo rmly convex and
uniformly smooth Banach space, let $C$ be a nonempty closed convex subset of $E_{f}$ let
$T$ be a relatively nonexpansive mapping from $C$ into itself with $F(T)\neq\phi$ and let
$\{\alpha_{n}\}$ be a sequence of real numbers such that $0\leq\alpha_{n}<$ I and Jim $\sup_{narrow\infty}\alpha_{n}<1$ .
Suppose that $\{x_{n}\}$ is given by

$\{$

$x_{\mathrm{I}}=x\in C$,
$y_{\tau\iota}=J^{-1}(\alpha_{n}Jx_{n}+(1-\alpha_{n})JTx_{n})$ ,
$H_{n}=\{z\in C:\phi(z,y_{n})\leq\phi(z, x_{n})\}$ ,
$\mathrm{T}\prime V_{n}=\{z\in C : \langle x_{n}-z, Jx-Jx_{n}\rangle\geq 0\}_{7}$

$x_{n+1}=P_{H_{\mathfrak{n}}\cap W_{\mathfrak{n}}^{X}}$
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for all $n=1$ , 2, .. . } where $J$ is the duality mapping on E. Then $\{x_{n}\}$ converges
strongly to $P_{F(T)}x$ , where $P_{F(T)}$ is the generalized projection from $C$ onto $F(T)$ .

Using Theorem 16, we can prove Nakajo and Takahashi’s theorem (Theorem
2) as follows: To show Nakajo and Takahashi’s theorem, it is sufficient to prove
that if $T$ is nonexpansive, then $T$ is relatively nonexpansive. It is obvious that
$\mathrm{F}(\mathrm{T})\subset\hat{F}(T)$ . If $u\in\hat{F}(T)$ , then there exists $\{x_{n}\}\subset C$ such that $x_{n}arrow u$ and
$x_{n}-Tx_{n}arrow 0$ . Since $T$ is nonexpansive, $T$ is demiclosed. So, we have $u=Tu$.

This implies $F(T)=\hat{F}(T)$ . Further, in a Hilbert space $H$ , we know that

$\phi(x, y)=||x-y||^{2}$

for every $x$ , $y\in H$ . So, $||Tx-Ty||\leq||x-y||$ is equivalent to $\phi(Tx,Ty)\leq\phi(x,y)$ .
Therefore, $T$ is relatively nonexpansive. Using Theorem 16, we obtain the desired
result.

Using Theorem 16, we can also consider a proximal-type algorithm for finding
zero points of maximal monotone operators in a Banach space. Let $A$ be a mul-
tivalued operator from $E$ to $E^{*}$ with domain $D(A)=\{z\in E : - 4z\neq\phi\}$ and
range $R(A)=U\{Az : z\in D(A)\}$ . An operator $A$ is said to be monotone if
$\langle x_{1}-x_{2}, y_{1}-y_{\underline{7}}.\rangle\geq 0$ for each $x_{i}\in D(A)$ and $y_{i}\in Tx_{i}$ , $\mathrm{i}=1,2$ . A monotone oper-
ator $A$ is said to be maximal if its graph $G(A)=\{(x, y) : y\in Ax\}$ is not properly
contained in the graph of any other monotone operator. We know that if $A$ is a
maximal monotone operator, then $A^{-1}0$ is closed and convex. The following result
is also well-known.

Theorem 17 (Rockafellar [36]). Let $E$ be a reflexive, strictly convex and smooth
Banach space and let $A$ be a monotone operator from $E$ to $E^{*}$ . Then $A$ is maximal

if and only if $R(J+rA)=E^{*}for$ all $r>0$ .
Let $E$ be a reflexive, strictly convex and smooth Banach space, and let $A$ be a

maximal monotone operator from $E$ to $E^{*}$ . Using Theorem 17 and strict convexity

of $E$ , we obtain that for every $r>0$ and $x\in E$ , there exists a unique $x_{r}\in D(A)$

such that

$Jx\in Jx_{r}+rAx_{r}$ .

If $J_{r}x=x_{r}$ , then we can define a single valued mapping $J_{r}$ : $Earrow D(A)$ by
$J_{r}=(J+rA)^{-1}J$ and such a $J_{r}$ is called the resolvent of $A$ . We know that
$A^{-1}0=F(J_{r})$ for all $r>0$ ; see $[43, 44]$ for more details. Using Theorem 16,

we can prove a strong convergence threorem for maximal monotone operators in a
Banach space. Such a problem has been also studied in [18, 22, 31, 33, 35, 39].

Theorem 18. Let $E$ be a uniformly convex and uniformly smooth Banach space,
let $A$ be a maximal monotone operator from $E$ to $E^{*}$ , let $J_{f}$ be the resolvent of $A$ ,

where $r>0$ and let $\{\alpha_{n}\}$ be a sequence of real numbers such that $0\leq\alpha_{n}<1$ and
$\lim\sup_{narrow\infty}\alpha_{n}<1$ . Suppose that $\{x_{n}\}$ is given by

$\{$

$x_{1}=x\in E$ ,
$y_{n}=J^{-1}(\alpha_{n}Jx_{n}+(1-\alpha_{n})JJ_{r}x_{n})$ ,
$H_{n}=\{z\in E : \phi(z, y_{n})\leq\phi(z,x_{n})\}$ ,
$W_{n}=\{z\in E : \langle x_{n}-z, Jx-Jx_{n})\geq 0\}$ ,
$x_{n+1}=P_{H_{n}\cap W_{\pi}}x$
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for all $n=1,2$ , $\ldots$ , where $J$ is the duality mapping on E. If $A^{-1}0$ is nonempty,
then $\{x_{n}\}$ converges strongly to $P_{A0}-1x$ , where $P_{A^{-f}0}$ is the generalized projection
from $E$ onto $A^{-1}0$ .

Proof. We first show that $\hat{F}(J_{r})\subset A^{-1}0$ . Let $p\in\hat{F}(J_{\Gamma})$ . Then: there exists
$\{z_{n}\}\subset E$ such that $z_{n}arrow p$ and $\lim_{narrow\infty}(z_{n}-Jrzn)=0$ . Since $J$ is uniformly
norm-to-norm continuous on bounded sets, we obtain

$\frac{1}{r}(Jz_{n}-JJ_{r}z_{n})arrow 0$ .

It follows from $\frac{1}{r}(J\underline{r}_{n}-JJrZn)$ $\in$ AJrzn and the monotonicity of $A$ that

$\langle w-J_{r}z_{n},$ $w^{*}- \frac{1}{r}(Jz_{n}-JJ_{r}z_{n}1_{/}^{\backslash }\geq 0$

for all $w\in D(A)$ and $w^{*}\in Aw$ . Letting $narrow$ oo we have

$\langle w-p$ , $w^{*}\}\geq 0$

for all $w\in D(A)$ and $w^{*}\in Aw$ . Therefore from the maximality of $A$ , we obtain
$p\in A^{-1}0$ . On the other hand, we know that $F(J_{r})=A^{-1}0$ and $F(J_{r})\subset\hat{F}(J_{r})$ .
Therefore $A^{-1}0=F(J_{r})=\hat{F}(J_{r})$ . Next we show that $J_{r}$ is a relatively nonex-
pansive mapping with respect to $A^{-1}0$ . Let $w\in E$ and $p\in A^{-1}0$ . From the
monotonicity of $A$ , we have

$\phi(p, J_{r}w)=||p||^{2}-2\langle p, JJ_{r}w\rangle+||J_{r}w||^{2}$

$=||p||^{\approx}’+2\langle p, Jw-JJ_{r}w-Jw\rangle+||J_{\mathrm{r}}w||^{2}$

$=||p||^{\sim}’+2\langle p, Jw-JJ_{r}w\rangle-2\langle p, Jw\rangle+||J_{r}w||^{-}$
’

$=||p||^{2}-2\langle$$J_{r}w-p-$ Jrty, $Jw-JJ_{r}w\rangle$ $-2\{p$ , $Jw\rangle+||J_{r}w||^{2}$

$=||p||\underline’-2\langle J_{r}w-p, Jw-JJ_{r}w\rangle$

$+2\langle$ $J_{r}w$ , $Jw-$ JJVW) - 2 $(\mathrm{p},$ $\epsilon Iw\rangle$ $+||J_{r}w||^{?}$.
$=||p||^{-}.,$ $-2r \langle J_{r}w-p, \frac{1}{r}(Jw-JJ_{r}w)\rangle$

$+2\langle J_{r}w, Jw-JJ_{r}w\rangle-2\langle p, Jw\rangle+||J_{r}w||^{2}$

$\leq||p||^{2}+2\langle J_{r}w, Jw-JJ_{r}w\rangle-2\langle p, Jw\rangle+||J_{r}w||^{2}$

$=||p||^{2}-2\langle p, .Jw\rangle$ $+||w||^{9}$. $-||J_{r}w||^{2}+2\langle J_{r}w, Jw\rangle-||w||^{2}$

$=\phi(p_{2}w)-\phi(J_{r}w, w)$

$\leq\phi(p, w)$ .

This implies that $J_{r}$ is a relatively nonexpansive mapping. Using Theorem 16, we
can conclude that $\{x_{n}\}$ converges strongly to $P_{A^{-1}0}x$ . $\square$

Next, we obtain a weak convergence theorem for relatively nonexpansive map-
pings in a Banach space which is connected with Browder and Petryshyn’s theorem
[5] and Rockafellar’s theorem [37]. Before proving it, we need the following propo-
sition.

Proposition 19 (Matsushita and Takahashi [27]), Let $E$ be a uniformly convex
and uniformly smooth Banach space, let $C$ be a nonempty closed convex subset
of $E$ , and let $T$ be a relatively nonexpansive mapping from $C$ into itself such that
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$\mathrm{F}(\mathrm{S})\neq\emptyset$ . Let {an} be a sequence of real numbers such that $0\leq\alpha_{n}\leq 1$ . Let
$x_{1}\in C$ and let $\{\mathrm{x}\mathrm{n}\}$ be the sequence defined by

$x_{n+1}=P_{C}J^{-1}(\alpha_{n}Jx_{n}+(1-\alpha_{n})JTx_{n})$

for $n=1$ , 2, $\ldots$ . Then $\{P_{F(T)}x_{n}\}$ converges strongly to a fixed point of $T_{f}$ eryhere

$P_{F(T)}$ is the generalized projection from $C$ onto $F(T)$ .

Using Proposition 19 we can prove the following weak convergence theorerrt

Theorem 20 (Matsushita and Takahashi [27]). Let $E$ be a uniformly convex and
uniformly smooth Banach space, let $C$ be a nonempty closed convex subset of $E_{J}$ and
let $T$ be a relatively nonexpansive mapping from $C$ into itself such that $F(\mathit{3})$ $\neq$

$\emptyset$

,

Let $\{\alpha_{n}\}$ be a sequence of real numbers such that

$0\leq\alpha_{n}\leq 1$ and $\lim_{\tau\iotaarrow}\inf_{\infty}$
$\alpha_{n}(1-\alpha_{n})>0$ .

Let $x_{1}\in C$ and let $\{x_{n}\}$ be the sequence defined by

$x_{n+1}=P_{C}J^{-1}(\alpha_{n}Jx_{n}+(1-\alpha_{n})JTx_{n})$

for $n=1,2$ , $\ldots$ . If $J$ is weakly sequentially continuous, then $\{x_{n}\}$ converges weakly

to $u$ , where $u= \lim_{n\prec\infty}P_{F(T)}x_{n}$ and $P_{F(T)}$ is the generalized projection from $C$

onto $F(T)$

Using Theorem 20, we can prove the following two weak convergence theorems.

Theorem 21 (Browder and Petryshyn [5]). Let $C$ be a nonempty closed convex
subset of a Hilbert space $H_{2}$ let $T$ be a nonexpan sive mapping from $C$ into itself
such that $F\{T$) $\neq\emptyset$ and let A be a real number such that $0<\lambda<1$ . Let $x_{1}\in C$

and let $\{x_{n}\}$ be the sequence defined by

$x_{n+1}=\lambda x_{n}+(1-\lambda)Tx_{n}$

for $n=1,2$, $\ldots$ . Then $\{x_{n}\}$ converges weakly to $u$ , where $u= \lim_{narrow\infty}P_{F(T)^{X}n}$

and $P_{F(T)}$ is the metric projection from $C$ onto $F(T)$

Proof Let $\alpha_{n}=$ A for each $n\in \mathrm{N}$ . It is clear that $\lim\inf_{narrow\infty}\alpha_{n}(1-\alpha_{n})=$

$\lambda(1-\lambda)>0$ . We know that if $T$ is nonexpansive, then $T$ is relatively nonexpansive.

Using Theorem 20, we obtain the desired result.
$\square$

Theorem 22. Let $E$ be a uniformly convex and uniformly smooth Banach space,

let $A$ be a rnaxirnal monotone operator from $E$ to $E^{*}$ such that $A^{-1}0\neq\emptyset$ , let $J_{r}$

be the resolvent of A where $r>0$ , and let $\{\alpha_{n}\}$ be a sequence of real numbers such

that

$0\leq\alpha_{n}\leq 1$ and $\lim_{narrow}\inf_{\infty}$
$\alpha_{n}(1-\alpha_{n})>0$ .

Let $x_{1}\in E$ and let $\{x_{n}\}$ be the sequence defined by

$x_{n+1}=J^{-1}(\alpha_{n}Jx_{n}+(1-\alpha_{\tau l})JJ_{r}x_{n})$

for $n=1,2$ , $\ldots$ . If $J$ is weakly sequentially continuous, then $\{x_{Tb}\}$ converges weakly

to $u$ in $A^{-1}0$ , where $u= \lim_{narrow\infty}P_{A^{-1}0}x_{n}$ and $P_{A^{-1}0}$ is the generalized projection

frorn $E$ onto $A^{-1}0$ .



12

WATARU TAKAHASHI

Proof. As in the proof of Theorem 18, we have that
$\phi\zeta p$ , $J_{r}x)\leq\phi(p, x)$

for all $x\in E$ and $p\in A^{-1}0$ and $F(J_{r})\subset\hat{F}(J_{r})$ . Further, we know that $\hat{F}(J_{r})\subset$

$A^{-1}0$ ; see [17, 22, 28]. So, we obtain that $J_{r}$ is a relatively nonexpansive mapping
and $\hat{F}(J_{r})=F(J_{r})=A^{-1}0$ . Applying Theorem 20, we get that $\{x_{n}\}$ converges
weakly to $\lim_{narrow\infty}P_{A^{-1}0}x_{n}$ , where $P_{A^{-\mathrm{L}}0}$ is the generalized projection from $E$ onto
$A^{-1}0$ $\square$
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