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Abstract

This paper owes its origin to two simple minimization problems. One is a shortest
distance problem on the plane. The other is a ratio minimization problem over the
unit interval.

We associates each of two minimization problems with a counterpart “maximiza-
tion problem”. Thus we consider two couples of {(minimization and maximization)
problems. Further we associate the two couples with a third and common cross-
dual couple. Finally we have two pairs between three couples. As a total we have
six optimization problems, each of which is to optimize one two-variable quadratic
objective function under another quadratic constraint. An optimum solution —
optimum point and optimum value — is called Golden if both the slope and the op-
timum value constitute the Golden ratio. We show two interesting features. One is
the Golden optimum solution. All six problems have the Golden optimum slutions.
The other is a cross-duality. The first pair has a cross 2-sum property. The second
has a cross inverse property. We illustrate a generative one-variable curve. Finally
we show that the curve generates a couple of two-variable optimization problems.

Introduction

27

It is well known that one of the most beautiful rectangles is the Golden rectangle [9]. This
paper considers a class of optimization problems whose optimal solution constitute the
Golden rectangle.

on the plane R%. 1t is stated as follows:

minimize /22 + 32
(Oy) subject to (i) y=z+ V4 —2?

(i) ~oo<z,y<oo.

We begin with two simple minimization problems. One is a shortest distance problem
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The other is a ratio minimization problem over the unit interval [0,1) :

u? 4+ (1 —u)?
1 —u?
We consider two couples of maximization problem and minimization problem. One

couple has roots in the shortest distance problem. The other comes from the ratio mini-

mization problem. Further we associate the two couples with a third and common cross-
dual couple. Finally we have two pairs between three couples. As a total we have siz
optimization problems, each of which is to optimize one two-variable quadratic objective

function under another quadratic constraint [1].

An optimum solution — optimum point (#,%) and optimum value M — is called

(O3) minimize subject to (i) 0<u< 1.

Golden if the pair of the slope and the optimum value ( %, M ) constitutes the Golden
1
ratio ¢ = ———ﬂ

We show two interesting features. One is the Golden optimum solution. All six prob-
lems have the Golden optimum slutions. The other is the cross-duality. The first pair
has a cross 2-sum property. The second has a cross inverse property. Further, we illus-
trate a pivotal one-variable curve which has orthogonal golden optimum points. We show
that the curve generates a couple of two-variable minimization problem and maximization
problem.

2 The Golden Ratio

Throughout this paper we take a basic standard real number

1++/5
9

o= ~ 1.61803

The number ¢ is called the Golden ratio. ¢ is defined as the positive solution of quadratic
equation
-z —-1=0.

A Fibonacci sequence {a,} is defined by second-order linear difference equation
Unt+2 — Gpi1 — Gn = 0.
Then we have a famous relation.
Lemma 2.1
¢" = Gnd + an1
(6—1)" = aen@+a-py

where {a,} is the Fibonacci sequence with ag = 0, a; = 1.

n=-r,-2,-1,0,1,2

The Fibonacci sequence is tabulated in Table 1:
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n|/-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1
o | —55 34 -21 13 -8 5 -3 2 -1 1 0 1
n|0 12 3 45 6 7 8 9 10 11 12
ar, {10 1 1 2 3 5 8 13 21 34 55 89 144
Table 1 Fibonacci sequence {a,}
On the other hand, the Fibonacci sequence has the analytic form
Lemma 2.2
1 n
= —{¢" = (1= ¢)" =, =2,-1,0,1,2,--
b= g ("= (=) m==2-1,0,12
We remark that
p+(l-¢)=1,  ¢(1-¢)=-L (1)

Thus 1 — ¢ is conjugate to ¢ and vice verse.

Lemma 2.3 It holds that for any real values a, b
(a+bp)(a+b—bd) = a*+ab - b*.

Thus the pair of two numbers a + b¢ and a + b(1 — ¢) is called each other conjugate.
We have for any nontrivial pair of real values (a, b)

I a+b(1—¢)
a+bd  (a+bg)(a+b(l—9))
a+b b

a2+ab—b2~a2+ab~b2¢°

For instance we have a list of linear expressions for fractional forms of two linear forms in
¢ as follows :

L yip= 25 o6s0s
p 5
1 3-+5
o= ~ 0.38197
159 - 2797 3
1 5—5

1
= Z(3-¢) = ~ 0.27639

™o
+
©-
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and
“THAg 43¢ 142 5L 4~ 061803
4 -3¢ 3—-¢ 2+ ¢
3—-¢ 24+ ¢
= = 2— ¢ ~ (0.38197
24+ ¢ 3+ 4¢ ¢
L+30 _ 3+40 4~ 161803
2+¢  1+3¢
246 _ 344 _ 4 3HVE o e
3—¢ 2+ ¢ 2
Further the Golden ratio is expressed in terms of the Fibonacci sequence as follows.
p—-1 1 _Q_1+¢_1+2¢_m‘_an+an+1¢
2—¢ ¢-1 1 ¢ 1+¢ Un—1 + Gnd
n=---,-2-1,0,1,2,---

where {a,} is the Fibonacci sequence with ag = 0, a; = 1 (Table 1).

Lemma 2.4 The following three equations have o unigue common solution x = ¢ :

VEAVI—1 =V +1
VI —vVr—1 =+2z-3
vz -1 = /7.

3 A Minimum Distance Problem

Let us consider the problem of finding minimum distance from the origin to the graph of

This is stated as follows:

(01)

y=z+vi—-z2 (3)

minimize +/z? + y?
subject to (i) y=z+ V4 — 2?

(i) —oco<z,y<oc.

An equivalent criterion is the square of distance z% + y?. The graph (3) is the upper part
(y > z} of the quadraric curve (ellipse)

27% — 2zy 4+ = 2
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which is equivalent, from the viewpoint of optimization, to the ellipse with unit radius
2+ (z —y)* =1%
Thus we have the following quadratic minimization problem
minimize 2%+ 4
(m;) subject to (i) #*+(z—-y)?=1
(i) —oo<z,y <00

We also consider the corresponding maximum distance problem, which is equivalently
stated by the quadratic maximization problem

Maximize z% + 72
(mg) subject to (1) 2+ (z—y)*=1
(i) —oo<z,y <00,
Thus we have a couple (M;) of maximum problem (m;) and minimum problem (m;) .
(M) = (my, mp).
We write this couple as follows.

Maximize and minimize z° 4+ y°
(M1) subject to (i) 2’ +(z -y’ =1
(i) —oo<z,y<o0.

Throughtherotation(x) = (X) ; T:(Cf)sa _SmOd), tana = ¢, a =
Yy Y sina  coso
58.3°, we have

?+(z—y)? = 22— 2zy+y’
= 2-¢X°+(1+9)Y?

= (~1+¢)*X? +¢*Y?

X? y?
= .
¢ (-1+9¢)
It is easily shown that Couple (M;) has the maximum value M =1+ ¢ at the point
1
YY) == 1,
(@v) = £=(1.9)
and the minimum value m = 2 — ¢ at the point
A 1
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3.1 Circle inscribes and circumscribes Ellipse

Y
4

2+y? =k

k=m=2—4¢
o [.!,(1,1——45)
1
2 _
=573

Fig.1 Ellipse 2% + (y — z)? = 1 has golden optimum points
— the longest points % and the shortest points ¢ —



3.2 A Cross-Dual Couple
As a kind of dual, we associate the couple (M;) with a cross-dual couple as follows.
Maximize and minimize — z2 + y?

(R) subject to (i) z°+(z—y)* =1
(i) —oo<z,y< 0.
Thus we have a pair of couple (M;) and couple (R).
Then we see that Couple (R) has the maximum value M = ¢ at the point

1
V2+¢

and the minimum value m = 1 — ¢ at the point

(@5 y) ==+ (1,1+9¢)

~ o~

(©.9) = 7= (12-0)

(Table 2).
Solution/Couple Main (M;) Cross-Dual (R)
Max a2 + ¢? Max —z%+ 12
Maximization st 2?4+ (z—y)?=1|st. 22+ (z—y)?=1
—x<ry<oo - <Ly <oo
maximum value M 1+¢ ¢
slope a* ¢ 1+¢
min 22 4+ 3? min —z2 + y?
minimization st. 2?24+ (z—9)?=1 st 22+ (z—-y)*=1
=00 <,y <0 -0 <z,y<
minimum value m 2-¢ 1-¢
slope @ 1-9¢ 2—-¢

Table 2 Main (M;) and Cross-Dual (R) have the Golden optimum solutions
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3.3 Hyperbola tangent to Ellipse
Y

y=(1+¢)

I=M=¢
* : ((1,1+¢)

Fig.2 Ellipse 22 + (y — z)? = 1 has golden optimum points



3.4 The Golden Optimum and Cross Two-Sum

Our problem is to derive what happens between the paired couples.

Couple Main Cross-Dual
Objective (M) (R)
Optimization z? + y? —z? +y?
Value 1+ ¢ Cross ¢
Max
Slope 0] 1+¢
Twodum
value 2—¢ Cross 1—¢
min
slope 1—¢ 2—¢
Constraint 2+ (y — 513)2 =1

Table 3 The Golden optimum solutions have cross two-sum property

Theorem 3.1 (Cross Two-Sum Theorem)
Main Couple (M;) has the mazimum value M = 1+ ¢ at the point (z*,y*) = A(1,¢) and
the minimum value m = 2 — ¢ at the point (2,7) = p(1,1 — ¢) if and only if Cross-Dual
Couple (R) has the mazimum value M = ¢ at the point (z*,y*) = ((1,1 + ¢) and the
minimum velue m = 1 — ¢ at the point (£,9) =n(1,2 — ¢).

Here the cross two-sum means that

(1+¢)+(1—-9¢) =2,
o+ (2-9) =2,

2-¢)+¢ =2

(1-¢)+(1+¢) = 2.

35
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3.5 The Golden Triplet

Fig.3 Triplet 2?4+ ¢?, 2%+ (y— )%, z%— y? yields the Golden optimum points
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4 A Minimum Ratio Problem

Let us consider the following minimization problem over the unit interval:

u? + (1 — u)?

T subject to (i) 0<u<1.

(O3) minimize

This comes from an abstract optimality equation in non-deterministic dynamic program-
ming [5,7):

v(z) = min I:T(.’L‘, u) + A Bz, u,y)v(y)dy x € X.
ueU(z) T(zu)

The case
X = (0,00), T(z,u)=10,u], U(z)=(0,z)

A=a, @) =l +de - Bz =

yields the controlled integral equation

P
v(z) = min 1:cu2+d(x—u)2+/—9~?}@d4 z>0
O<u<ez 0 Yy
where
a, ¢, d> 0.
In particular, we take
a=c=d=1
Then we have
o(y)
v(z) = min {u2+(:c—u)2-|—2/ U—Z-/mdy z > 0.
I<u<z 0 Yy
Let us now consider a proportional policy 7 = {ug,u1,... ,Un,...} With uy(z) =

u(r) = ux, where 0 < u < 1 is called a proportinal rate. The proportional policy 7 is
identified with a real constant  in interval [0, 1). Let the proportional policy m with rate
u yield the corresponding quadratic minimum value function v(z) = vz?. Then we have

uzr

2
%—dy} .
Y

Calculating the integral part and dividing both sides by T2, we get

vz? = min {{uz +(1—-ulls? + 2/

0<u<1
<u< o

S N2 2
v = 0%121['“ + (1 —u)?+u?v].

Thus we have the equality

u? + (1 — u)?
0<u<l 1—u2
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Therefore we have the original problem (O2) at the right hand.
Now we minimize this ratio over the open inteval (—1,1). This is stated as follows.

u? + (1 —u)?

T2 subject to (i) —l<u<l1.
—u

(O3) minimize
Letting u = Y we have the following equivalnt two-variable minimization problem (see
x

Section 6).
o 2 2
minimize y°+ (z —y)
(mj) subject to (i) z2-92=1
(i) —oo<z,y < 0.

We associates this minimum problem a maximum problem as follows (see Section 6).

Maximize —y°— (z —y)?
(my) subject to (i) z? -y = -1
(i) —oco<uz,y<o0.

Thus we have a couple (M;) of maximum problem {(m,) and minimum problem (m;):

(M) = (ms, my)

4.1 A Cross-Dual Couple

We also associate the couple (Mg) = (m3, my) with the cross-dual couple (R):

Maximize and minimize — 22 + ¢
(R) subject to (i) 2’ +(z—-y) =1
(i) —oo<z,y< oo

Thus we have in turn a pair of couple (Ms) and couple (R).
The Couple (My) = (ms,my) has the following maximum solution and minimum
solution: The Maximum Problem (mg)

Maximize - y®— (z —y)?

(my) subject to (i) z°~y*=—1
(i) —oo<zy<oo

has the maximum value M = —¢ at the point

(€ y") =+

1
m(l, 1 + gb).
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The Minimum Problem (mj3)
minimize 3° + (z — y)?
(ms) subject to (i) z*—¢* =1
i) —oco<z,y<oo
has the the minimum value m = —1 + ¢ at the point
(2,9) = £—
V=T 38

As we have stated, Couple (R) has the maximum value M = ¢ at the point

(172 - ¢)

1

ﬁ(l,l‘f‘ ®)

and the minimum value m = 1 — ¢ at the point

("L'*?y*) =+

1

L,7) = t——=(1,2 — @).
We see that Maximum Problem (my) has the maximum value M = —¢ at the slope
i* = 1+ ¢ and that Minimum Problem (mj;) has the minimum value m = —1+ ¢ at the
slope —g— = 2 — ¢. Thus Main Couple (M3) has the dual Golden optimum solutions.

Our next problem is to derive what happens between the pair of couple (M) and
couple (R).

Theorem 4.1 (Cross Inverse Theorem)

Main Couple (My) has the mazimum value M = —¢ at the point (z*,y*) = A(1,1+¢) and
the minimum value m = —1+ ¢ af the point (2,9) = p(1,2—¢) if and only if Cross-Dual
Couple (R) has the mazimum value M = ¢ at the point (z*,y*) = ((1,1 + ¢) and the
minimum value m = 1 — ¢ at the point (2,9) = n(1,2 — ¢).

Here the cross inverse says that

1 1

=1 g ¢
1 .

_..¢, ————2~¢=1+¢,

Both the Golden optimum solutions and the cross inverse relation are shown in Table 4.
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4.2 The Golden Optimum and Cross Inverse

Cross-Dual (R)

Max —y%— (y — ) | Max —z? + 3

—00 < 2,y < 00

Problem| gt. 22— = -1 s.t. 22 + (z - ?J)2 =1
—00 < 2,Y < 00 —00 < I,y <0
Max .
Value ~¢ i ¢
Slope 1+¢ — 1+¢
equal
I%e
value —1 + ¢ — l1-9¢
slope 2—-¢ 2—¢
. equal
min
min >+ (y—2z)? | min —z? + 32
problem| . 2 _ w2 =1 st 224+ (z—y)? =1

-0 <z,y<oo

Table 4 The Golden optimum solutions have cross inverse poroperty
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5 A generative curve

Let us now describe an illustrative one-variable graph. Then we will appreciate the Golden
local-optimum there (Fig.4).

5.1 z= f(u)
Z
flu) = wAl-up The golden ratio
1—w? : :

N uw?—3u+1 1+¢ -14+¢ ¢
fl) =2 e 9 T T-p 1
v o2u®—9u® + 6u —3 —(—¢) 1 ¢
filw) =2 (u2 —1)3 1 —1+¢ 1

Fig.4 Curve z = f(u) has dual golden extremum points %
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We have the equality

flu) < =2 on (—o0,—1)
> —1+¢ on (-1,1)
flu) < —¢ on (1,00).

The first equality attains iff & = 2 — ¢, and the second equality attains iff u* =1 + ¢.

5.2 Two-variable optimization problems
Let us now consider how the one-variable function

u? + (1 —u)?
1—u?

z = flu) =

generates two-variable optimization problems (ms), (m4) which constitute the preceding
couple (M,).

Generally speaking, the following three techniques preserve equivalence as optimiza-
tion problem.

1. A strictly monotone transformation between criteria keeps the optimum point in-
variant.

2. One maximization leads to the other minimization [2] (Inverse Theorem, Reverse
Theorem and Duality Theorem [3-6], Principle of Reciprocity [8])

3. Under homogeneity, Constraint g(z,y) = ¢ may be replaced with Constraint g(z,y) =
1.

We separate the optimization of f(u) over R! into minimization on the open interval
(~1,1) and maximization on its complement (—oo, —1) U (1, 0o) as follows.

u? + (1 —u)?
1—u?

(%)ZJr(I"%)Z st 0 ¥l <q
mo

2 2
: +y—-z :
= min E_.g(g—yz_)_ st (i) y2 < 2

(O3) minimize subject to (i) |u| <1

<> (m3) min P+ (y-2)? st (i) 22—2=1,
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u? + (1 — u)?
1 —u?

A AN
(a:) +(1 33) st (i) ‘gl>l

o)

2

(0); Maximize subject to (i) |u| >1

o Max

-y* = (y — )

R st (1) 2% <y?

<= Max

= (my) Max —-¢*—(y—2)? st. (i) —-22+y*=1

where <= means equivalence between optimization problems.
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