# バナッハ空間における無限区間ファジィ境界値問題

齋藤誠慈 (Seiji SAITO), 石井博昭 (Hiroaki ISHII) 大阪大学大学院 情報科学研究科 情報数理学専攻 (Graduate School of Information Science and Technology, Osaka University)

E-mail: { saito, ishii }@ist.osaka-u.ac.jp Osaka, Japan, 565-0871

### Complete Metric Space of Fuzzy Numbers

Denote I = [0, 1]. The following definition means that a fuzzy number can be identified with a membership function.

Definition 1 Denote a set of fuzzy numbers with bounded supports and strict fuzzy convexity by

$$\mathcal{F}_{\mathbf{b}}^{st} = \{ \mu : \mathbf{R} \to I \text{ satisfying (i)-(iv) below} \}.$$

- 1 (normality);
- (ii)  $supp(\mu) = cl(\{\xi \in \mathbf{R} : \mu(\xi) > 0\})$  is bounded in R (bounded support);
- (iii)  $\mu$  is strictly fuzzy convex on  $supp(\mu)$  as fol-

(a) if 
$$supp(\mu) \neq \{m\}$$
, then

$$\mu(\lambda \xi_1 + (1 - \lambda)\xi_2) > \min[\mu(\xi_1), \mu(\xi_2)]$$

for  $\xi_1, \xi_2 \in supp(\mu)$  with  $\xi_1 \neq \xi_2$  and  $0 < \lambda < 1$ :

- (b) if  $supp(\mu) = \{m\}$ , then  $\mu(m) = 1$  and  $\mu(\xi) = 0 \text{ for } \xi \neq m;$
- (iv)  $\mu$  is upper semi-continuous on R (upper semicontinuity).

It follows that  $\mathbf{R} \subset \mathcal{F}_{\mathbf{b}}^{st}$ . Because m has a membership function as follows:

$$\mu(m) = 1 \; ; \quad \mu(\xi) = 0 \; (\xi \neq m)$$
 (1.1)

Then  $\mu$  satisfies the above (i)-(iv).

In usual case a fuzzy number x satisfies fuzzyconvex on R, i.e.,

$$\mu(\lambda \xi_1 + (1 - \lambda)\xi_2) \ge \min[\mu(\xi_1), \mu(\xi_2)]$$
 (1.2)

for  $0 \le \lambda \le 1$  and  $\xi_1, \xi_2 \in \mathbf{R}$ . Denote  $\alpha$ -cut sets by

$$L_{\alpha}(\mu) = \{ \xi \in \mathbf{R} : \mu(\xi) \ge \alpha \}$$

for  $\alpha \in I$ .

We introduce the following parametric representation of  $\mu \in \mathcal{F}_{\mathbf{b}}^{st}$  as

$$x_1(\alpha) = \min L_{\alpha}(\mu),$$

$$x_2(\alpha) = \max L_{\alpha}(\mu)$$

for  $0 < \alpha \le 1$  and

$$x_1(0) = \min supp(\mu),$$

$$x_2(0) = \max supp(\mu).$$

Denote by C(I) the set of all the continuous func-(i)  $\mu$  has a unique number  $m \in \mathbf{R}$  such that  $\mu(m) = \text{tions}$  on I to  $\mathbf{R}$ . The following theorem shows a membership function is characterized by  $x_1, x_2$ .

> Theorem 1 Denote the left-, right-end points of the  $\alpha$ -cut set of  $\mu \in \mathcal{F}_{\mathbf{b}}^{st}$  by  $x_1(\alpha), x_2(\alpha)$ , respectively. Here  $x_1, x_2: I \to \mathbf{R}$ . The following properties (i)-(iii) hold.

(i) 
$$x_1, x_2 \in C(I)$$
;

(ii) 
$$\max_{\alpha \in I} x_1(\alpha) = x_1(1) = m = \min_{\alpha \in I} x_2(\alpha) = x_2(1);$$

- (iii)  $x_1, x_2$  are non-decreasing, non-increasing on I, respectively, as follows:
  - (a) there exists a positive number  $c \leq 1$  such that  $x_1(\alpha) < x_2(\alpha)$  for  $\alpha \in [0,c)$  and that  $x_1(\alpha) = m = x_2(\alpha)$  for  $\alpha \in [c, 1]$ ;

(b) 
$$x_1(\alpha) = x_2(\alpha) = m$$
 for  $\alpha \in I$ ;

Conversely, under the above conditions (i) -(iii), if we denote

$$\mu(\xi) = \sup\{\alpha \in I : x_1(\alpha) \le \xi \le x_2(\alpha)\}$$
 (1.3)

for  $\xi \in \mathbf{R}$ . then  $\mu \in \mathcal{F}_{\mathbf{b}}^{st}$ .

Remark 1 From the above Condition (i) a fuzzy number  $x = (x_1, x_2)$  means a bounded continuous curve over  $\mathbb{R}^2$  and  $x_1(\alpha) \leq x_2(\alpha)$  for  $\alpha \in I$ .

In what follows we denote  $\mu = (x_1, x_2)$  for  $\mu \in \mathcal{F}_b^{st}$ . The parametric representation of  $\mu$  is very useful in calculating binary operations of fuzzy numbers and analyzing qualitative behaviors of fuzzy differential equations.

Let  $g: \mathbf{R} \times \mathbf{R} \to \mathbf{R}$  be an  $\mathbf{R}$ -valued function. The corresponding binary operation of two fuzzy numbers  $x, y \in \mathcal{F}_{\mathbf{b}}^{st}$  to  $g(x, y) : \mathcal{F}_{\mathbf{b}}^{st} \times \mathcal{F}_{\mathbf{b}}^{st} \to \mathcal{F}_{\mathbf{b}}^{st}$  is calculated by the extension principle of Zadeh. The membership function  $\mu_{g(x,y)}$  of g is as follows:

$$\mu_{g(x,y)}(\xi) = \sup_{\xi=g(\xi_1,\xi_2)} \min(\mu_x(\xi_1), \mu_y(\xi_2))$$

Here  $\xi, \xi_1, \xi_2 \in \mathbf{R}$  and  $\mu_x, \mu_y$  are membership functions of x, y, respectively. From the extension principle, it follows that, in case where g(x, y) = x + y,

$$\begin{split} & \mu_{x+y}(\xi) \\ & = \max_{\xi = \xi_1 + \xi_2} \min_{i = 1, 2} (\mu_i(\xi_i)) \\ & = \max\{\alpha \in I : \xi = \xi_1 + \xi_2, \ \xi_i \in L_\alpha(\mu_i), i = 1, 2\} \\ & = \max\{\alpha \in I : \xi \in [x_1(\alpha) + y_1(\alpha), x_2(\alpha) + y_2(\alpha)]\}. \ \lambda[x, y] = \left\{ \begin{array}{ll} [(\lambda x, \lambda y)] & (\lambda \geq 0) \\ [((-\lambda)y, (-\lambda)x)] & (\lambda < 0) \end{array} \right. \end{split}$$

Thus we get  $x+y=(x_1+y_1,x_2+y_2)$ . In the similar way  $x - y = (x_1 - y_2, x_2 - y_1)$ .

Denote a metric by

$$d_{\infty}(x,y) = \sup_{\alpha \in I} \max(|x_1(\alpha) - y_1(\alpha)|, |x_2(\alpha) - y_2(\alpha)|)$$

for 
$$x = (x_1, x_2), y = (y_1, y_2) \in \mathcal{F}_{\mathbf{b}}^{st}$$
.

Theorem 2  $\mathcal{F}_{\mathbf{b}}^{st}$  is a complete metric space in  $C(I)^2$ .

## Induced Linear Spaces of Fuzzy Numbers

According to the extension principle of Zadeh, for respective membership functions  $\mu_x, \mu_y$  of  $x, y \in$  $\mathcal{F}_{\mathsf{b}}^{st}$  and  $\lambda \in \mathbf{R}$ , the following addition and a scalar product are given as follows:

$$\begin{array}{rcl} \mu_{x+y}(\xi) & = & \sup\{\alpha \in [0,1]: \\ & \xi = \xi_1 + \xi_2, \ \xi_1 \in L_{\alpha}(\mu_x), \xi_2 \in L_{\alpha}(\mu_y)\} \\ \mu_{\lambda x}(\xi) & = & \begin{cases} \mu_x(\xi/\lambda) & (\lambda \neq 0) \\ 0 & (\lambda = 0, \ \xi \neq 0) \\ \sup_{\eta \in \mathbf{R}} \mu_x(\eta) & (\lambda = 0, \ \xi = 0) \end{cases} \end{array}$$

In [5] they introduced the following equivalence relation  $(x,y) \sim (u,v)$  for  $(x,y),(u,v) \in \mathcal{F}_{\mathbf{b}}^{st} \times$ 

$$(x, y) \sim (u, v) \iff x + v = u + y.$$
 (2.4)

Putting  $x = (x_1, x_2), y = (y_1, y_2), u = (u_1, u_2), v =$  $(v_1, v_2)$  by the parametric representation, the relation (2.4) means that the following equations hold.

$$x_i + v_i = u_i + y_i$$
  $(i = 1, 2)$ 

Denote an equivalence class by  $[x,y] = \{(u,v) \in$  $\mathcal{F}_{\mathbf{b}}^{st} \times \mathcal{F}_{\mathbf{b}}^{st} : (u, v) \sim (x, y)$  for  $x, y \in \mathcal{F}_{\mathbf{b}}^{st}$  and the set of equivalence classes by

$$\mathcal{F}_{\mathbf{b}}^{st}/\sim = \{[x,y]: x,y \in \mathcal{F}_{\mathbf{b}}^{st}\}$$

such that one of the following cases (i) and (ii) hold:

(i) if 
$$(x,y) \sim (u,v)$$
, then  $[x,y] = [u,v]$ ;

(ii) if 
$$(x,y) \not\sim (u,v)$$
, then  $[x,y] \cap [u,v] = \emptyset$ .

Then  $\mathcal{F}_{\mathsf{b}}^{st}/\sim$  is a linear space with the following addition and scalar product

$$[x,y] + [u,v] = [x+u,y+v]$$
 (2.5)

$$|\lambda| = \begin{cases} [(\lambda x, \lambda y)] & (\lambda \ge 0) \\ [((-\lambda)y, (-\lambda)x)] & (\lambda < 0) \end{cases}$$
 (2.6)

for  $\lambda \in \mathbf{R}$  and  $[x,y],[u,v] \in \mathcal{F}^{st}_{\mathbf{b}}/\sim$ . They denote a norm in  $\mathcal{F}^{st}_{\mathbf{b}}/\sim$  by

$$\| [x,y] \| = \sup_{\alpha \in I} d_H(L_{\alpha}(\mu_x), L_{\alpha}(\mu_y)).$$

Here  $d_H$  is the Hausdorff metric is as follows:

$$\begin{aligned} d_H(L_\alpha(\mu_x), L_\alpha(\mu_y)) &= \max(\sup_{\xi \in L_\alpha(\mu_x)} \inf_{\eta \in L_\alpha(\mu_y)} |\xi - \eta|, \\ \sup_{\eta \in L_\alpha(\mu_x)} \inf_{\xi \in L_\alpha(\mu_y)} |\xi - \eta|) \end{aligned}$$

It can be easily seen that  $||[x,y]|| = d_{\infty}(x,y)$ . Note that ||[x,y]|| = 0 in  $\mathcal{F}_{\mathbf{b}}^{st}/\sim$  if and only if  $x = y \text{ in } \mathcal{F}_{\mathbf{b}}^{st}.$ 

#### Fixed Point Theorem in Com-3 plete Metric Spaces

 $\xi = \xi_1 + \xi_2, \ \xi_1 \in L_{\alpha}(\mu_x), \xi_2 \in L_{\alpha}(\mu_y)$  In the following theorem we show that the complete metric space  $\mathcal{F}_{\mathbf{b}}^{st}$  has an induced Banach space.

> Theorem 3 Let S be a bounded closed subset in  $\mathcal{F}^{st}_{h}$ . Assume that S contains any segments of  $x, y \in$  $S, i.e., \lambda x + (1 - \lambda)y \in S \text{ for } \lambda \in I. \text{ Let } V \text{ be an into}$ continuous mapping on S. Assume that the closure cl(V(S)) is compact in  $\mathcal{F}_{\mathbf{b}}^{st}$ . Then V has at least one fixed point x in S, i.e., V(x) = x.

> In the following theorem complete metric spaces have at least one fixed point of the induced Banach

Theorem 4 Let  $\mathcal{F}$  be a complete metric space with a metric d. Assume that F is closed under addition and scalar product, and that  $d(\lambda x, 0) =$ 

 $|\lambda|d(x,0)$  for the scalar product  $\lambda x$  and  $\lambda \in \mathbf{R}, x \in \mathcal{F}$ . Denote  $X = \{[x,0]: x,0 \in \mathcal{F}\}$ . Here [x,y] for  $x,y \in \mathcal{F}$  are equivalence classes of (2.4) and 0 is the origin. Then X is a Banach space concerning addition (2.5), scalar product (2.6) and norm  $\|[x,0]\| = d(x,0)$  for  $[x,0] \in X$ .

Moreover let S be a bounded closed subset in  $\mathcal{F}$ . Assume that S contains any segments of  $x, y \in S$  in the same meaning of Theorem 3. Let V be an into continuous mapping on S. Assume that the closure cl(V(S)) is compact in  $\mathcal{F}$ . Then V has at least one fixed point in S.

### 4 FBVP on Infinite Intervals

In this section we deal with the following FBVP on an infinite interval:

$$\frac{dx}{dt} = p(t)x + f(t,x), \quad x(\infty) = c \tag{4.7}$$

Here  $p: \mathbf{R}_+ \to \mathcal{F}_{\mathbf{b}}^{st}$ ,  $f: \mathbf{R}_+ \times \mathcal{F}_{\mathbf{b}}^{st} \to \mathcal{F}_{\mathbf{b}}^{st}$  are continuous functions. Let denote  $\mathbf{R}_+ = [0, \infty)$  and  $c \in \mathcal{F}_{\mathbf{b}}^{st}$ . The following assumptions play important roles in considering the existence of solutions of (4.7).

#### Assumption.

(A1) Assume that there exists a K > 0 such that

$$\int_0^\infty d(p(s),0)ds = K < \infty;$$

(A2) There exist positive real numbers a, r, R and integrable function  $m: \mathbf{R}_+ \to \mathbf{R}_+$  such that

$$d(f(t,x),0) \le m(t) \text{ for } (t,x) \in \mathbf{R}_+ \times S_1;$$
  
$$\int_0^\infty m(s)ds \le rR;$$
  
$$[R+N_p(a+ \parallel L \parallel R)]K < 1.$$

Here

$$S_1 = \{ x \in \mathcal{F}_b^{st} : d(x, 0) \le \min(ar, r) \}$$

and  $N_p$  is independent on the function p.  $L: C_r^{\lim} \to \mathcal{F}_b^{st}$  is a linear operator as  $L(x) = x(\infty)$  and

$$C_r^{\lim} = \{ x \in C(\mathbf{R}_+ : \mathcal{F}_b^{st}) : \exists x(\infty), d(x, 0) \le r \}.$$

(A3) There exists no solution of

$$\frac{dx}{dt} = p(t)x, L(x) = 0$$

except for the zero solution.

We expect the following existence theorem for solutions of FBVP on the infinite interval.

Under assumptions (A1) - (A3) we expect that there exists at least one solution of (4.7) in  $C_r^{\text{lim}}$  for any  $c \in S_1$  by applying the Schauder's fixed point theorem in  $C_r^{\text{lim}}$ .

#### References

- S.R. Bernfeld and V. Lakshmikantham: An Introduction to Nonlinear Boundary Value Problems, Academic Press, New York, 1974.
- [2] P. Diamond and Koelden: Metric Spaces of Fuzzy Sets; Theory and Applications, World Scientific (1994).
- [3] V. Lakshmikanthan and S.Lella: Nonlinear Differential Equations in Abstract Spaces, Pergamon Press (1981).
- [4] V. Lakshmikanthan and R.N. Mohapatra: Theory of Fuzzy Differential Equations and Inclusions, Taylor & Francis (2003).
- [5] M.L. Puri and D.A. Ralescu: Differential of Fuzzy Functions, J. Math. Anal. Appl. 91 (1983), 552-558.
- [6] H. Radstrom: An Embedding Theorem for Spaces of Convex Sets, Proc. Amer. Math. Soc. 3 (1952), 165-169.
- [7] S. Saito: Some Topics of Fuzzy Differential equations and Fuzzy Optimization Problems via a Parametric representation of Fuzzy Numbers (to appear), Contemporary Differential Equations and Applications, ed. Y.J. Cho, J.K. Kim and K.S. Ha, Nova Science Publishers (2004).
- [8] S. Saito: Qualitative Approaches to Boundary Value problems of Fuzzy differential Equations by Theory of Ordinary Differential Equations, J. Nonlinear and Convex Analysis 5(2004), 121-130.
- [9] S. Saito: Boundary Value Problems of Fuzzy Differential Equations, Proceedings of 3rd Nonlinear and Convex Analysis, 481-492 (2004).
- [10] D. R. Smart: Fixed Point Theorems, Cambridge Univ. Press (1980).
- [11] H.Tuy: Convex Analysis and Global Optimization, Kluwer Academic Publ. (1998).