# Stability Properties for Linear Volterra Difference Equations with Convolution Kernels in a Banach Space

岡山理科大学・理学部 村上 悟 (Satoru Murakami) \*
Department of Applied Mathematics,
Okayama University of Science

岡山理科大学・理学部 長渕 裕 (Yutaka Nagabuchi)
Department of Applied Science,
Okayama University of Science

### 1. Introduction

We consider the Volterra difference equations of convolution type

$$x(n+1) = \sum_{r=0}^{n} B(n-r)x(r), \qquad n \in \mathbb{Z}^{+},$$
 (E<sub>0</sub>)

and

$$y(n+1) = \sum_{r=-\infty}^{n} B(n-r)y(r), \qquad n \in \mathbb{Z},$$
 (E<sub>\infty</sub>)

where B(n) ( $n \in \mathbb{Z}^+$ , the nonnegative integers) are bounded linear operators on a Banach space X over the field  $\mathbb{C}$ . The study of Volterra difference equations has actively been done. Indeed, in the case where X is of finite dimension, the equations have extensively been treated in the book [1] and some results on stability properties and so on were obtained; for more details we refer the reader to [1, 2, 3] and the references therein. Also, in [4, 5], Volterra difference equations with infinite dimensional X were discussed in connection with some partial differential equations with piecewise continuous delays, and uniform asymptotic stability for  $(E_{\infty})$  was investigated in connection with the invertibility of the characteristic operator together with the summability of the fundamental solution, under additional conditions such as the mutual commutativity of the operators  $B(n), n \in \mathbb{Z}^+$  or the exponential decay of the norm ||B(n)||.

In this paper, we give a nice result on the stability properties of the zero solution of  $(E_0)$  or  $(E_\infty)$  in the context above. Indeed, without the additional conditions imposed in [4, 5], we will establish an equivalence relation among the uniform asymptotic stability of the zero solution of  $(E_0)$  or  $(E_\infty)$ , the summability of the fundamental solution and the invertibility of the characteristic operator outside the unit circle in the complex plane.

<sup>\*</sup>Partly supported by the Grant-in-Aid for Scientific Research (C), No.16540177, of the Japanese Ministry of Education, Culture, Sports, Science and Technology.

## 2. Notations

Let X be a (complex) Banach space with the norm  $|\cdot|$ . We denote by  $\mathcal{L}(X)$  the space of all bounded linear operators on X. Clearly,  $\mathcal{L}(X)$  is a Banach space equipped with the operator norm  $||\cdot||$ , which is defined by

$$||T|| = \sup\{|Tx| : x \in X, |x| = 1\}$$

for any  $T \in \mathcal{L}(X)$ .

For any interval  $J \subset \mathbb{R}$  we use the same notation J meaning the discrete one  $J \cap \mathbb{Z}$ , e.g.  $[0, \sigma] = \{0, 1, \ldots, \sigma\}$  for  $\sigma \in \mathbb{Z}^+$ . Also, for an X-valued function  $\xi$  on a discrete interval J, its norm is denoted by  $\|\xi\|_J := \sup\{|\xi(j)| : j \in J\}$ . Let  $\sigma \in \mathbb{Z}^+$  and a function  $\phi : [0, \sigma] \to X$  be given. We denote by  $x(n; \sigma, \phi)$  the solution x(n) of  $(E_0)$  satisfying  $x(n) = \phi(n)$  on  $[0, \sigma]$ . Similarly, for  $\tau \in \mathbb{Z}$  and a function  $\psi : (-\infty, \tau] \to X$ , we denote by  $y(n; \tau, \psi)$  the solution y(n) of  $(E_{\infty})$  satisfying  $y(n) = \psi(n)$  on  $(-\infty, \tau]$ .

## **Definition 1.** The zero solution of $(E_0)$ is said to be

- (i) uniformly stable if for any  $\varepsilon > 0$  there exists a  $\delta = \delta(\varepsilon) > 0$  such that if  $\sigma \in \mathbb{Z}^+$  and  $\phi$  is an initial function on  $[0,\sigma]$  with  $\|\phi\|_{[0,\sigma]} < \delta$  then  $|x(n;\sigma,\phi)| < \varepsilon$  for all  $n \geq \sigma$ .
- (ii) uniformly asymptotically stable if it is uniformly stable, and if there exists a  $\mu > 0$  such that, for any  $\varepsilon > 0$  there exists an  $N = N(\varepsilon) \in \mathbb{Z}^+$  with the property that, if  $\sigma \in \mathbb{Z}^+$  and  $\phi$  is an initial function on  $[0,\sigma]$  with  $\|\phi\|_{[0,\sigma]} < \mu$  then  $|x(n;\sigma,\phi)| < \varepsilon$  for all  $n \geq \sigma + N$ .

## **Definition 2.** The zero solution of $(E_{\infty})$ is said to be

- (i) uniformly stable if for any  $\varepsilon > 0$  there exists a  $\delta = \delta(\varepsilon) > 0$  such that if  $\tau \in \mathbb{Z}$  and  $\psi$  is an initial function on  $(-\infty, \tau]$  with  $\|\psi\|_{(-\infty, \tau]} < \delta$  then  $|y(n; \tau, \psi)| < \varepsilon$  for all  $n \ge \tau$ .
- (ii) uniformly asymptotically stable if it is uniformly stable, and if there exists a  $\mu > 0$  such that, for any  $\varepsilon > 0$  there exists an  $N = N(\varepsilon) \in \mathbb{Z}^+$  with the property that, if  $\tau \in \mathbb{Z}$  and  $\psi$  is an initial function on  $(-\infty, \tau]$  with  $\|\psi\|_{(-\infty, \tau]} < \mu$  then  $|y(n; \tau, \psi)| < \varepsilon$  for all  $n \ge \tau + N$ .

The fundamental solution of  $(E_0)$  is a family in  $\mathcal{L}(X)$  satisfying the relation

$$R(n+1) = \sum_{j=0}^{n} B(n-j)R(j), \qquad n \in \mathbb{Z}^{+}$$

and R(0) = I. Then, for instance, the solution  $y(n; \tau, \psi)$  of  $(E_{\infty})$  is given by the variation of constant formula as follows:

$$y(n;\tau,\psi) = R(n-\tau)\psi(\tau) + \sum_{r=\tau}^{n-1} R(n-r-1) \left( \sum_{s=-\infty}^{\tau-1} B(r-s)\psi(s) \right).$$
 (1)

#### 3. Main Rersults

In what follows, we assume that  $B := \{B(n)\} \subset \mathcal{L}(X)$  is summable, that is, the condition  $\sum_{n=0}^{\infty} ||B(n)|| < \infty$  holds, and study stability properties of the zero solution of Eq.  $(E_{\infty})$ , together with those of the zero solution of Eq.  $(E_0)$ . Here and subsequently,  $\hat{B}(z)$  denotes the Z-transform of B; that is,  $\hat{B}(z) := \sum_{n=0}^{\infty} B(n)z^{-n}$  for  $|z| \geq 1$ .

In [5, Theorem 2] and [4, Theorem 2], the equivalence among the uniform asymptotic stability of the zero solution of Eq.  $(E_{\infty})$ , the summability of the fundamental solution  $R = \{R(n)\}$  of Eq.  $(E_0)$ , and the invertibility of the characteristic operator  $zI - \hat{B}(z)$  associated with Eq.  $(E_0)$  has been established under some restrictions such as the mutual commutativity of the operators B(n),  $n \in \mathbb{Z}^+$  or the exponential decay of the norm ||B(n)||. We will show in the following theorem that [5, Theorem 2] and [4, Theorem 2] hold true without such restrictions.

**Theorem 1.** Let  $B = \{B(n)\}_{n=0}^{\infty} \in l^1(\mathbb{Z}^+) := l^1(\mathbb{Z}^+; \mathcal{L}(X))$ , and assume that B(n),  $n \in \mathbb{Z}^+$ , are all compact. Then the following statements are equivalent.

- (i) The zero solution of Eq.  $(E_0)$  is uniformly asymptotically stable.
- (ii) The zero solution of Eq.  $(E_{\infty})$  is uniformly asymptotically stable.
- (iii)  $R = \{R(n)\}_{n=0}^{\infty} \in l^1(\mathbb{Z}^+).$
- (iv) For any z such that  $|z| \geq 1$ , the operator  $zI \hat{B}(z)$  is invertible in  $\mathcal{L}(X)$ .

In order to prove the theorem, we need the following preparatory results.

**Proposition 1.** Let  $K = \{K(n)\}_{n=-\infty}^{\infty} \in l^1(\mathbb{Z}) := l^1(\mathbb{Z}; \mathcal{L}(X))$ , and assume that  $I - \tilde{K}(\rho)$  is invertible for each  $\rho \in \mathbb{R}$ , where  $\tilde{K}(\rho) := \sum_{n=-\infty}^{\infty} K(n)e^{-i\rho n}$ . Then there is an  $R \in l^1(\mathbb{Z})$  such that

$$\tilde{K}(\rho)(I - \tilde{K}(\rho))^{-1} = \tilde{R}(\rho), \quad \forall \rho \in \mathbb{R}.$$

*Proof.* (1-Step) For each (small)  $\varepsilon > 0$  we define a  $2\pi$ -periodic function  $\tilde{\phi}_{\varepsilon}$  by

$$\tilde{\phi}_{\varepsilon}(t) = \begin{cases} 1 & (|t| \leq \varepsilon) \\ 0 & (2\varepsilon \leq |t| \leq \pi) \\ (2\varepsilon - t)/\varepsilon & (\varepsilon < t < 2\varepsilon) \\ (2\varepsilon + t)/\varepsilon & (-2\varepsilon < t < -\varepsilon). \end{cases}$$

One can easily check that Fourier coefficients of  $\tilde{\phi}_{\varepsilon}$  are given by

$$d_{l} = \frac{1}{2\pi} \int_{-\pi}^{\pi} \tilde{\phi}_{\varepsilon}(t) e^{ilt} dt = \begin{cases} \frac{2}{\pi \varepsilon l^{2}} \sin \frac{3\varepsilon l}{2} & (l = \pm 1, \pm 2, \dots) \\ \frac{3\varepsilon}{2\pi} & (l = 0). \end{cases}$$

Clearly, the sequence  $\phi_{\epsilon} := \{d_l\}_{l=-\infty}^{\infty}$  is summable, and by the Fourier expansion theorem we get

$$\sum_{l=-\infty}^{\infty} d_l e^{-ilt} = \tilde{\phi}_{\varepsilon}(t), \qquad \forall t \in \mathbb{R}.$$

Hence it follows that for any  $t_0 \in \mathbb{R}$ ,

$$\tilde{\phi}_{\varepsilon}(t-t_0) \equiv \sum_{l=-\infty}^{\infty} c_l e^{-itl},$$

where  $c := \{c_l\}_{l \in \mathbb{Z}}$  is a sequence defined by  $c_l = d_l e^{it_0 l} = \phi_{\varepsilon}(l) e^{it_0 l}$  for  $l \in \mathbb{Z}$ . Notice that the sequence c is summable.

(2-Step) Consider the function f(x) defined by

$$f(x) = \begin{cases} \frac{1}{\pi x^2} \sin 3x \sin x & (x \neq 0) \\ \frac{3}{\pi} & (x = 0). \end{cases}$$

One can easily see that f is continuously differentiable. In fact, f'(x) is given by

$$f'(x) = \begin{cases} -\frac{2}{\pi x^3} \sin 3x \sin x + \frac{1}{\pi x^2} (3\cos 3x \sin x + \sin 3x \cos x) & (x \neq 0) \\ 0 & (x = 0). \end{cases}$$

Since  $\lim_{|x|\to\infty} (|f(x)|+|f'(x)|) = 0$ , there exists a constant H > 0 such that  $\sup_{-\infty < x < \infty} (|f(x)|+|f'(x)|) = H$ . Moreover,

$$\int_0^\infty |f'(x)| dx = \int_0^1 |f'(x)| dx + \int_1^\infty |f'(x)| dx$$

$$\leq H + \int_1^\infty \frac{6}{\pi x^2} dx$$

$$\leq H + C,$$

where  $C = 6/\pi$ .

(3-Step) Put  $M = \sup_{\rho \in \mathbb{R}} \|(I - \tilde{K}(\rho))^{-1}\|$ , and take a positive integer N such that

$$\frac{23M}{\pi} \sum_{|\tau| > N+1} ||K(\tau)|| \le \frac{1}{4}.$$

Moreover, take a positive integer  $k_0$ ,  $k_0 \geq 3$ , such that

$$2NM(H+C)\pi \sum_{l\in\mathbb{Z}} ||K(l)|| < \frac{3k_0}{4},$$

and set  $\varepsilon = \pi/(3k_0)$  and  $\rho_n = 3n\varepsilon$ ,  $n = 0, 1, \ldots$  Then  $\rho_{2k_0} = 2\pi$ , and the following relation holds:

$$\sum_{n=0}^{2k_0-1} \tilde{\phi}_{\varepsilon}(\rho - \rho_n) \equiv 1, \qquad \forall \ \rho \in \mathbb{R},$$

where  $\tilde{\phi}_{\varepsilon}$  is the one introduced in 1-Step. Set  $F(\rho) = \tilde{K}(\rho)(I - \tilde{K}(\rho))^{-1}$  and  $F_n(\rho) = \tilde{\phi}_{\varepsilon}(\rho - \rho_n)F(\rho), \ \rho \in \mathbb{R}$ . Then

$$F(\rho) \equiv \sum_{n=0}^{2k_0-1} F_n(\rho).$$

Therefore, in order to establish the proposition it suffices only to certify that for each n there exists an  $R_n \in l^1(\mathbb{Z})$  such that  $F_n(\rho) \equiv \tilde{R}_n(\rho)$ . We now set

$$K_n(l) = \left[ ((\phi_{2\varepsilon}e^{i\rho_n \cdot}) * K)(l) - \phi_{2\varepsilon}(l)e^{i\rho_n l}\tilde{K}(\rho_n) \right] (I - \tilde{K}(\rho_n))^{-1}, \qquad l \in \mathbb{Z},$$

where \* denotes the convolution in  $l^1(\mathbb{Z})$ . Then  $K_n \in l^1(\mathbb{Z})$ , and moreover

$$\tilde{K}_{n}(\rho) = \left[ (\phi_{2\varepsilon} e^{i\rho_{n} \cdot \tilde{J}}(\rho) \tilde{K}(\rho) - (\phi_{2\varepsilon} e^{i\rho_{n} \cdot \tilde{J}}(\rho) \tilde{K}(\rho_{n})) (I - \tilde{K}(\rho_{n}))^{-1} \right] \\
= \tilde{\phi}_{2\varepsilon} (\rho - \rho_{n}) (\tilde{K}(\rho) - \tilde{K}(\rho_{n})) (I - \tilde{K}(\rho_{n}))^{-1}.$$

Observe that  $\tilde{\phi}_{\varepsilon}(\rho - \rho_n) \neq 0$  implies  $\tilde{\phi}_{2\varepsilon}(\rho - \rho_n) = 1$ , and hence

$$\tilde{K}_n(\rho) = (\tilde{K}(\rho) - \tilde{K}(\rho_n))(I - \tilde{K}(\rho_n))^{-1} 
= (\tilde{K}(\rho) - I)(I - \tilde{K}(\rho_n))^{-1} + I,$$

or

$$I - \tilde{K}_n(\rho) = (I - \tilde{K}(\rho))(I - \tilde{K}(\rho_n))^{-1},$$

which implies

$$(I - \tilde{K}(\rho))^{-1} = (I - \tilde{K}(\rho_n))^{-1}(I - \tilde{K}_n(\rho))^{-1}.$$

This observation leads to

$$F_n(\rho) \equiv \tilde{\phi}_{\varepsilon}(\rho - \rho_n)\tilde{K}(\rho)(I - \tilde{K}(\rho))^{-1}$$
  
$$\equiv \tilde{\phi}_{\varepsilon}(\rho - \rho_n)\tilde{K}(\rho)(I - \tilde{K}(\rho_n))^{-1}(I - \tilde{K}_n(\rho))^{-1}.$$

We claim that

$$|K_n|_1 := \sum_{l=-\infty}^{\infty} ||K_n(l)|| < \frac{1}{2}.$$
 (2)

If the claim is true, then the series  $\sum_{\tau=0}^{\infty} K_n^{*\tau} := e + K_n + K_n * K_n + K_n * K_n * K_n + \cdots$ , (here e is the unit element in  $l^1(\mathbb{Z})$ ), converges in  $l^1(\mathbb{Z})$  with  $(I - \tilde{K}_n(\rho))^{-1} \equiv (\sum_{\tau=0}^{\infty} K_n^{*\tau})(\rho)$ , and hence we may set  $R_n = (\phi_{\varepsilon}e^{i\rho_n}) * K * \{(I - \tilde{K}(\rho_n))^{-1} \sum_{\tau=0}^{\infty} K_n^{*\tau}\}$  to get the equality  $F_n = \tilde{R}_n$  with  $R_n \in l^1(\mathbb{Z})$ .

In what follows we will evaluate  $|K_n|_1$  to establish (2). It follows that

$$|K_{n}|_{1} \leq M \sum_{l=-\infty}^{\infty} \|\sum_{\tau=-\infty}^{\infty} K(\tau)(\phi_{2\varepsilon}(l-\tau)e^{i\rho_{n}(l-\tau)}) - \phi_{2\varepsilon}(l)e^{i\rho_{n}l} \sum_{\tau=-\infty}^{\infty} K(\tau)e^{-i\rho_{n}\tau}\|$$

$$\leq M \sum_{1\leq |\tau|\leq N} \|K(\tau)\| \sum_{l=-\infty}^{\infty} |\phi_{2\varepsilon}(l-\tau) - \phi_{2\varepsilon}(l)|$$

$$+M \sum_{|\tau|\geq N+1} \|K(\tau)\| \sum_{l=-\infty}^{\infty} |\phi_{2\varepsilon}(l-\tau) - \phi_{2\varepsilon}(l)|$$

$$=: I_{1} + I_{2}.$$

Noting  $0 < \varepsilon < 1/2$ , we get

$$I_{2} \leq 2M \sum_{|\tau| \geq N+1} ||K(\tau)|| \times \sum_{l=-\infty}^{\infty} |\phi_{2\varepsilon}(l)|$$

$$\leq 2M \sum_{|\tau| \geq N+1} ||K(\tau)|| \times \left(\frac{3\varepsilon}{\pi} + \sum_{k=1}^{\infty} \frac{2}{\pi k^{2} \varepsilon} |\sin 3\varepsilon k \sin \varepsilon k|\right)$$

$$\leq 2M \sum_{|\tau| \geq N+1} ||K(\tau)|| \times \left(\frac{3\varepsilon}{\pi} + \frac{2}{\pi \varepsilon} \sum_{k=1}^{\lfloor 1/\varepsilon \rfloor} \frac{1}{k^{2}} |\sin 3\varepsilon k \sin \varepsilon k| + \frac{2}{\pi \varepsilon} \sum_{k=\lfloor 1/\varepsilon \rfloor+1}^{\infty} \frac{1}{k^{2}}\right)$$

$$\leq 2M \sum_{|\tau| \geq N+1} ||K(\tau)|| \times \left(\frac{3\varepsilon}{\pi} + \frac{2}{\pi \varepsilon} \sum_{k=1}^{\lfloor 1/\varepsilon \rfloor} \frac{3\varepsilon^{2} k^{2}}{k^{2}} + \frac{2}{\pi \varepsilon} \int_{\lfloor 1/\varepsilon \rfloor}^{\infty} \frac{dx}{x^{2}}\right)$$

$$\leq 2M \sum_{|\tau| \geq N+1} ||K(\tau)|| \times \left(\frac{3\varepsilon}{\pi} + \frac{6\varepsilon}{\pi} \times \lfloor 1/\varepsilon \rfloor + \frac{2}{\pi \varepsilon} \frac{1}{\lfloor 1/\varepsilon \rfloor}\right)$$

$$\leq \frac{23M}{\pi} \sum_{|\tau| \geq N+1} ||K(\tau)||$$

$$\leq \frac{1}{4},$$

where  $[1/\varepsilon]$  denotes the largest integer which does not exceed  $1/\varepsilon$ . Also, using the function f introduced in 2-Step we get

$$I_{1} \leq M|K|_{1} \sup_{1 \leq |\tau| \leq N} \left( \sum_{l=-\infty}^{\infty} |f((l-\tau)\varepsilon) - f(l\varepsilon)|\varepsilon \right)$$

$$\leq M\varepsilon|K|_{1} \sup_{1 \leq |\tau| \leq N} \left( \sum_{m=0}^{|\tau|-1} \sum_{s=-\infty}^{\infty} |f(\{(s+1)|\tau| + m\}\varepsilon) - f(\{s|\tau| + m\}\varepsilon)| \right)$$

$$\leq M\varepsilon|K|_{1} \sup_{1 \leq |\tau| \leq N} \left( \sum_{m=0}^{|\tau|-1} \sum_{s=-\infty}^{\infty} \int_{\{s|\tau| + m\}\varepsilon}^{\{(s+1)|\tau| + m\}\varepsilon} |f'(x)| dx \right)$$

$$\leq M\varepsilon |K|_1 \sup_{1\leq |\tau|\leq N} \left(\sum_{m=0}^{|\tau|-1} \int_{-\infty}^{\infty} |f'(x)| dx\right)$$

$$\leq M\varepsilon |K|_1 N \int_{-\infty}^{\infty} |f'(x)| dx$$

$$< \frac{2(H+C)MN\pi |K|_1}{3k_0}$$

$$< \frac{1}{4}.$$

Thus  $|K_n|_1 \le I_1 + I_2 < 1/4 + 1/4 = 1/2$ , as required.

**Proposition 2.** Let  $B = \{B(n)\}_{n=0}^{\infty} \in l^1(\mathbb{Z}^+)$ , and assume that I - B(0) is invertible and that  $I - \hat{B}(z)$  is invertible for each  $z \in \mathbb{C}$  with  $|z| \geq 1$ , where  $\hat{B}(z) := \sum_{n=0}^{\infty} B(n)z^{-n}$ . Then there is an  $R \in l^1(\mathbb{Z}^+)$  such that

$$\hat{B}(z)(I - \hat{B}(z))^{-1} = \hat{R}(z), \qquad \forall |z| \ge 1.$$

*Proof.* Consider the sequence  $B' \in l^1(\mathbb{Z})$  defined by B'(n) = B(n) if  $n \geq 0$ , and B'(n) = 0 if n < 0. Then

$$I - \tilde{B}'(\rho) = I - \sum_{n=0}^{\infty} B'(n)e^{-i\rho n} = I - \hat{B}(e^{i\rho}), \quad \forall \rho \in \mathbb{R}.$$

Hence  $I - \tilde{B}'(\rho)$  is invertible for each  $\rho \in \mathbb{R}$ , and consequently there exists a  $Q \in l^1(\mathbb{Z})$  such that  $\tilde{B}'(\rho)(I - \tilde{B}'(\rho))^{-1} = \tilde{Q}(\rho)$ ,  $\forall \rho \in \mathbb{R}$ , by Proposition 1. Define an element  $Q_+$  in  $l^1(\mathbb{Z}^+)$  by  $Q_+(n) = Q(n)$  for any  $n \in \mathbb{Z}^+$ . The function  $\hat{Q}_+(z)$  is bounded and continuous on the domain  $|z| \geq 1$ , and it is analytic on |z| > 1. Similarly, the function  $\sum_{n=1}^{\infty} Q(-n)z^n$  is bounded and continuous on the domain  $|z| \leq 1$ , and it is analytic on |z| < 1. Moreover, if |z| = 1 with  $z = e^{i\rho}$ , then

$$\hat{B}(z)(I - \hat{B}(z))^{-1} - \hat{Q}_{+}(z) = \tilde{B}'(\rho)(I - \tilde{B}'(\rho))^{-1} - \sum_{n=0}^{\infty} Q(n)e^{-i\rho n}$$

$$= \tilde{Q}(\rho) - \sum_{n=0}^{\infty} Q(n)e^{-i\rho n}$$

$$= \sum_{n=-\infty}^{-1} Q(n)e^{-i\rho n}$$

$$= \sum_{n=1}^{\infty} Q(-n)e^{i\rho n}$$

$$= \sum_{n=1}^{\infty} Q(-n)z^{n}.$$

Therefore, the function G(z) defined by

$$G(z) = \begin{cases} \hat{B}(z)(I - \hat{B}(z))^{-1} - \hat{Q}_{+}(z) & (|z| \ge 1) \\ \sum_{n=1}^{\infty} Q(-n)z^{n} & (|z| < 1) \end{cases}$$

is analytic on the entire domain by Morera's theorem. Observe that  $I - \hat{B}(z) \to I - B(0)$  in  $\mathcal{L}(X)$  as  $|z| \to \infty$ . Since I - B(0) is invertible by the assumption, it follows that  $\lim_{|z| \to \infty} \|(I - \hat{B}(z))^{-1}\| = \|(I - B(0))^{-1}\|$ , and consequently  $\sup_{|z| \ge 1} \|(I - \hat{B}(z))^{-1}\| < \infty$ . Therefore, G(z) is bounded on the entire domain, and hence G(z) is a constant function by Liouville's theorem. Then  $G(z) \equiv G(0) = 0$ , and hence it follows that  $\hat{B}(z)(I - \hat{B}(z))^{-1} = \hat{Q}_+(z)$  for any z with  $|z| \ge 1$ . Thus we may set  $Q_+ = R$  to establish the proposition.

We are now in a position to prove the theorem.

Clearly, the implication  $[(ii) \Longrightarrow (i)]$  holds true. Also, the implications  $[(iii) \Longrightarrow (ii)]$  and  $[(ii) \Longrightarrow (iv)]$  have already been proved in [5, Theorem 2] and [4, Theorem 2]. In what follows, we will prove the implications  $[(iv) \Longrightarrow (iii)]$  and  $[(i) \Longrightarrow (ii)]$ .

Proof of [(iv)  $\Longrightarrow$  (iii)]. Let us consider the sequence  $D \in l^1(\mathbb{Z}^+)$  defined by D(n) = B(n-1) if  $n \geq 1$ , and D(n) = 0 if n = 0. Clearly, I - D(0) is invertible. For any  $z \in \mathbb{C}$  with  $|z| \geq 1$ , we get

$$\hat{D}(z) = \sum_{n=0}^{\infty} D(n)z^{-n} = z^{-1}\hat{B}(z),$$

and hence

$$I - \hat{D}(z) = \frac{1}{z}(zI - \hat{B}(z)).$$

Thus  $I - \hat{D}(z)$  is invertible for each  $z \in \mathbb{C}$  with  $|z| \geq 1$ , and it satisfies the relation

$$(I - \hat{D}(z))^{-1} = z(zI - \hat{B}(z))^{-1}, \qquad |z| \ge 1.$$

By virtue of Proposition 2, there exists a  $Q \in l^1(\mathbb{Z}^+)$  such that  $\hat{D}(z)(I - \hat{D}(z))^{-1} = \hat{Q}(z), |z| \geq 1$ , and hence we get

$$I + \hat{Q}(z) = I + \hat{D}(z)(I - \hat{D}(z))^{-1}$$
$$= (I - \hat{D}(z))^{-1}$$
$$= z(zI - \hat{B}(z))^{-1}$$

for all  $|z| \geq 1$ . Consider the sequence  $S = \{S(n)\}_{n=0}^{\infty}$  defined by

$$S(n) = \begin{cases} I + Q(0) & (n = 0) \\ Q(n) & (n \ge 1). \end{cases}$$

Then  $S \in l^1(\mathbb{Z}^+)$ , and  $\hat{S}(z) = I + \hat{Q}(z) = z(zI - \hat{B}(z))^{-1}$  for all  $|z| \geq 1$ . Notice that the fundamental solution R is bounded exponentially, that is,  $\sup_{n\geq 0} e^{-n\omega} ||R(n)|| < \infty$  for some constant  $\omega \geq 0$ . Hence the Z-transform  $\sum_{n=0}^{\infty} R(n)z^{-n}$  of R converges for  $|z| > e^{\omega}$ . Let us consider the Z-transform of both sides in the equation  $R(n+1) = \sum_{k=0}^{\infty} B(n-k)R(k)$  with R(0) = I to get the relation  $z(\hat{R}(z) - I) = \hat{B}(z)\hat{R}(z)$ , or  $(zI - \hat{B}(z))\hat{R}(z) = zI$  for  $|z| > e^{\omega}$ . Thus it follows that  $\hat{R}(z) = z(zI - \hat{B}(z))^{-1} = \hat{S}(z)$  for all  $|z| > e^{\omega}$ . By the uniqueness of the Z-transform, we get  $R(n) \equiv S(n)$ ,  $n \in \mathbb{Z}^+$ , which shows the summability of R, as required.

Proof of [(i)  $\Longrightarrow$  (ii)]. Let  $\tau \in \mathbb{Z}$ , and  $\phi$ ,  $\psi : (-\infty, \tau] \to X$  be given in such a way that  $\|\phi\|_{(-\infty, \tau]} < \delta(\varepsilon/2)$  and  $\|\psi\|_{(-\infty, \tau]} < \min\{\delta(1/2), \mu\}$ ,

where  $\delta(\cdot)$  and  $\mu$  are those in Definition 1. Let us take a sequence  $\{n_j\} \subset \mathbb{Z}^+$  such that  $n_j \to \infty$   $(j \to \infty)$ . We may assume that  $\tau + n_j > 0$  for  $j = 1, 2, \ldots$  Define  $\phi^j : [0, \tau + n_j] \to X$  by

$$\phi^j(n) := \phi(n - n_j), \qquad n \in [0, \tau + n_j],$$

and  $x^{j}(n)$  by

$$x^{j}(n) := \begin{cases} x(n+n_{j}; \tau+n_{j}, \phi^{j}) & (n \geq -n_{j}) \\ \phi(n) & (n < -n_{j}) \end{cases}$$

for  $j = 1, 2, \ldots$  Since  $x^j(n) = \phi^j(n+n_j) = \phi(n)$  for  $n \in [-n_j, \tau]$ , the uniform asymptotic stability of the zero solution of  $(E_0)$  yields

$$|x^j(n)| < \frac{\varepsilon}{2} \quad \text{for } n \ge \tau.$$
 (3)

Let any  $n \in \mathbb{Z}$  be given. We now assert that the sequence  $\{x^j(n)\}_j$  contains a convergent subsequence. Indeed, in case of  $n \le \tau$ , we get  $x^j(n) = \phi(n)$ , and hence the assertion clearly holds. Let us consider the case  $\tau < n$ . It follows that

$$x^{j}(n) = \sum_{k=0}^{n_{j}+n-1} B(n_{j}+n-1-k)x(k;\tau+n_{j},\phi^{j})$$

$$= \sum_{s=-n_{j}}^{n-1} B(n-1-s)x^{j}(s)$$

$$= \sum_{s=-\infty}^{n-1} B(n-1-s)x^{j}(s) + \sum_{s=-\infty}^{-n_{j}-1} B(n-1-s)\phi(s).$$

By virtue of the summability of  $B = \{B(n)\}_{n=0}^{\infty}$ , it is easy to certify that the term  $\sum_{s=-\infty}^{-n_j-1} B(n-1-s)\phi(s)$  tends to 0 as  $j \to \infty$ . Moreover, since the operator B(n-1-s) is compact, we see that the sequence  $\{\sum_{s=-\infty}^{n-1} B(n-1-s)x^j(s)\}_j$  contains a convergent

subsequence. This observation leads to that the sequence  $\{x^j(n)\}_j$  contains a convergent subsequence, which completes the proof of the assertion.

Now one can select a subsequence of  $\{x^j(n)\}_j$ , denoted by the same notation  $x^j(n)$ , which converges to some  $\tilde{y}(n)$  on  $\mathbb{Z}$  as  $j \to \infty$ . Obviously  $\tilde{y}(n) = \phi(n)$  for  $n \in (-\infty, \tau]$ . Moreover, it follows that  $\lim_{j\to\infty} \sum_{s=-n_j}^n B(n-s)x^j(s) = \sum_{s=-\infty}^n B(n-s)\tilde{y}(s)$ . Thus we obtain that

$$\tilde{y}(n+1) = \lim_{j \to \infty} x^j (n+1)$$

$$= \lim_{j \to \infty} x(n+1+n_j; \tau+n_j, \phi^j)$$

$$= \lim_{j \to \infty} \sum_{r=0}^{n+n_j} B(n+n_j-r)x(r; \tau+n_j, \phi^j)$$

$$= \lim_{j \to \infty} \sum_{s=-n_j}^{n} B(n-s)x^j(s)$$

$$= \sum_{s=-\infty}^{n} B(n-s)\tilde{y}(s),$$

which implies that  $\tilde{y}(n) = y(n; \tau, \phi)$  on  $\mathbb{Z}$ . Letting  $j \to \infty$  in (3) we get

$$|y(n;\tau,\phi)| \le \frac{\varepsilon}{2} < \varepsilon \quad \text{for } n \ge \tau.$$
 (4)

Furthermore, by the same argument we see that

$$|y(n;\tau,\psi)| < \frac{\varepsilon}{2} \quad \text{for } n \ge \tau + N(\varepsilon/2),$$
 (5)

where  $N(\cdot)$  is the one in Definition 1. The inequality (4), together with (5), shows that the zero solution of  $(E_{\infty})$  is uniformly asymptotically stable.

Remark 1. One can see from the proof that in Theorem 1, the implications (iv) $\Longrightarrow$ (iii) $\Longrightarrow$ (ii) $\Longrightarrow$ (i) hold true without the assumption that B(n),  $n \in \mathbb{Z}^+$ , are compact. It is an interesting problem to ask whether or not the implication (ii) $\Longrightarrow$ (iii) (or (ii) $\Longrightarrow$ (iv)) holds good without the compactness condition on B(n). But the problem is still open for the authors.

Remark 2. We can apply Theorem 1 to establish the existence of bounded (resp. asymptotically almost periodic) solutions for forced equations of  $(E_{\infty})$  with a bounded (resp. asymptotically almost periodic) forcing term, provided that the zero solution of  $(E_0)$  is uniformly asymptotically stable. Details will be discussed in a forth-coming paper [6].

#### REFERENCES

- 1. S. Elaydi, An Introduction to Difference Equations, Springer, New-York, 1996.
- 2. S. Elaydi and S. Murakami, Asymptotic stability versus exponential stability in linear Volterra difference equations of convolution type, J. Difference Equations and Appl., 2 (1996), 401–410.

- 3. S. Elaydi and S. Murakami, Uniform asymptotic stability in linear Volterra difference equations, J. Difference Equations and Appl., 3 (1998), 203–218.
- 4. T. Furumochi, S. Murakami and Y. Nagabuchi, Volterra difference equations on a Banach space and abstract differential equations with piecewise continuous delays, *Japanese*. *J. Math.*, Vol. 30, No. 2 (2004), 387–412.
- 5. T. Furumochi, S. Murakami and Y. Nagabuchi, A generalization of Wiener's lemma and its application to Volterra difference equations on a Banach space, *J. Difference Equations and Appl.*, Vol. 10, No. 13-15 (2004), 1201–1214.
- 6. S. Murakami and Y. Nagabuchi, Stability properties and asymptotic almost periodicity for linear Volterra difference equations in a Banach space, *Japanese J. Math.*, Vol. 31-2 (in press).