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1. INTRODUCTION

We consider the Volterra difference equations of convolution type

z(n+1) ZB n—7)z(r), n € Zt, (Eo)
and
y(n +1) E B(n —r)y(r), n €z, (Eeo)

where B(n) (n € Z*, the nonnegative integers) are bounded linear operators on a Banach
space X over the field C. The study of Volterra difference equations has actively been
done. Indeed, in the case where X is of finite dimension, the equations have extensively
been treated in the book [1] and some results on stability properties and so on were
obtained; for more details we refer the reader to {1, 2, 3] and the references therein.
Also, in [4, 5], Volterra difference equations with infinite dimensional X were discussed in
connection with some partial differential equations with piecewise continuous delays, and
uniform asymptotic stability for (E,) was investigated in connection with the invertibility
of the characteristic operator together with the summability of the fundamental solution,
under additional conditions such as the mutual commutativity of the operators B(n},n €
7+ or the exponential decay of the norm ||B(n)|].

In this paper, we give a nice result on the stability properties of the zero solution of
(Ey) or (Es) in the context above. Indeed, without the additional conditions imposed in
[4, 5], we will establish an equivalence relation among the uniform asymptotic stability of
the zero solution of (Ey) or (Fy), the summability of thvé fundamental solution and the
invertibility of the characteristic operator outside the unit circle in the complex plane.

*Partly supported by the Grant-in-Aid for Scientific Research (C), No.16540177, of the Japanese
Ministry of Education, Culture, Sports, Science and Technology.
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2. NOTATIONS

Let X be a (complex) Banach space with the norm |- |. We denote by £(X) the space
of all bounded linear operators on X. Clearly, £(X) is a Banach space equipped with the
operator norm || - ||, which is defined by

Tl = sup{|Tz|:z € X, |z| =1}

for any T € L(X).

For any interval J C R we use the same notaion J meaning the discrete one J N Z,
e.g. [0,0] ={0,1,...,0} for ¢ € Z". Also, for an X-valued function £ on a discrete
interval J, its norm is denoted by ||¢|l; := sup{|¢(j)| : j € J}. Let ¢ € Z* and a function
¢ : [0, 0] = X be given. We denote by z(n;0,¢) the solution z(n) of (Ey) satisfying
z(n) = ¢(n) on [0, o]. Similarly, for 7 € Z and a function ¥ : (o0, 7] — X, we denote
by y(n;7,1) the solution y(n) of (E) satisfying y(n) = ¢(n) on (—oo, 7].

Definition 1. The zero solution of (Ey) is said to be

(i) uniformly stable if for any ¢ > 0 there exists a § = d(¢) > 0 such that if o € Z* and ¢
is an initial function on [0, 0] with ||¢|/10,s) < & then |z(n;0,¢)| < ¢ for alln > o.

(ii) uniformly asymptotically stable if it is uniformly stable, and if there exists a > 0 such
that, for any & > 0 there exists an N = N(g) € Z* with the property that, if o € Z* and
¢ is an initial function on [0, o] with ||@|| 5,5 < £ then |z(n;0,¢)| <eforalin > o+ N.

Definition 2. The zero solution of (E) is said to be

(i) uniformly stable if for any ¢ > 0 there exists a § = d(¢) > 0 such that if 7 € Z and 9
is an initial function on (—oo, 7] with |[[¢|] (—e,7) < & then |y(n;7,¢)| <& forall n > 7.
(i) uniformly asymptotically stable if it is uniformly stable, and if there exists a p > 0
such that, for any € > 0 there exists an N = N(e) € Z* with the property that, if 7 € Z
and ¢ is an initial function on (—oo, 7] with [|¢]| (=c0,r] < 1 then |y(n;7,%)| < € for all
n>7+N.

The fundamental solution of (Ey) is a family in £(X) satisfying the relation
R(n+1)=>_ B(n—j)R(j), neZt
=0

and R(0) = I. Then, for instance, the solution y(n;7,¥) of (E) is given by the variation
of constant formula as follows:

y(n;7,9) = R(n — 1)b(r) + nf R(n—r— 1)( f B(r - s)w(s)). (1)

r=T F=—0Q
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3. MAIN RERSULTS

In what follows, we assume that B := {B(n)} C L(X) is summable, that is, the
condition Y2, ||B(n)|| < oo holds, and study stability properties of the zero solution of
Eq. (E), together with those of the zero solution of Eq. (Ep). Here and subsequently,
B(z) denotes the Z-transform of B; that is, B(z) := 3%, B(n)z~" for |z| > 1.

In [5, Theorem 2] and {4, Theorem 2], the equivalence among the uniform asymptotic
stability of the zero solution of Eq. (Ex), the summability of the fundamental solution
R = {R(n)} of Eq. (E), and the invertibility of the characteristic operator 2/ — B(z)
associated with Eq. (Fy) has been established under some restrictions such as the mutual
commutativity of the operators B(n), n € Z* or the exponential decay of the norm
||B(n)||. We will show in the following theorem that [5, Theorem 2| and [4, Theorem 2]
hold true without such restrictions.

Theorem 1. Let B = {B(n)}®, € IY(ZT) := [MZ*; L(X)), and assume that B(n),

n=0
n € Z*, are all compact. Then the following statements are equivalent.
(i) The zero solution of Eq. (Ey) is uniformly asymptotically stable.
(ii) The zero solution of Eq. (Eo) s uniformly asymptotically stable.
(iii) R = {R(n)}2, € IMZ").
(iv) For any z such that |z| > 1, the operator zI — B(z) is invertible in L(X).

In order to prove the theorem, we need the following preparatory results.

Proposition 1. Let K = {K(n)}>2 _ € }(Z) :=1'(Z; L(X)), and assume that I—K(p)

is invertible for each p € R, where K(p) :== £ K{(n)e™#". Then there is an R € I'(Z)
such that

Rip)I—-K(p)) " =R(p), VpeR

Proof. (1-Step) For each (small) ¢ > 0 we define a 27-periodic function e by

1 (It] <)
_ ~ 0 (26 <t < )
¢(t) = (2 —t)/e (e<t<2)

(26 +t)/e (=2 <t < —¢).

One can easily check that Fourier coefficients of b. are given by

Zrsinddsing (I=£1,%2,...)

T s (L=0).

2m
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Clearly, the sequence ¢, := {d;}°_.. is summable, and by the Fourier expansion theorem

we get

Zde = ¢ (1), Yt e R.

l==00

Hence it follows that for any ¢y € R,

St —to) = z ce”

{=—00
where ¢ = {c }iez is a sequence defined by ¢; = dye™™! = ¢,(I)e™ for | € Z. Notice that
the sequence ¢ is summable.
(2-Step) Consider the function f(z) defined by

Lysin3zsing  (z #0)
flz)=
3 (z=0).

™

One can easily see that f is continuously differentiable. In fact, f'(x) is given by

—-2:sin3zsinz + =y (3cos3zsinz +sin3zcosz) (z # 0)
fla) =
0 (z =0).
Since limyz— o0 (| f(z)|+]f'(2)]) = 0, there exists a constant H > 0 such that SUP_ oo czcoo I (@) +
|f'(z)]) = H. Moreover,

[ 1@ = / ie idw + [(1f @lde
< o
< H +/ — dz
< H+C,
where C = 6/7.
(3-Step) Put M = sup,cg ||(I — K(p))~||, and take a positive integer IV such that
23M 1
BY s k@<
[TI>N+1

Moreover, take a positive integer ko, kg > 3, such that

3k
INM(H + ) S |IKD)) < =2,
A 4
and set ¢ = 7n/(3k) and p, = 3ne, n = 0,1,.... Then pu, = 27, and the following

relation holds:
2ko-1

Zés(p—pn)il, VPER,
n=0
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where @, is the one introduced in 1-Step. Set F(p) = K(p)(I — K(p))™! and F,(p) =
¢s(p - Pn)F(p), pE R. Then
2ko—1

F(p) = Zﬂ Fa(p).

Therefore, in order to establish the proposition it suffices only to certify that for each n
there exists an R, € ['(Z) such that F,(p) = R,(p). We now set

Kn(l) - {((Qﬁkeip”) * K)(l) - ¢25(Z)eipﬂlk(pn)} (I - R’(pn))yla le Z,
where * denotes the convolution in {*(Z). Then K, € ['(Z), and moreover
Knlp) = {(qﬁzaei""')’(/ﬂ)ff (0) — (92" (p) K (Pn)} (I = K(p))™

= ¢aelp— pa) (K (p) = K(pa))(I — K(pu)) ™"

Observe that ¢.(p — p,) # 0 implies ¢g(p — p,) = 1, and hence

(p) — K (o)) — K ()™
(p) — NI — K{pn))™" +1,

or
which implies

This observation leads to

Fn(p) = q;b.(p - pn)
(ng(p - pn)

> TRNE
Ve
k=)
S’
N
]
|

We claim that

sl 1
K= Y K01 <5 @)
l=—o00
If the claim is true, then the series %0 K™ 1= e+ K+ Kp* K+ Kpx Knx Kn+- - -, (here
e is the unit element in {}(Z)), converges in [1(Z) with (I — Kn(p))™" = (£7%, K27) (0),
and hence we may set Ry = (¢ce) + K * {(I — K(pa)) "} 2224 K7} to get the equality
F, = R, with R, € I}(Z).
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In what follows we will evaluate |K,|; to establish (2). It follows that

IKnll < M Z ” Z K @25 Z—‘T) dpn (= 7))—¢2 zpn Z K w—zpn‘r”

[=—00 T=—0 T==~00
< M Y K@) Z |$2e(l — 7) — ¢a2c(D)]
1<|ri<N l=~00
+M Y KM X 12l —7) = ¢ (D)]
[T|>N+1 I=—c0
= 11+Ig.

Noting 0 < € < 1/2, we get

o

L < 2M 5 KM x 3 gD
P >N 41 l=—c0
| 3 &2
< 2M D K| % +Z — | sin 3¢k sin ek|
r|>N-+1 Q ke
2 W1 2 &1
< 1. : 2 1
< 2M17)§+1||K 7)|| ( 5;::1k2lsm3gk8m6kl+7”5k:[1z/;]+1 k2)
3e 2/e] 352k2 2 [ dr
<M B IIK(T)HX(~—+ >t 2)
[rI>N+1 T T e =
3e B¢ 2 1
< 2M | K ()] x (—+—X[l/£]+—~—--~)
ET};\;H T we [1/€]
23M
< — >, K"
[T|>N+1
1
< Iy
— 4

where [1/¢] denotes the largest integer which does not exceed 1/¢. Also, using the function
f introduced in 2-Step we get

L < MKl sup (z F((U = )e) f(le)IE)

<IN

-1 o
< MelK] sup (z S 1 ({(s 4+ Dlr] +m}e) - ({slTl+m}s)1)

1<ITIEN \m=0 s=—o0

< MelKl sup (I’%:l i /{(s+1)lfl+m}s (:c)}dx)

1< SN \ =g s=— o0 ¥ {8i7l+mle
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< MelKly sup (‘i S w)ldcv)

1<I7IEN \ m=p
< MelK\N /_ “: |7 (2)|dz

2(H + C)MNr|K|;
3kq

<1
i

Thus |K,}1 < 1 + 1, <1/4+1/4 = 1/2, as required. O

Proposition 2. Let B = {B(n)}>2, € IY(Z*), and assume that I — B(0) is invertible
and that I — B(z) is invertible for each z € C with |z| > 1, where B(z) := Y32 B(n)z™.
Then there is an R € I*(Z") such that

BRI - B)"t =R(z), Wz >1

Proof. Consider the sequence B € ll(Z)‘deﬁned by B'(n) = B(n) if n > 0,and B'(n) =0
if n < 0. Then

I-B(p)=I-> Bne=1- B(e*), v peR.

Hence I — B'{p) is invertible for each p € R, and consequently there exists 2 Q € I'(Z)
such that B'(p)(I — B'(p))™* = Q(p), ¥ p € R, by Proposition 1. Define an element Q in
IYZ*) by Q+(n) = Q(n) for any n € Z*. The function Q. (2) is bounded and continuous
on the domain |z| > 1, and it is analytic on |z| > 1. Similarly, the function 3352, Q(—n)2"

is bounded and continuous on the domain |z| < 1, and it is analytic on [z| < 1. Moreover,
if |z| = 1 with z = €%, then

B(z)(I - B(2))™" - Q1(2) = B'(p)I-B(p ;}Q gmion
- - ;QW
= 5 Qe
= > QCme
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Therefore, the function G(z) defined by
B(2)(I - B(2) = Q+(2)  (z[21)
G(z) =
ne1 @(—n)2" (Il <1
is analytic on the entire domain by Morera’s theorem. Observe that [ — B(z) = I - B(0)
in L(X) as |z] = co. Since I — B(0) is invertible by the assumption, it follows that
limpspso0 [|(1 = B(2))™H| = [|(I = B(0))~}[|, and consequently supj,js: (1 — B(2)) 7| <
0o. Therefore, G(z) is bounded on the entire domain, and hence G(z) is a constant
function by Liouville’s theorem. Then G(z) = G(0) = 0, and hence it follows that
B(z)(I — B(2))™! = Q.(z) for any z with |z| > 1. Thus we may set @, = R to establish
the proposition. O

We are now in a position to prove the theorem.

Clearly, the implication [(ii)== (i)} holds true. Also, the implications [(iii)== (ii)] and
[(ii)==> (iv)] have already been proved in [5, Theorem 2] and [4, Theorem 2]. In what
follows, we will prove the implications [(iv)= (iii)] and {(i)== (ii)] .

Proof of [(iv)=> (iii)]. Let us consider the sequence D € ['(Z") defined by D(n) =
B(n—1)ifn > 1, and D(n) = 0 if n = 0. Clearly, I — D(0) is invertible. For any z € C
with |z] > 1, we get

and hence 1
LJX@:jd—B@y

Thus I — D(z) is invertible for each z € C with |2| > 1, and it satisfies the relation

(I = D(2))™ = 2(2I — B(2))7, lz| > 1.

~

By virtue of Proposition 2, there exists a Q € [}(Z*) such that D(z)(I — D(2))™" =
Q(z), |#] = 1, and hence we get

I+Q(z) = I+D(z){I~D()"
- (- D)™
= z(2I — B(z))™
for all |z| > 1. Consider the sequence S = {S(n)}2., defined by

_[14Q0)  (=0)
S(”)“{ aw (>0,
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Then S € I}(Z*), and S(2) = I + Q(2) = z(2] — B(z))™! for all |2| > 1. Notice that
the fundamental solution R is bounded exponentially, that is, sup,sqe ™ ||R(n)]| < oo
for some constant w > 0. Hence the Z-transform 327, R(n)z“”_of R converges for
|z| > e“. Let us consider the Z-transform of both sides in the equation R(n + 1) =

® B(n — k)R(k) with R(0) = I to get the relation z(R(z) — I) = B(2)R(2), or
(21 — B(2))R(2) = zI for |z| > e¥. Thus it follows that R(z) = z(z] — B(2))~! = S(z) for
all [z| > ¢¥. By the uniqueness of the Z-transform, we get R(n) = S(n), n € Z*, which
shows the summability of R, as required.

Proof of [(i)== (ii)]. Let T € Z, and ¢, ¢ : (—o0,7] — X be given in such a way that

[@ll(~o0r1 < 6(£/2) and  [|¢h]l(-o0r) < min{d(1/2), u};
where 6(-) and p are those in Definition 1. Let us take a sequence {n;} C Z* such
that n; — co (j — oo). We may assume that 7 +n; > 0 for j = 1,2,.... Define
¢ :[0,7 +n5} - X by
¢ (n) = ¢(n — n;), n € [0,7 + n;,

and z7(n) by

$(n) (n < —ny)
for j =1,2,.... Since 27(n) = ¢/(n+n;) = ¢(n) for n € [—n;, 7], the uniform asymptotic
stability of the zero solution of (£,) yields

113‘7(7?,) = { x(n+nj;T+njv¢j) (n > ""'n'j)

lz7 (n)] < % for n > (3)

Let any n € Z be given. We now assert that the sequence {z7(n)}; contains a convergent
subsequence. Indeed, in case of n < 7, we get 27(n) = ¢(n), and hence the assertion clearly
holds. Let us consider the case 7 < n. It follows that

nj+n-1 )

(n) = > Bmyj+n—-1- E)z(k; ™ +nj,¢7)
k=0
n—1

= Y B(n-1-s)2'(s)

s=—ny

n—1 —n;—1

3 B(n—1-s)al(s)+ Y B(n—1-s)é(s).

§=— §=—00

i

By virtue of the summability of B = {B(n)}s%,, it is easy to certify that the term
1 B(n—1—s)¢(s) tends to 0 as j — co. Moreover, since the operator B(n—1— 3)
is compact, we see that the sequence {3721 B(n — 1 — s)27(s)}; contains a convergent
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subsequence. This observation leads to that the sequence {z7(n)}; contains a convergent
subsequence, which completes the proof of the assertion.

Now one can select a subsequence of {7(n)};, denoted by the same notation z7(n),
which converges to some §(n) on Z as j — oo. Obviously §(n) = ¢(n) for n € (—co,7].
Moreover, it follows that lim; e T _,, B(n — $)27(s) = Xz _o B(n — 8)g(s). Thus we
obtain that

§n+1) = limz/(n+1)

700
= limz(n+14+n;7+n;,¢)

7900

n+n; ’

= }E& Tgo B(n+n; —ryz{r;m +ny, ¢)
— T — Vi
= jlggos:;ljB(n s)z’(s)
= Y Bln-9)ils)

which implies that §(n) = y(n; 7, ¢) on Z. Letting j — oo in (3) we get
ynir @) < 5 <c  for n2m 4
Furthermore, by the same argument we see that
ly(n;m, ¥} < % for n> 714+ N(g/2), (5)

where N() is the one in Definition 1. The inequality (4), together with (5), shows that
the zero solution of (Ey) is uniformly asymptotically stable. i

Remark 1. One can see from the proof that in Theorem 1, the implications (iv)==(iii)==
(ii)==-(i) hold true without the assumption that B(n), n € Z%, are compact. It is an
interesting problem to ask whether or not the implication (ii)==>(iii} (or (iij==(iv)) holds.
good without the compactness condition on B(n). But the prbblem is still open for the
authors.

Remark 2. We can apply Theorem 1 to establish the existence of bounded {resp. asymp-
totically almost periodic) solutions for forced equations of (Ew) with a bounded (resp.
asymptotically almost periodic) forcing term, provided that the zero solution of (Ep) is
uniformly asymptotically stable. Details will be discussed in a forth-coming paper [6].
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