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1 Introduction

We denote by R and by C the set of real numbers and complex numbers, respec-
tively. Let us consider a linear differential equation of the form
d
—= =Az+f(t), a(0)=weC (1)
where A € My(C), the set of all d x d cornplex matrices, and f : R — C%is a
nontrivial continuous 7-periodic function.
The purpose of this paper is to find a periodicizing function for Equation (1).
It is well known that the solution of the above equation is expressed as

o(t) := z(t;0,w) = eMw + /t eA=9) f(5)ds. (2)
0

However, from this representation it is not easy to see asymptotic behaviors of
solutions of Equation (1). In the paper [2], we gave a new representation of the
solution of Equation (1), from which asymptotic behaviors of solutions are seen.
Its representation is essentially related to a periodicizing function for Equation
(1), as stated below. We take a continuous function z(¢) such that the function

t
h(E) = 2() + / A9 f(s)ds, tER,
0

becomes a continuous 7-periodic function. Then the soluti()n‘a:(t) of Equation (1)
is rewritten as

z(t) = (e™w — 2(t)) + h(t),
the first term of the right hand side in which is well known. We call such a function
z(t) a "periodicizing” function (for Equation (1)). Therefore, to find a periodiciz-
ing function is very important in obtaining the representation of solutions and in
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studying asymptotic behaviors of solutions for Equation (1). In this paper we will
construct a periodicizing function z(t) as follows. Put

-
by = / eM7=9) f(5)ds.
0
In the first step, we prove that a periodicizing function z(t) satisfies
A, z2(t) = 2(t 4+ 7) — 2(t) = —eb;, t € [0,00).

In the next step, we calculate an indefinite sum of —e®4b; ; that is, z(t) = A7 (—e®by)
by using a new representation of the solution obtained in [2} for the linear difference
equation of the form z,y; = ™z, + by.

2 Discrete linear difference equations and the in-
definite sum

2.1 Discrete linear difference equations

Let o(A) be the set of all eigenvalues of A and m the index of A € ¢(4). Let
My = N((A— AE)™) be the generalized eigenspace of A € o(A), where E € M;(C)
stands for the unite matrix. Then we have the direct sum decomposition

C? = Z B M,.
Aco(A)

Let Py be the projection on C? to M) induced from this decomposition. Set N :=
{172:37 o }
Now, we solve the discrete linear difference equation of the form
Tnt+l = eTAmn +b, zo=w, (3)

where n € NU {0}. For the simplicity of the description, we set

1 - 1
— c® - .
e(2) e? —1’ (2) dzie* — 1

Moreover, we define X(A) and Y3 (A) for A € o(4) as

m—~1 i
= (8 Z__ — i TA
Xi\(4) = ga (TA) 7 (A~ AB) if €™ #1
and P
— '_7:1_ . A TA __
Yi(A) = ;Bz (A= AE) if e =1,
where B;,i € NU {0}, stand for Bernoulli’s numbers, refer to [3].

The following result is found in [2].



218

Theorem 1 [2] Let A € o(A). The component Pz, of the solution zn,n € N, of
Equation (3) is given as follows :
1) If e # 1, then

Pz, = " ﬂfni-g(A — AEY[Pyw + XA(A)P\b] — X (A)Psb
= "4 [;:w + X\(A)Psb] — X5 (A)Prb
2) Ife™ = 1, then
PoTy = Wf mr (A= XE)'[1(A = AE)P\w + Y3(A)P\b] + Paw.

i
— 141 4!

2.2 The indefinite sum

We prepare fundamental results on the indefinite sum. Let 7 > 0 and k : [0,00) —
C? be a continuous function. |

First, we consider the problem of finding a continuous solution of the following
equation

Arz(t) = z(t + 1) — 2(t) = h(t), t € [0,00), (4)

that is, the indefinite sum 2(t) = A7A(t). If %(t) is one of solutions of Equation
(4), then any other solution z(t) is given by

#(t) = z(t) + c(t)

with an arbitrary continuous 7-periodic function ¢(¢)(it is called the periodic con-
stant). The following lemma is easily proved, refer to [3].

Lemma 2.1
1) Let ¢ : [0,7] = C? be a continuous function such that

(1) = p(0) + h(0). (5)
Then a continuous solution z(t) of Equation (4) satisfying the the initial condition
2(8) = p(s),s € [0, 7], exists uniquely on [0,00). Moreover, it is given by

n~—1

z(s+nr) = p(s) +Zh(s+i'r), (s€0,7), n=1,2,---). (6)
i=0

2) Conversely, if a continuous function z(t) is a solution of Equation (4), then
o(t) = 2(t), t € [0, 7], satisfies the condition (5) and z(t) is given by (6).



Next, we consider a special case of Equation (4) ; that is,
z(t+71) — 2(t) = =B(t)b, t € [0,00), (M
where B(t),t € [0,00), is a continuous matrix function such that
B(s+kr) = B(s)B*(), ke N. (8)

In this case the continuous variable ¢t in Equation (7) is reduced to the discrete
variable.

Lemma 2.2
1) Let @ : [0,7] — C? be a continuous function such that

p(7) = »(0) — B(0)b. 9)

Then a continuous solution z(t) of Equation (7) satisfying the initial condition z(t) =
@(t),t € [0, 7], exists uniquely on [0,00). Moreover, it is given by

2(s +n7) = ¢(s) — B(s)za(0), (s €[0,7), n€N), (10)
where ,(0) is the solution of the difference equation of the form
Tmy1 = B(T)&m +b, z9=0, (11)

2) Conversely, if a continuous function z(t) is a solution of Equation (T7), then
o(t) := 2z(t), t € [0,7], satisfies the condition (9) and 2(t) is given by (10).

Proof 1) If s € [0,7) and n € N, then from (6) in Lernma 2.1 and (8) it follows
that

z(s+n1) = 2z(s)— 2 B(s+it)b

=0

i

z(s) — B(s) i B*()b.
i=0

Clearly, we have that Z?;(,l Bi{(1)b = z,(0). 2) is obvious. O
We note that B(t) = ¢'4, A € M,(C), satisfies the condition (8).

3 A periodicizing function
In this section we construct a periodicizing function for Equation (1) ; that is,

%? — Az(t) + £(t), 2(0) = w € C*.

219
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Let A € o(A). If an M), valued function y(t) satisfies the equation

Y~ Ay(e) + BAS (),

we say that y(t) is a solution of Equation (1) in M,. Clearly, if z(¢) is a solution of
Equation (1), then Pyz(t) is a solution of Equation (1) in M.

To apply our idea for Equation (1), we will translate the solution z(t) = z(t; 0, w)
of Equation (1) as follows :

z(t) = e’w — 2(t) + h(t),
where

h(t) = 2(t) + /O t eA=9) f(s)ds. (12)

The condition that h(t) is 7-periodic is equivalent to the condition that

AT ¢

2{t+71)+ / A9 f(5)ds = 2(t) + / A=) f(s)ds.

0 ¢}
Since
7 t
/ At f (8)ds = ey + / e=3) £(s5)ds,
0 0

we have

Ar2(t) = 2(t +7) — 2(t) = —e*'by. (13)

Therefore z(t) is an indefinite sum of —e®’b; ; that is, z(t) = A7} (—e*by). Sum-
marizing these, we obtain the following result.

Lemma 3.1 A periodicizing function for Equation (1) is an indefinite sum of —e*%by.
Moreover, the solution z(t) of Equation (1) is expressed as follows :

z(t) = eftw — A7 (—e?by) + h(t),

where
t
h(t) = A7 (—ebs) + / A8 f(s)ds
0

is a T-periodic function.

Since h(t) is a T-periodic function and the second term of the right hand side in
(12) is defined on R, the periodicizing function z(t) is well defined on R provided
z(t) is defined on [0, co).

Now, we are in a position to state the main theorem in this paper.
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Theorem 2 Let A € o(4).
1) If e* # 1, then

: A;l(_eAtPf\b) = - tAX)\(A)P/\b + C(t), t> 07

where c(t) is periodic constant.
2) If e™ =1, then

AT (—ePb) = & yf —,tfi-(A ~AEYY,\(A)Pb+d(t), t>0
T T = (G+1)! o=
where d(t) is periodic constant.
Proof Let us consider the equation
Pyz(t +7) — Prz(t) = —Pre'b. (14)

It follows from Lemma 2.2 that there exists a continuous solution Py z(¢) of Equation
(14), which satisfies the relation

Pyz(s + n1) = Pyz(s) — Pae**z,(0), (s €[0,7),n=0,1,2,---), (15)

where z,(0) is the solution of Equation (3) with w = 0.
1) Assume that e’ # 1. Put X = X,(A)P)b. Using Theorem 1 we have

Pz, (0) = e X — X,
from which yields that
Pie*4z,(0) = e (e’"'AX - X)
gAY g lstnnAY
Hence the relation (15) is reduced to

P)\Z(S + m’) = (P,\z(s) + QSAX) _ elstnAY

Since
Pyz(s 4+ n7) + e*PAX = Py2(s) + X,

e(t) := Pyz(t) + e!4X is T-periodic. Therefore we obtain

Paa(t) = —e 74X + c(t).
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2) Assume that e’ = 1. Put Y = Y, (4)Prb. Using Theorem 1 again, we have

Pre*4x,(0)
mol ok i+l o

nt
—_ /\s
= E:klA ,\E)k§: T ‘(A AEYY

k=

m-—1m-—1
= D WG
k=0 =0

—1

2

i=0 k-+j=i

s’“n? +lr

(A ABYTRY

asmol 4 g i—k+1

e s*(nr) ;
= —— E ——t (A - AEV'Y

Tl et (G — k:«}—l)’(A )

rs ML 41 —k e Ml it

= Tzzk!((’fl AT AT AE)*Y#T}:(H)i(A AE)'Y

=0 k=0
e,\(3+n7) m—1 (S + ?’ZT)Z ™8 m—1 e

= X T A - SR By

Thus the relation (15) becomes

s T -1 541

)
A-—
Pvz(s+n7) = Pyz(s)+— G 1)]( AE)Y
A(s4nr) ™ J+1 )
_6 Z(S—Fni)' (A—“}\E)JY
T = G+
Since
M T gt ]
d(t) == Pz(t + ——(A ~ AEYY
is T-periodic, we obtain
ML i
Paz(t) = —— Z 0T (A= AEYY +d(t).

Combining Lemma 3.1 and Theorem 2, we can obtain the following result, which

slightly modifies the one given in [2].
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Theorem 3 Let A € o(A) and z(t) = z(t;0,w) be the solution of Equation (1).
1) Ife™ # 1, then

Pu(t) = eM[Paw+ X\(A)Pabys] + un(t, by)

m—1 .4
# .
= &Y = (A= AEY[Pyw + Xa(A)Paby] + ua(t, by),

=0 7*

where
t
’u,,\(t, bf) = ——eAtX)\(A)P)\bf +/ e(t‘s)Ap);f(S)dS
0
is a T-periodic solution of Equation (1) in M.
2) If e =1, then
P Rl T RS )
P = — —— (A — AEY —
\z(t) - ; GT 1)!(,4 Yir(A — AE)Pyw + YA(A)Paby)
+eM Pyw + v (t, by),
where e Pyw and
XML i

)= "2 2 Gy
J:

ot
(A — AEYY,\(A)Pybs + / et=)Ap, f(s)ds
0

are T-periodic functions, which are not necessarily a solution of Equation (1) in M.
Proof 1) Assume that e*” # 1. Combining Lemma 3.1 and Theorem 2, we have

P,\.’E(t) = eAtP;\'w - A:l(—"eAtP)\bf) -+ u,\(t, bf)
= etA[P,\-w + X)\(A)P,\bf} + ”U-A(t,bf),

where .
ux(t,by) = —"AX(A)Pabs + ] et=94p, f(s)ds.
a

Notice that the periodic constant c(t) is canceled. It is easy to see that ux(t,by) is
a T-periodic solution of Equation (1) in M.
2) Assume that €™ = 1. In view of Lemma 3.1 we have

Px(t) = e**Pyw — A7 (—e " Pyby) + va(t, by),

where ;
ux(t,by) = AT H(—eMPby) + / et=9Pp, f(s)ds.
JO
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Furthermore, from Theorem 2 we have

e‘APAw - A—l(— AtP)\bf)
m——l i
= *Pw +et’\Z (A AE) Pyw
1

,\t m—1

Z G f: 1),(A AE)YA(A)Pyby — d(t)

oA ML it
= ”‘P,\w+ ( n 1)!(/1 /\E)’(T(A AEYPow+ Ya(A )P)‘bf) ~ d(t).
Therefore
etx m—1 Pt .
Pyx(t) — (A — )\E)J( (A~ AE)Pyw + Y, (A)Pby)

~ (G +1)!
—i—e”PAfw + va{t, bf)
We note that the periodic constant d(t) is canceled. O

Notice that from this result we can essily obtain asymptotic behaviors of solu-
tions of Equation (1), for details, refer to [2].

Example We will explain Theorem 2 and Theorem 3 through a simple one
dimensional linear differential equation

% = az(t) + f(t), z(0)=w €C, (16)

where ¢ € C and f is & continuous 7-periodic scalar function. Then (13) is reduced
to

Arz(t) = 2(t + 1) — 2(t) = —e%bs.

Using Theorem 2 with By = 1, we have

at
o £ bey (7 £ 1
o) = areety) = { Ty (97 an

Therefore, by Theorem 3 the solution z(t) of Equation (16) is expressed as fol-
lows.
1) If e # 1, then

1
z(t;0,w) = e® ('UJ 1= earbf) +u(t7 bf)7



where

u(t by) = e —0

£
by + / e(t=9) f(s)ds
0
is a T-periodic solution of Equation (16).
2) If " = 1, then
eat
z(t;0,w) = —T—tbf + e w + v(t, by),
where .
u(t,by) = ——e“t-;-bf +] e¥t9) f(s)ds
0

is a 7-periodic function, however, which is not necessary a solution of of Equation

(16).
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