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Hyperbolic Hausdorff dimension is equal to the minimal exponent of con-
formal measure on Julia set. A simple proof.’

by Feliks Przytycki?

The fact in the title was proved in [DU] except one point proved later in [P1]. This is
a crucial technical fact in the study of dimensions and their continuity for Julia sets. The
proofs in these papers use several complicated techniques. Here we give a simple proof.

Let f :@ — @ be a rational mapping of degree d > 2 on the Riemann sphere @. We
denote by Crit the set of critical points, that is f'(z) = 0 for z € Crit. The symbol J
stands for the Julia set of f. Absolute values of derivatives and distances are considered
with respect to the standard Riemann sphere metric. We consider pressures below for all
t>0.

Definition 1. Tree pressure. For every z € € define

Piree(z,1) = limsup—j; In Z l(fn)l(ﬁi)l_t,

nee fr@)=2

Definition 2. Hyperbolic pressure.

Poyp(t) = S‘;PP(J"]X’ —tIn|f']),

where the supremum is taken over all compact f-invariant (that is f(X) C X) isolated
hyperbolic subsets of J.

Isolated (sometimes called repelling) means that there is a neighbourhood U of X such
that f*(z) € U for all n > 0 implies ¢ € X. Hyperbolic means that there is a constant
Ax > 1 such that for all n large enough and all z € X we have [(f")(z)] > . Sometimes
the more adequate term ezpanding is used.

P(f|x,~tIn|f’|) denotes the standard topological pressure for the continuous map-
ping flx : X — X and continuous real-valued potential function —¢In|[f’| on X, see for
example [W].

Note that these definitions imply that Phyp(t) is a continuous monotone decreasing
function of t.

Definition 3. Conformal pressure. Set Poone(t) := In A(t), where

A(t) = inf{A > 0 : 3y, a probability measure on J with Jacobian A[f’ '3
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We say that ¢ : J — IR, ¢ > 0 is the Jacobian for f|; with respect to p if ¢ is p-integrable
and for every Borel set E C J on which f is injective u(f(E)) = [, pdu. We write
o = Jac,(f],).

We call any probability measure p on J with Jacobian of the form A|f/[* a (A, ¢)-
conformal measure and with Jacobian |f’|* a conformal measure with exponent ¢ or ¢
conformal measure.

Proposition 1. For each t > 0 the number Pcont(t) is attained, that is there exists
a (A, t)-conformal measure with A = Poone(?).

This Proposition follows from the following

Lemma. If j, is a sequence of (A, t)-conformal measures of J for an arbitrary ¢t > 0,
weakly* convergent to a measure g and A\, — A then p is a (A, f)-conformal measure.

Proof. Let E C J on which f is injective. E can be decomposed into a countable
union of critical points and sets E; pairwise disjoint and such that f is injective on a
neighbourhood V of clE;. For every ¢ there exist compact set K and open U such that
Kc E;cUcVand u(U)—-p(K) <eand u(f(U))—u(f(K)) < e. Consider an arbitrary
continuous function x : J — [0,1] so that x is 1 on K and 0 on J\ U. Then there exists
s:0 < s < 1 such that for A = x71([s,1]), p(0f(A)) = 0. Then the weak* convergence
of p, implies pn(f(A)) — p(f(4)), as n — oo. Moreover this weak® convergence and
An — A mply [ xAnlf/tdun — [ xAf/|dp. Therefore from pun(f(A)) = [4 Anlf'[*ditn,
letting & — 0, we obtain u(f(E;)) = [ [f'[*dp.

If E = {c} where ¢ € Crit N J then for every r > 0 small enough and for all n, we
have pn(f(B(c,7)) < 2(supy, Ak)*(2r)* and since the bound is independent of n we get

p(f(c)) = 0, hence pu(f(c)) = [, |f'*du, as f'(c) = 0.

Definition 4. We call z € T safe if
z ¢ U2, £7(Crit) and liminfp o0 Lindist(z, f*(Crit)) =0

Definition 5. We call z € @ repelling if there exist A and A = A, > 1 such that for
all n large enough ™ is univalent on Comp, f "(B(f™(2), A)), where Comp, means the
connected component containing z, and [(f™)/(2)| > A™.

Definition 6. Hyperbolic Hausdorff dimension of Julia set is defined by

HDpyp(J) = sup HD(X),
X

where the supremum is taken over all compact f-invariant isolated hyperbolic subsets of
J and HD(X) means the Hausdorff dimension of X.

Proposition 2. The set S of repelling safe points in J is nonempty. Moreover
HD(S) > HDpyp(J).
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Proof. The set NS of non-safe points is of zero Hausdorff dimension. This follows
from NS C Ujzy f7(Crit) U Uge; Mimy Usen B(f?(Crit), §7), finitness of Crit and from
(€™ < oo for every 0 < £ < 1 and t > 0. Therefore the existence of safe repelling
points in J follows from the existence of hyperbolic sets X C J with HD(X) > 0. Note
that every point in a hyperbolic set X is repelling.

Theorem 1. For all t > 0, all repelling safe z € J and all w €
Ptree(za t) < Phyp(t) < PConf(t) < Ptree(wa t)-
We will provide a proof later. Now let us state corollaries.

Corollary 1. Pyyp(t) = Poons(t) and HDyyp(J) = minimal exponent ¢ for a t confor-
mal measure.

Proof. The first equality follows from Theorem 1 and existence of repelling safe points
in J. The second from the fact that both quantities are first zeros of Payp(t) and Poons(t).

We obtain also a simple proof of the following
Corollary 2. Pie(z,t) does not depend on z for z € J repelling safe.

Proof of Theorem 1.

1. We prove first that Piee(z,t) < Phyp(t). Fix repelling safe z = z € J and
A = Az > 1 according to Definition 5. Since 2 is repelling, we have for 6 = A/2, I = 2an
and all n large enough

W = Comszf“lB(fE(zo), 26) C B(z,eA™°"),

and f! is univalent on W. Since z; is safe we have

2n
B(zo, A=) | £7(Crit) = 0

j=1

for arbitrary constants £, @ > 0.
By 'the Koebe Distortion Lemma for ¢ small enough, for every 1 < j < 2n and
z; € f77(z9) we have
Comp,, f~7 B(20,A™%") C B(2;, ).

Let m = m(d) be be such that f™(B(y,6/2)) D J for every y € J. Then, putting y =
fH(z0), for every z, € f~"(20) we find 2, € f~™(2,)Nf™(B(y, 6/2)). Hence the component
W, of f~™(Comp, f "(B{z,eA ")) containing z;, is contained in C B(y,36)) and
f™t" is univalent on W, (provided m < n).
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Therefore f™7+! is univalent from W) := Comp(f~{m+"*+)(B(y,26)) C W,, onto
B(y,26). The mapping

F=gmntt: |} W, — B(y,29)

zn€f””(zo)

has no critical points, hence Z := (o, F~*(B(y, 26)) is an isolated expanding F-invariant
(Cantor) subset of J.
We obtain for a constant C' > 0 resulting from distortion and L = sup | f’},

P(Flz,~th[F) 2n(C Y [ ()

zn€f~"{20)

>m(C Y ) L), (L)

Zn Ef‘"(zo)

" Hence on the expanding f-invariant set 2’ := U;':B"H_l Ff3(Z) we obtain

/ 1 /
P(flz,—tln{f']) = mP(R ~tIn |[F'])

1

zm(1n0~t(m+z)lnL+1n S )

anf_n(Z())

Passing with n to co and next letting  \, 0 we obtain
P(f'zr, ~tln 1f,.) .>,. Ptree(zOe t)-

2. Pugp(t) < Poont(t) is immediate. Let u be an arbitrary (A, ¢)-conformal measure
on J. From the topological exactness of f on J, which means that for every U an open
set intersecting J there exists N > 0 such that fN(U) D J, we get f; ANFNY bdp > 1.
Hence u(U) > 0. Let X be an arbitrary f-invariant non-empty isolated hyperbolic subset
of J. Then, for U small enough, (3C)(Vze € X)(¥n > 0)(Vz € X N f™"(z0)) [f" maps
U, = Comp, f (U} onto U univalently with distortion bounded by C'. So, for every n,

s Y AT @ITTEe Y wUa) <0

z€f " (zo)NX z€f—r(zo)NX

Hence
P(flx,—InA—tIn|f']) <0 hence P(f|x,—tln|f’[) <InA.

3. Pooni(t) < Piee(w,t) follows from Patterson-Sullivan construction. The proof is
as follows. Let us assume first that w is such that for any sequence w, € f~"(w) we have
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wy — J. This means that w is neither in an attracting periodic orbit, nor in a Siegel disc,
nor in a Herman ring. Let Piee(w,t) = A. Then for all X' > A

> I )T =0

z€ f7(w)

exponentially fast, as n — co. We find a sequence of numbers
¢n > 0 such that lim, oo @n/Pns1 — 1 and for A, 1= 30 crn(w) A7) (=)~ the
series 3. ¢nA, is divergent. For every A’ > A consider the measure

pv =3 . Daoen- (X)) (@72,

n zef-m(w)

where D, is the Dirac delta measure at  and  is the sum of the weights at D, so that
pa(J) = 1. Finally we find a (), t}-conformal measure y as a weak™® limit of a convergent
subsequence of py as A"\, A

If w is in an attracting periodic orbit which is one of at most two exceptional fixed
points (oo for polynomials, 0 or oo for z +— z*, in adequate coordinates) then it is a critical
value, 50 Piree(w,t) = co. If w is in a non-exceptional attracting periodic orbit or in a
Siegel disc or Herman ring S, take w’ € f~!(w) not in the periodic orbit of w, neither
in the periodic orbit of § in the latter cases. Then for w’ we have the first case, hence
Poont () € Piree(w', 1) < Piree{w, t). The latter inequality follows from

Y Yy (@)t <

.’L‘Ef_(n_l)('w’)

Piree (w,» t) = limsup
n—oo I —

. 1 n _

< limsup — Z I(f )f(x)l tsul_) If’lt < Ptree(wy t).

n—oo mEf“("‘l)('w’) 2e@

QED

Remark 1. There is a direct simple proof of Piree(2,t) < Poont(t) for p-a.e. z, using
Borel-Cantelli Lemma, see [P2, Theorem 2.4].

Remark 2. In [P2, Th.3.4] a stronger fact than Corollary 2 has been proved, also by
elementary means, namely that P ee(z,t) does not depend on z € € except zero Hausdorff
dimension set of z’s.

References

[DU} M. Denker, M. Urbariski. On Sullivan’s conformal measures for rational maps of the
Riemann sphere. Nonlinearity 4 (1991), 365-384.
[P1] F. Przytycki. Lyapunov characteristic exponents are nonnegative. Proc. Amer. Math. .
Soc. 119.1 (1993), 309-317. '
[P2] F. Prazytycki. Conical limit sets and Poincaré exponent for iterations of rational func-
tions. Trans. Amer. Math. Soc. , 351.5 (1999), 2081-2099.
[W] P. Walters. An Introduction to Ergodic Theory., Springer 1982,



