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in the presence of chaos

Akira Shudo

Department of Physics, Tokyo Metropolitan University,
1-1 Minami- Ohsawa, Hachiofi, Tokyo 192-0397, Japan
shudo@phys .metro-u.ac.jp

1. Introduction

Tunncling phenomenon is peculiar to quantum mechanics and no counterparts exist
classical mechanics. Features of tunneling arve nevertheless strougly influenced by the un-
derlying classical dynamics (see a recent review[l, 2, 3, 4}) A promising approach to see the
counection of these two opposites is to carry ont the complex semiclassical analysis, which
allows us to describe the tunneling phenomena in terms of complex classical trajectories.

The airn is this short report is to present that several recent results on higher-dimensional
complex dynamical systems are certainly helpful to our understanding of quantum tunnel-
ing in multi-dimensions, especially in the presence of chaos. Since detailed reports will be
published elsewhere[5], we here describe several crucial points in our arguments.

To be precise, we introduce a two-dimensional area preserving map;

P H'(p) - V'(q)

P — . 1
(q) <q+H’(p>~V'<q> W
Taking H(p) = p*/2 and V(g) = K sin ¢ gives the Chirikov-Taylor standard map, and H(p) =
p?/2 and V(q) = cq — ¢°/3 the arca-preserving Hénon map. The canonical form of the latter

is written as,
= fu: . . 2

These are related via an affine change of coordinate (p,q) = (y —z,y — 1) witha =1 —c.
As usual, we here regard that the ares-preserving map is a model for Hamiltonian flow. As
shown below, it is possible to construct quantum mechanics of the area preserving map,
thereby quantum tunneling can also appear as well as usual quantum tunneling in Hamnilto-
nian systerns.

We first review some well-know facts on the transition caused the classical dynamics
(1). Let us consider two points (p,g) and (¢/,¢') in phase space. Trivially, a point (/,¢")
is reachable from (p,q) under the classical dynamics if and only if there exist a certain
mumber of iteration N such that two points are connected via the mapping relatiou, 4.e.,
', q)= FN(p,q). On the other hand, if the map has the mixing property, and so ergodicity
of the map with respect to a ceitain invariant measure, the notion of transition can be
gencralized and defined differently. That is, we can say that the transition between (p,q) and
(¢/,¢) is allowed via the mapping rule in the sense that for arbitrary neighborhoods of each
point there exist an orbit that connects these two neighborhoods. Tu other words, in classical
mechanics, an orbit in au ergodic invariant component can itinerate arbitrarily cloge to any
other points in the same component.

However, if an area preserving map is neither hyperbolic not in completely integrable,
quasi-periodic and chaotic cornponents coexist in phase space in general and no ergodic
measure exists such that its support covers the entire phase space. The coexistence of a
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variety of ergodic componeuts, which are usually intermingled in a self-similar way, is a
typical situation. Such a non-hyperbolic phase space is sometimes called midzed phase space.
Note that the transition between different invariant components is not allowed in the sense
mentioned above. That is, for a given poiut (p,g) contained in a certain KAM curve for
instance, there exists a region R in phase space such that a certain neighborhood of {p, ¢)
cannot reach the region R under the iteration of the map. In a converse way, for a point
(¢, q’) contained in a certain chaotic component, there exists a region R encircled by KAM
curves such that a neighborhood of (¢/,¢") cannot enter into R!. We here call that these are
classically forbidden processes.

2. Formulation of quantum dynamics in the map and its semiclassical ap-
proximation

A standard recipe to construct quantum mechanics in the map is given by expressing
the unitary operator in the discretized Feynman path integral form. The one-step unitary
operator is given as,

0= GXD{—%HO(?)}{—%V(Q)} | (3)

In the momentum {p-) representation, for example, the n-step quantum propagator is explic-
itly written as,

K (pnipo) =< pu|U"|po >= / S /H dg; [T dps exp[%s({qy}ﬂ {ps})], (4)
J J

where S({q;},{p;}) denotes the action functional aloug each path,

T

S({as} {oi}) = S_[Holwg) +V(e) + 50 — pi0)]- (5)

=1

The square modulus | < p,|U™pe > |* provides the transition probability from an initial
state |pg > to a final state |p, >

It we take the coherent representation, the propagator is expressed as K{gn, Pn; @0, 0) =<
Tns p.,blfj g0, po >, where |g,p >= |a > denotes the coherent state with o = (g+ip)/ +/2. The
position and momestum representations of the coherent state are

1/4

<q'lg,p >= (nh)~ exp[—iﬁ-(‘zq’ —a)p— h(q -9y, (©)

< Hlg,p>= (nh) M exp [—(”p p)g - {:0 p)?]. (")

Now our interest is to clarify how quantum dynamics reflects the underlying classical
dynamics. The most well established way to commect them is to perform the semiclassical
approximation to the quantum propagator. In the small & limit, the multiple integral <
palU™po > 0 < GnyPu|U™ g0, po > can be evaluated by the method of stationary phase,
which is formally equivalent to the saddle point approximation. Here we only show the final
expression for the semiclassical propagetor. In p-representation, we have

K*(paipo) = ) Ay(pos 90) exp {%37(2)0740)} ’ ®)
Y

where the summation is taken over all classical paths « satisfying given initial and final
: ; L . .
momenta, po = « and p, = 8. Ay(po,q0) = [277(Opn/Bgo)p,] 7 stands for the amplitude



factor associated with the stability of each orbit v, and S,(po, go) is the corresponding classical
action.

An important remark is that if we take the p-representation, py and p, should be real-
valued since they both are observables. This implies that the canonical conjugate variable ¢q
does not have any constraint and may take not only real values but also complex ones. This
ensures purely quantum effects within the semiclassical framework. Therefore, by extending
the initial angle as go = € +in (£,7 € R), we have a representation for seniclassically
contributing complex paths on the initial Lagrangian manifold as

MeP = {(po,go=€+in) €C? | po=o, pp=0, a,f€R}. 9)

If there exist no clagsical paths on the real phase space connecting between the two states
specified by po = a and p, = B, we should say that this process is classically forbidden, and
bridged only by complex classical paths.

As for the coherent state representation, we have a similar serniclassical expression,

) ;
K C(ffrzvpr;.; QOﬁp0> = 2A7<p07 Q'O) CXp {_ﬁs’y(pﬂ) qﬁ}} ) (10>
5

where the sunnnation is taken over all classical paths satisfying given initial and final coherent
states, i.e., go + iP0 = Qo + $Pe, Gn — tPn = dp + ips. Note that the variables o, pa, 43,08
take real values whereas o, po, go, Po can take complex ones(7, 8]. Introducing the variables
Q = q+ip and P = q — ip where ¢,p € C, semiclassically contributing complex paths are
given as

M2 = {(Qo, P)€C? | Qu=0, P,=P, a=qa+iPs, 8=0s~—ips } (11)

In cither case, the manifold representing an initial and final state is one-dimensional comnplex
manifold, and thus the space of the search parameter forms one-dimensional complex planc.
This fact does not depend on which representation we choose. This is interpreted as a
manifestation of uncertainty principle of quantum echanics.

3. Quantum tunneling and the Julia set

We here discuss several aspects of quantuin tunneling based on seniclassical expressions
_of quantum propagator. As explained in the previous section, the classical counterpart of
an initial or final quantum state is a one-dimensional complex Lagrangian manifold({ = two-
dimensional real manifold). So, our task is to see how such a one-dimensional complex
manifold evolves under the iteration of the mapping (1). We hereafter limit ourselves to the
Hénon map since receut progresses on the study of the complex Hénon map is so fruitful and
these well fit to what we just want know.

1. Let us first consider the situation where an initial and final state and the time step n are
given, that is po = o and pp, = 5. We here adopt the propagator in the p-representation. The
conditions for initial and final states give an algebraic equation.

(/3: ‘I‘n) = Fn(a,q':))- (12)

We regards this as a 2"-th degree algebraic equation for go. As an immediate consequence
of the fundamental theorvern of algebra, it has 2" solutions in general. In our context this
means that we always have 27 complex classical paths connecting Initial and final states.
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Obviously, the complex orbits, some of which may describe genuine tunneling transition,
proliferate exponentially as a function of the time step n. This is one way of characterization
of quantwm tunneling in the presence of chaos. However, it is rather formal. Exponential
increase of complex orbits comes merely from the degree of the map, and the nature of the
non-wondering sot of the map itself does not matter in this description. Even in case of the
clementary map(9], which is a class of polynomial diffeomorphisin not generating chaos, we
have the same conclusion, meaning that an arguinent of this level does not make any contrast
between chaotic and non-chaotic systems

2. The second one more directly concerns characters of the dynamics and especially employs
mathematical results on the complex Hénon map. Let us consider the situation where an
initial manifold in R? is confined in a certain KAM region. KAM tori themselves or stochastic
regions sandwichied by KAM tori confine the orbits in them, the orbits contained in such a
region cannot escape to outside chaotic or different KAM regions. That is, the (real) classical
dynamices is confined within a certain subregion in phase space, and the transition to other
regions is forbidden.

However, assuine that there exists a saddle point @ on R2, which lies outside the region
bounds the initial manifold. If the whole initial manifold of the semiclassical propagator
intersects with a stable wanifold of the saddle @, both are extended in C? space, then there
at least exist a point on the initial manifold which approaches the saddle @ as n — oco. That
means, even if the transition to the outside regions is forbidden in R?, there is a complex orbit
which goes out from that region and approaches some point located outside. We may expect
further; the existence of an intersection point between the initial complexified manifold and
the stable manifold implies uncountably many intersection points in general. Similadly, i
there exist such a saddle @, we can expect that there ave infinitely many similar saddles in
R2, In this way, we recognize that there are uncountablely many complex orbits that can
proceed to outer regions. Notice that this argument has not taken into account the final state
pr, explicitly, and so not a precise specification of tunneling orbits yet. However, extensive
numerical results tell us that those type of complex orbits are indecd responsible for quantum
tunneling transitions(4].

A mathematical formulation for an intuitive argument mentioned above is possible espe-
cially using the recent results on the Hénon map. For the semiclassical propagator in the p
representation, we consider the following hypersurface induced by the set MB;

MP ={(p,9) € C*| pu = B}, (13)

and define the cotnpact set,

¢t = Um?, (14)

m=0n>m

and
c= ] P (15)

BER .
where the limit is taken in the Hausdorff topology. Then we have the following claim.
Proposition (Ishii) K > C? > J* for every 8 € R. In particulur, Kt D C D J*.
Here, K+ = { (z,3) | {f¥(z,7)}n>o is bounded } and J* = K= are the filled-in Julia

set and the Julia set in the forward(resp. backward) direction, respectively. Iu this case,
the set M;’[” does not specify the initial state py. But, the claim represents an expected




aspect of complex orbits which contribute to the semiclassical propagator. We remark that
the convergent theorem of currents established recently play a crucial role[10, 11].

In the speculation 1 in which the final state is not specified, we have assumed that an
initial manifold intersects with stable manifolds of the saddles. Here, we counsider a special
situation where the initial manifold is put exactly on a cerfain KAM curve. KAM curves are
expressed parametrically as[12, 13]

() [ 2w+ u(p,w) - ulp ~ 21w, w) )
Co: ( . ) = ( o (i) ) (16)

where u(p,w) is determined by the following functional equation:
u(p + 2mw,w) — 2u(p,w) + uly — 2rw,w) = V'(p + u{p,w)). (17)

The dynamics on the curve C, is given in the y-variable as a constant rotation @n41 =
©n + 2w, '

Now suppose that the initial and final states are given by KAM curves, each of which
is specified by the rotation number w and w’ respectively. This leads an expression for the
propagator as < C|U?|C, >. Clearly, real classical orbits connecting two states exist if and
only if w = o since C,(resp. Cu) is an invariant curve. However, in a similar way as the
semiclassical treatment in the p-representation, we can extend our initial value plane to the
complex plane. Recall that, for a given rotation number w, the existence of an analytic KAM
curve is equivalent to the existence of a positive radius of convergency of Lindstedt series,

u(p.w) = 3 KRS el (w), (18)
k=1 <k

where K stands for the perturbation strength of the map under consideration. Therefore,
extending the angle variable ¢ to the complex planc as ¢ = ¢’ + " gives our complexified
initial manifold of semiclassically contributing orbits. The initial value plane thus complexi-
fied is nothing but an analytical extension for the KAM torus with a given rotation nunber
w, or a complexified KAM torus. KAM curves with different rotation numbers give difforent
invariant sets, there are no classical orbits connecting such different KAM curves as long as
the Fourier expansion (18) provides a complex analytic function.

However, as studied in Ref. [14], one can make analytical continuation of the complex
KAM curves at most to certain domains in @-plane and there possibly exist natural bound-
aries. (The radius of convergence as a function of w is called the critical function{12]. ) The
existence of the natural boundary implies that KAM curves caunot be globally invariant in
complex plane and any initial states cannot be bounded even within KAM curves.

3. The third way of characterizing the quantum tunneling in chaotic maps is as follows. To
this end, we pay our attention to a remarkable result on the complex equilibrium neasure
derived in the argument developed by Bedford and Smillie[10]. To be precise, we first present
several basic theorems in the argument.

Theoreml(Bedford-Smillie,Sibony-Fornaess)
For a complex one-dimensional locally closed sub-muonifold M in either JE or an algebroic
variety, there is a constant v > 0 30 that

i [fFM] = - dd°GE(z,0) (19)

71—7+OO 2‘!’),
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in the sense of current, where [M] is the current of integration of M, ie. [M)($) = [y Plas-
In this statement, GF(x,y) represents the Green function given by

- 1 ‘
GHz,y) = lim o log™ |29l (20)

where dd¢ is the complen Laplacian,

HI
N

% dz i A dZy (21)
hk 820

The statement asserts that arbitrary algebraic curves in C2, for exarnple our initial mani-
fold given as pg = a € R, converge to the support of dd* G*(x,y). It is particularly important
to note that it holds irrespective of the nonlinear parameter ¢ in the Hénon map, meaning
that couvergence occurs even in mixed phase space. There is no such a unique set to which
arbitrary manifolds converge in the real phase space. Thus, this convergent property is par-
ticularly intrinsic in the complex dynamics.

The Green function G (z,y) is related to the Julia set as

Supp ;F = J*, (22)
where pT is induced by the Green function as
pt= ;-dd' GE(z,y). (23)
The relation between J* and the support of p* was also proved as(10],
supp )ui = J* (24)

Introducing ¢ = p A p~, it was also shown J* = supp p C J{10]. In particular, if the map
f is hyperbolic, then J* = J holds[10]. The complex equilibrium measure g thus defined
becomes a unique maximal entropy probability measure[10, 15, 16]. Furthermore we have,

Theorem2(Bedford-Smillie} u is miving and the hyperbolic measure.

Ergodicity immediately follows from the mixing property. Heve the hyperbolic measure means
that characteristic expouent Ay and Ay with respect to p satisfies A > 0 > Az, The result
again makes a very sharp contrast to the real-domain dynamics in mixed phase space.

With these in mind, we consider the case with mixed phase space. In the 2-dimensional
real phase space, KAM curves occupy a positive arvea, which is a cousequence of the KAM
theorem. Although there is no rigorous result as to the area of chaotic domains, it is believed
that chaotic regions have a positive Lebesgue measure as well.

Now we ask how invariant sets coexist in complex phase space. The filled-in Julia set
K = KT K~ is the set of non-escaping points both in the forward and backward directions.
Since J* are defined as boundaries of K, if K have no interior points, then K* = J* and
J=JtNJ =KTnNnK™ = K follow.

Recall that the orbits on KAM curves in R? are bounded both in the forward and back-
ward directions, so they are obviously contained in the filled-in Julia set K. Therefore, if
K¥ has no interior points, then KAM curves are necessarily contained in J. Furthermore, if
J* = J holds even in non-hyperbolic parameter regimes, we conclude that KAM curves are
contained in J*. This might sound a bit puzzling because at least in R? a major role of KAM



curves is to bound the orbits in a certain subspace in phase space while the mixing property
mentioned above implies itineracy of (complex) orbits in an eutire phase space domain.

An interesting consequence of this working hypothesis is that all KAM curves are bridged
via the Julia set J. More precisely stated, due to ergodicity on the measure p1, there necessarily
exist an orbit which is placed arbitrarily close to a certain KAM curve and reach some other
KAM curve within any desired precision. It is needless to say such an orbit noves in complex
space because the KAM curves always serve as barriers in R2.

Such a situation is quite snggestive to our tunneling problem because ergodicity on p
ensures the transition over the dynamical barriers in the rcal space. Taking the coherent
representation, we can formulate it more explicitly. Suppose an initial wavepacket, whose
center is specified by the center of a minimum wavepacket as(ga,Pa), is located on a KAM
torus, and evaluate the propagator < gn ,p,,,|l':f "lgg,po > where the final state is given as
gn — iPpn = qp — tpp. The corresponding initial manifold in the semiclassical propagator is
given by the set M%P (see the definition (11)).

Due to the mixing property, that is our basic ansatz in the argwment, for any neighborhood
Ug, Up of initial and final points, (¢a,Pa) and (gs, pp), there exist a time step N such that
FN(U)NUy # 8. Since the neighborhood Uy, should be taken as an open sct in C?2, the orbit
connecting between U, and Ug may not be contained in the initial manifold Mﬁ’ﬁ . However,
we can find another initial state (g, pl,) that is taken arbitrarily close to the original point
(gu, Po) Which contains a desired orbit. In other words, although one cannot say that a set
MG B always contains a connecting orbit, there is a wavepacket arbitrarily close to the original
oue whose initial plane M.f{'ﬁ' contains such a comnecting orbit. The tunneling transition,
rveflecting the mixing property of the complex measure u, takes place in this way.

4. Some numerical verifications

One of our erucial working hypothesis is that KF has no interior points. At present the
best known result on this issue is; in case |8 = 1, vol(K) = vol(K1) = vol(K ™) < oo, where
§ denotes the Jacobian of the Hénon map. (In case of |3] < 1, it was shown that wol(K ™) = 0,
wol(K*) = 0 or oo, also if |§] > 1, then wol(KT) = 0, vol(K ™) = 0 or oo[19].)

Below, we present some picces of nmnerical evidence implying vol(K *) = 0 in the area-
preserving case. First we enumerate how the number of non-escaping orbits decreases as a
function of the time step n. We prepare an ensemble of initial points which is located around
an elliptic fixed point on the real plane, and measure the number of orbits which remnain in
a fixed ball in C2. As shown in Fig. 1, the number of non-escaping orbits remains constant
during some initial time steps and then decreases algebraically. That is, even if the orbits
appear to be trapped around an elliptic fixed point for a certain time interval, they finally
escape to infinity. But their motion is quite sticky like the motion around KAM curves in the
real phase space. Such an exceedingly slow escaping behavior would be due to the fact that
typical complex trajectories initially located in the vicinity of an elliptic point are trapped
around complexified KAM curves and takes a very long time to escape from it [5].

One more numerical experiment is to plot the munber of iterations duriug which the
orbits stay in a finite ball before they escape to infinity. The initial points are put on & real
i-dimensional closed circle which is again close to an elliptic fixed point on the real plane.
A series of plots in Fig. 2 displays that in every scale the orbits bounded in a finite region
do not have positive measure on the initial civcle. Magnification of a small interval produces
similar spiky peaks, which suggest that the bounded orbits are distributed in a sclf-similar
way. These numerical results also imply that vol(K¥) = 0.

The Siegel disk and Hermann ring may form the interior domain of the filled-in Julia set
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Figure 1: The number of non-escaping orbits of the Hénon map as a function of the iteration step.
Initial points are placed on the boxes whose center is at a real fixed point of the map (2) with a = 0.1.
The initial box stze is given as 0.1, 0.2, 0.3, 0.4, 0.5 from the top to the bottow lines respectively.
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Figure 2: The number of iterations during which the orbits stay in a finite region. Initial points is
placed on a cirele in the complex plane given as z = (rcos# — 2y, 0.1), ¥ = (rsinf — yrie, 0.1) (<
8 < 2r). where (L ix, Yrir) denotes a fixed point of the map (2) with a = 0.1, and the radius r is set
to 0.4. The figure {b) is a magnification of a part of (a), and also (¢} is a magnification of a part of

(b).



in case of 1-dimensional complex maps. However, in case of the 2-dimensional area-preserving
map, & necessary condition to realize Siegel disks or Hermann rings, namely, a condition for
linearization around a fixed point is not satisfied: in order to make a linearization around
a fixed point, the eigenvalues g, dg of linearized matrix around a given fixed point should
satisfy so-called non-resonaxt condition:

2

[Tx - #0 (25)

=1

2
for any 7 = 1,2 with lZlm > 2. but for an elliptic fixed point of the 2-dimensional area-
i=1
preserving map we always have a pair of eigenvalues, A and AL, This evidently breaks the
non-resonant condition.

The Birkhoff normal form is known as another type of normalization around an equi-
librium point. However, there is a rigorous proof showing that the possibility of Birkhoff
type normalization, in other words, the convergency of the normal form is a nece:sséry and
sufficient condition of complete integrability of the systern[17]. Since we are concerned with
the mixed system, normalization of such a type cannot obviously be realized.

5. Concluding remarks

Tn the present note, what we wanted to emphasize is that recent developments of complex
dynamical systems in several dimensions certainly contribute to our understanding of quan-
twn tunneling phenomena in chaotic systems. The semiclassical method is used as a bridge
between quanturm mechauics and the correspouding classical mechanics. As demonstrated in
Ref. [4, 6], the serniclassical approximation works quite well even in chaotic maps, so we can
interpret various characters in quantum tunneling phenomena in terins of classical mechanics.
Since quantum tunneling is a classically forbidden process and is not described by the real
classical dynamics, the use of complex classical dynamics is essential, and thereby the results
on higher dimensional complex dynamics will make us go beyond speculations devived frown
numerical studies. .

Indeed, the second and third arguments presented in section 3 fully employ several mathe-
matical results developed in the last decade. In particular, the convergent theorem of currents
is a key ingredient to prove the statement given as the title of the present report[s, 18], Fur-
thermore concerning the third point, our working hypotheses, that is J* = J and the fact
that KE does not have interior points, lead an interesting situation: KAM curves are con-
tained in the Julia set and as a result of the mixing property of p any KAM curve can be
accessed from other KAM curves in complex domain. This is in a very sharp contrast to the
real dynamics in which KAM curves play the role of dynamical barriers in phase space. In
this sense, we may say that the mixing property of p, exactly represents penetration due to
quantum tunneling effects.

In this respect, of much interest is to make clear the relation between the Julia set and the
natural boundary of KAM curves, the existence of which has been suggested numerically and
analyzed extensively. The best choice of the initial manifold in the semiclassical propagator, in
order to confine initial states into themselves as much as possible, would be complexified KAM
curves. The presence of natural boundaries implies that guch a confinement is impossible.
To the author’s knowledge, the role of the Julia set and the link between natural boundaries
and the Julia set have not been clarified yet even in the nurnerical sense.

Finally, we mention some important ingredients in applying complex serniclassical anal-
ysis, we have completely skipped in this report. As stated in section 2, an basic idea of the
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semiclassical approximation, which corresponds to the derivation from eq. (8) to (10), is to
apply the saddle point method to multiple integrals. The saddle point condition just gives
the classical mapping rule (1), and thus the saddles contributing in the sum are complex
classical orbits. However, due to the Stokes phenomenon, not all of the complex classical
orbits necessarily contribute to the final semiclassical propagator. The Stokes phenomenon is
discontinuous change of asymptotic solutions, and it occurs not only the saddle point method
but the differential equation with a large parameter in general. Therefore, coping with the
Stokes phenomenon in multi-dimensions would be a crucial step in carryiug out the cownplex
semiclassical approach. Fortunately, recent developruents in mathematics, so-called eract
WKB analysis, enable us to treat asymptotic expansions on the analytical basis via Borel-
Laplace transform[20], and rather provide a recipe to extend to multi-dimensional problemns
or higher order differential equations21]. A novel aspect in treating Stokes phenomenon in
multiple integral or more generally higher-order differential equations is that Stokes curves
can cross each other[22, 21, 23].

We will report elsewherce that some heuristic argmments, comnbined with a cornputer-
assisted proof, work in the treatment of Stokes geometry for the quantized Hénon map(24]. A
main idea is to impose a self-consistent condition to a given Stokes graphs by introducing new
Stokes lines together with new turning points. This task is essentially equivalent to deterniine
the Riemann sheet structure of the Borel transform(or adjucency in another context[25]).

The present note is written on the basis of the collabovation with Y. Ishii and K.S. Tkeda.
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