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Abstract

We show that for each positive integer n, there exists a finitely
generated polynomial semigroup Gn, with bounded postcritical set such
that the number of connected components of the Julia set of G, is
equal to n. Furthermore, we show that there exists a finitely generated
polynomial semigroup G with bounded posteritical set such that the
Julia set of G has precisely countably many connected components.

We show that for a finitely generated polynomial semigroup G with
bounded postcritical set, the space of connected components of the
Julia set is isomorphic to the inverse limit of connected components of
the realizations of the nerves of finite coverings U of the Julia set of
G, where each U consists of backward images of the J ulia set of G by
finite elements of G. In particular, we give a criterion for the Julia set
of G to be connected.

To investige the overlapping of (backward )images of the Julia set
(or limit sets), we define a new cohomology theory (interaction coho-
mology) for a (backward ) self-similar set. We give a sufficient condition
for H' to be infinite rank. As an application, combining it with the
Alexander duality, we show that for a finitely generated polynomial
semigroup G with bounded postcritical set which has the above con-
dition, the Fatou set of G has infinitely many conntected components.
We give an example of semigroup which has the above condition.

1 Preliminaries

Definition 1.1. A rational semigroup is a semigroup generated by non-
constant rational maps on C with the semigroup operation being the compo-
sition of maps([HM]). A polynomial semigroup is a semigroup generated
by non-constant polynomial maps. Let G be a rational semigroup. We set
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1. F(G) := {z € C | G is normal in a neighborhood of z}(Fatou set for
G)

2. J(@) :=C\ F(G) ( Julia set for G)
3. B(G):={zeT |t U g7'(2) < oo} (the exceptional set for G).
gelG
We denote by (h1, ho,...) the (rational) semigroup generated by the family

{h;}. The Julia set (resp.filled-in Julia set) of the semigroup generated by a
single map g is denoted by J{g)(resp.K(g)).

2 Connected components of Julia sets

For a polynomial semigroup G with bounded postcritically bounded in the
plane, we investigate the space of all conntected components of the Julia set

of G.

Definition 2.1. Let G be a rational semigroup. We set

P(G) = U {all critical values of g}.
geG

This is called the postcritical set for G.

Definition 2.2. Let G be the set of all polynomial semigroups G with the
following properties:

e Each element of G is of degree at least two.
e P(G)\ {oco} is bounded in C.
We set G, := {G € G | J(G) : connected} and G; := {G € G | J(G) :

disconnected }.

Notation: For a polynomial semigroup G, We denote by J the set of all
connected components J of J(G) with J C C.

Question 1. §.77

Proposition 2.3. For any n € N with n > 1, there ezists a finitely gener-
ated polynomial semigroup Gp = (ha, ..., hos) in G satisfying §7 = n.

Proposition 2.4. There ezists a finitely generated polynomial semigroup
G = {h1,ho, h3) in G satisfying that J = N, there erists a superattracting
fized point zg of some element of G with 2¢ € J(G), and int J(G) # 0.
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Definition 2.5. 1. Let X be a metric space. Let h; : X —» X (j =
1,---,m) be a continuous map. Let G = (hy,--- , hm) be a semigroup
generated by {h;}. A nonempty compact subset L of X is said to be
a backward self-similar set with respect to {hy, -+, hp} if

(a) L=UJL; hj'l(L) and
(b) g~(z) # @ for each z € L and g € G.

For example, if G = (hy, - - , hy) is a finitely generated rational semi-
group, then the Julia set J(G) is a backward self-similar set with
respect to {hi, -, hm}-.

2. We set &, == {1,--- ,m}. For each z = (21,22, -+ ,) € L, We set
Ly =21 hay -+ hg L (#0).

3. For a finite word w = (w1, - ,wy) € {1+, m}*, we set hy := Ay, ©
- -0hy, and T = (wg, Wk—1, -+ ,w1). Farthermore, we set [w] := k(this
is called the word length of w).

4. For any k € N, let Uy = Ur(L,{h1, -+, hm}) be the finite covering
of L defined as: Uy := {h'(L) | lw| = k}. Let N(Uy) be the nerve:
i.e. a simplicial complex whose vertex set is {1,...,m}* and which
satisfies that mutually different w?,--- ,w+! € {1,... ,m}* makes an
r-simplex if and only if ﬂgii Ko (L) #0.

Let ¢ : N(Usy1) — N(Uy) be the simplicial map defined as:

(wr, - wh41) = (w1, ,wg) for each (wi, -+, wip) € {1,--+ ,m}EHE
Then {pr : NUp11) — N{Ui)}x is an inverse system of simplicial
map.

5. Let mo(|N(Uy)]) be the set of connected components of the realization
IN(U)) of NUe). Tet {pp : mo(INUs1)]) — TN @)} be the
inverse system induced by {@k}k-

Theorem 2.6. Let G = (h1,--+ ,hm) € G. Then, as regarding the backward
self-similar set J(G) with respect to {h1,--- ,hm}, we have the following.

1. There exists a bijection:

3 : mmo(|N@))) = T

2. (A criterion for the Julia set to be connected) J(G) is connected
if and only if |[N(Uy)| is connected: i.e. for each 1,7 € {1,-++,m}
there ezists a sequence (ig)5_, in {1---,m} such that iy =i, iy = J
and h;*(J(G)) Nht (J(G)) #0 for eacht=1,-+-,5—1.

il
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3. fmo([NU)|) < fmo(|N Ue+1)l), for each k € N.
Furthermore, {$mo([N{Uk)|)}x is bounded if and only if §J < oo. If
17 < oo, then
| Jim_ fmo(IN ) = £

4. Ifm=2 and G € Gy, then J = {1,2}N (Cantor set).
5. If m =3 and G € Gy, then §7 2 Ng.

3 Interaction cohomology

We define a new cohomology theory for (backward) iterated function sys-
tems.

Definition 3.1. (Interaction cohomology) Let X be a metric space. Let
hj: X — X be a continuous map (j = 1,---,m). Let G = (hy,- - s hom) -
Let L be a backward self-similar set with respect to {h1, -+, hm}.

1. We set Cov(L,G) :=
{U : finite covering of L | U = {7 YD), g, (D)}, g1, G €
G, n € N}. This makes an inverse system with respect to refinement.

2. For any module R, we set
HP(L,G, R) := lim e Covnoy BP(INU)|, R).

This is called the p-th interaction cohomology for (L,G) with
coefficient R. Since {Uy} is cofinal in Cov(L,G), we have

HP(L,G,R) = lim x HP(|N(Us)|, R) =: H?(L, {h1,--- ,hm}, R).

( lim  HP(JN (U)|, R) is the inverse limit of {pf : HP(IN(Uk)|, R) —
HP?(|N(Ug+1)l, R)}e.) HP(|N(Uy)|, R) is called the p-th interaction
cohomology at k-th stage for backward iterated function sys-
tem (L, {h1, - , h;m}) with coefficient R and H?(L, {h1,-- , hm}, R)
is called the p-th interaction cohomology at oo-stage for back-
ward iterated function system (L, {hy,- - - , h;n}) with coefficient
R.

3. There is a natural homomorphism from HP(L,G, R) to HP(L, R) (the
Cech cohomology of L with coefficient R). We denote it by:

¥ : AP(L,G,R) — H?(L, R).



Definition 3.2. Let X be a metric space. Let h; : X — X be a continuous
map (j =1,---,m). Let G = (h1, -, hy). A non-empty compact subset
L of X is said to be a self-similar set with respect to {hi, -+ ,hn} if
L = UTL h;j(L). We define the p-th interaction cohomology for (L G) etc.,
by the same way as in Definition 3.1.

Theorem 3.3. Let G = (hy, -+ ,hm) € G. Let R be a field. As regarding
the backward self-similar set J(G) with respect to {hi, - ,hm}, we have

1. dim H%(J(G), G, R) < oo if and only if 47 < oc.
2. If dim HY(J(G), G, R) < oo, then dim H°(J(G),G, R) = 4J.

Lemma 3.4. Let X be a meiric space. Let hj : X — X be a continuous
map (7=1,---,m). Let G = (h1, - , hym). Let L be a backward self-similar
set with respect to {h1, -+ ,hm}. Let R be a module. If(yeq g Y L) # 0 (for
ezample, if G is a rational semigroup, L = J(G), and there exists a point
z € J(G) with hj(z) = z for each j = 1,--- ,m), then HYL,G,R)=R and
H?(L,G,R) =0 for each p > 0.

Hence there exist a G € G with HYJ(G),G, R) = 0. We show there
exists a G € G such that H*(J(G), G, R) has infinite rank.

Theorem 3.5. Let G = (hy,- - ,hm> € G. Let R be a field. As regarding
the backward self-similar set J(G) with respect to {h1, - ,hm}, we assume
all of the following:

1. |N(Uy)| is connected (<= J(G) is connected).

2. There erists a number j € {1,--- m} such that
() "HI(G)) N (Uisigsh 1(J(G))) =

3. There exist mutually distinct elements j3 = J, ja, ja € {1,--- ,m}
such that {j1,jo}, {jo, 3} and {j1,3j3} are 1-simlezes in N(U).

4. For any r > 2, there eists no r-simplez S in N(U) with j € S.
Then, we have the following.

1. dimg H*(J(G), G, R) = dimg ¥(H*(J(G),G, R)) =

2. F(G) has infinitely many connected components.

Example 3.6. There exists a polynomial semigroup G = (h1, h, hs, hq)
such that G satisfies the assumption in Theorem 3.5. Hence we have that

dimg H(J(G), G, R) = dimp ¥(H(J(G),G, R)) = oo and F(G) has in-
finitely many connected components To construct such a G, let g€ R Wlth
1< a<2andlet hi(z) = 2% and ho(2) = 2% Let ¢ = (af — a2)/2.

Let g3 be a polynomial such that J(g3) = {lz —c1| = ad — c1} and let
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g4 be a polynomial such that J(gs) = {|]z + c1| = a3 — c1}. Take a suffi-
cient large n € N and let hs = g} and hy = g7. Let G = (h1, h, hs, ha).
Then, we can show that G € G, the set of all 1-simplexes in N (Uy) is:
{{1,3}, {1,4}, {2,3}, {2,4}, {3,4}}, and there exists no r-simplex 5 in
N(U,) for each r > 2. It is easy to show that G satisfies all of the conditions
of the assumption in Theorem 3.5.

Problem 1. (open) Are there any finitely generated G € G with 0 <
dimp HY(J(G), G, R) < oo?

Definition 3.7. 1. Let L be a backward self-similar set with respect to
{hl, . m} For each (i,7) € {1,---,m}? with i # j, we set Cj; :=
1(L)ﬂh (L). Let C := U jy.i;Ci ;- We say that (L, {h1,--- ; hm})
is postunbranched if for any (i, j) with ¢ # 7, there exists a umque

z = (i, (i,§)) € L such that hi(Ci ;) C Lg.

2. Similarly, Let L be a self-similar set with respect to {h1, -+, hm}.
We set L, = ﬂ;?f’__lhxl---hmj(L), for each z € X,,. For each (4,j) €
{1,--- ,m}? with i # j, we set C;; = hiy(L) N hy(L). Let C :=
U, ): #]Cl j- We say that (L, {h1, -+ ,hm}) is postunbranched if
for any (i,) with i # j, there exists a unique z = (4, (4,7)) € Xm
such that (ki) 1(Ci;) C Ly.

Theorem 3.8. Let L be a backward self-similar set with respect to {h1,- - , hm}
(or let L be a self-similar set with respect to {hi,--- ,hm} such that h; :

L — L is injective for each j = 1,---,m). Let R be a field and let
ary = dimp H'(|N(Uk)|, R) for each r,k € Z with r > 0,k > 1. Fur-
thermore, let ay oo = dimg H™(L, G, R). Suppose (L,{h1,---hn}) is postun-
branched. Then, we have the following.

1. Foranyr > 2 and k > 1, Gy g1 = Mmar 41 + ar1 and there exists an

exact sequence:

0 — H'(IN(h), R) — H'(INUs1)|, B) — @HT [N Us)|, B) — 0.
7=1

2. If [IN(U)]| is connected, then we have the following.

(a) a3 p+1 =mayy +ay1.
(b) If a1i1 = 0, then al00 = 0. If ai 1 # D, then a1,00 = OO.

3. If 69,00, 01,00 < 00, then m —ag1 + a11 = (M — 1)(@0,00 — 21,00)-

4. If Booeatent ¢ R\ (NU{0}), then at least one of ageo and a1 0 is

. m~—1
equal to oo.

5. magr —m+ag; — a1 < ages1 < magk —m+ag1, for each k > 1.



6. If there exists an element kg € N with ag g, > ?ﬁ%-_l(m —ag1 + a1,1),
then ag p+1 > agx for each k > k.

7. 00,00 € {1' €N [ ao,1 <z< ﬁ(m —ap,1 + (11,1)} U {OO}

Example 3.9. (Sierpinski gasket) Let p1, p2, p3 € C be three points such
that p1pops makes a regular triangle. Let hi(z) := 2(z—p;) +p;, for each i =
1,2,3. Let G = (hy, ho, hs). Then, J(G) is equal to the Sierpinski gasket. We
see that (J(G), {h1, ho, hs}) is postunbranched. The set of all 1-simplexes
in N(Uy) is: {{1,2}, {1,3},{2,3}} and there exists no r-simplex in N(U1),
for each r > 2. For each field R, we have dimg H(|N(U;)|, R) = 1. Hence,
by Theorem 3.8, under the notation of Theorem 3.8, we obtain aj k41 =
3ay + 1, for each £ € N.

Theorem 3.10. Let L be a backward self-similar set with respect to {hy, -,
(or let L be a self-similar set with respect to {h1,--+ ,hm} such that hj : L —
L is injective for each j = 1,--- ,m). Let R be a field. Suppose §C;; <1
for each (i,j) with i # j. Then, under the notation in Theorem 3.8, we have
the following.

1. For each k € N and each r > 2, a,p, = 0. (If L is a self-similar set,
then the injectivity of each h; is not needed for this statement.)

2. For each k € N, may i < a1 p+1-
3. If IN(Uy)| is connected and H'(L,G,Z) # 0, then a1, = 0.

Proposition 3.11. Let X be a topological manifold with a distance. Let
hj : X — X be a continuous map (j =1,---,m, m 2 2). Let L be a self-
similar set with respect to {hy,--- , hm}. Suppose that h; : L — L is injective
for each i = 1,2 and dimy(C; ;) < n for each (i,j) with i # j, where dimp
denotes the topological dimension. Let R be a field. Then, dimg H""*(L, R)
is either 0 or co.

4 Tools

We give some tools to show the results.

4.1 Fundamental properties of rational semigroups
Lemma 4.1 ([HM],[GR]). Let G be a rational semigroup.

1. For each g € G, we have g(F(G)) C F(G) and g~*(J(G)) C J(G).
Note that we do not have that the equality holds in general.

2. If G=(hy, - ,hm) then J(G) is backward self-similar: i.e.
J(@) = h{H(J(@) U URZHI(G)).

233
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3. If#(J(G@)) > 3, then J(G) is a perfect set.

4- If§(J(G)) 2 3, then §E(G) < 2.

5. If z € C\ B(G), then J(G) C U g7(2). In particular if z € J(G) \
gedad

E(@), then |J g7(z) = J(G).

geG

6. If {(J(G)) = 3, then J(G) is the smallest in

{K cT| K : compact, $K >3, and g~ (K) C K for each g € G.}

Theorem 4.2 ([HM], [GR]). If§(J(G)) = 3 , then

J(G) = {z € C | 2 is a repelling fized point of some g € G}.

In particular, J(G) = Uyeq J(9)-

4.2 Fiberwise (Wordwise) dynamics

Notation: Let G = {h1,- - , hmm) be a finitely generatd rational semigroup.
For a fixed generator system {h1,---,hm}, we set Xy = {1, ,mi, o
Ym — Zm, o(T1,T0, ) = (xg,23, ). Moreover, we define a map f :
Ym X C > & x C by: (z,9), — (o(z), he,(v)), where z = (z1,22,--).
This is called the skew product map associated with the generator
system {h{,--+ , hm}. Let 7: Xy x C — Eyy and 75 : Ty x € — C be the
projections.

Definition 4.3 ([S1],[S3]). Under the above notation,
L fg = "1z 77l — 77 lo™(z) C Ty ¥ C.

2. we denote by F,(f) the set of points y € 7~ 'z which has a neighbor-
hood U in 7~ 'z such that {f? : U — %y, X C}pen is normal.

8. Jo(f) = n"ta \ Fu(f).

4. J(f) = Uges,, J=(f) in Tpn x C.
5. Jo(f) = 7"z N J(f).

6. F(f) = (Em xT)\ J(f).

Lemma 4.4. 1. f1(J(f) = () = S F um(f) = Je(1).
f‘lJc,(m)(f) = Jo(f). Jo(f) D Jo(f), note that equality does not
hold in general.

2. WE(j(f)) = J(G). where mg : £ x C — T is the projection.
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8. ms(J(f)) = .ﬂl hzl < hHJ(G)) for each x = (z1,%2,"++) € T
=
4. (131, [S1]) (Lower semicontinuity of x — J(f)) If deg(h;) > 2
for each j = 1,---,m, then J(f) is o non-empty perfect set. Fur-
thermore, x — J(f) is lower semicontinuous. That is: for any
point (z,y) € Sy x C with (z,y) € Jo(f) and any sequence (") in
Y, with % — z, there exists a sequence (z",y") in T, x C with
(™, y") € Jpn(f) such that (z",y™) — (z,y). But z — J(f) is NOT
continuous with respect to the Hausdorff topology in general.

5. If deg(h;) > 2 and h; is a polynomial for each j = 1,---,m, then
oo € F(G) and for each T € Xy, we have 0o € ne(Ey(f)) and Jo(f) =
DIC(f) (in 7(z)), where Kol(f) = {y € 7z | {ne(f2(y)nes :
bounded in C}. ’

Proposition 4.5. Let G = (hy, -+ ,hym) € G. Then, for each z € Xp,, the
following sets are connected.

1) () (2) J(f) ﬂh h; (J(G)).

Proof. (1)Jz(f): Just the same procedure as the usual dynamlcs (2)Jx( f)

use connectedness of J,(f) and Lemma 4.4-4. (3) ﬂ Aol ( (@): B
the result that J,(f) is connected and Lemma, 4.4—3. 1

To show Theorem 2.6, we need the fact J(G) = U h_l(J(G))(Lemma 4.1.2)
i1

o0
and () hyl-- h;jl(J (@) is connected for each z € Ly, (Proposition 4.5).
=1
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4.3 Dynamics of postcritically bounded polynomial semigroups

Theorem 4.6 ([S6]). Let G € G. Then for any conntected component J of
J(@) and any element g € G, g71(J) is conntected.

4.4 Fundamental propei'ties of interaction cohomology

Lemma 4.7. Let X be a metric space. Let hy : X — X be a conlinuous
map (j=1,-+,m). Let G ={h1, - , hm). Let L be a backward self-similar
set with respect to {h1,--+ ,hm}. Let R be a module. Then, we have the
following:

1. For each k € N, ¢f : HO(IN )|, R) — H(|NUp+1)l, R) is injective.

In particular, for each k € N, the projection map ¥ : H*(IN U )}, R) —
HOY(L,G, R) is injective.
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2. U : HY(L,G, R) — H%(L, R) is injective.

3. If |IN(Uy)| is conntected, then for each k, ¢} : HY|NU),R) —
HY(IN(U11)|, R) is injective. In particular, the projection map ¥
HY(|N(Uy)|; R) — HY(L,G, R) is injective.

4. If g (L) is connected for each g € G, then we have that
¥ : HY(L,G, R) — H'(L, R) is injective.

5. If an inverse map hj"l : L — L can be defined and it is a contraction
foreachj=1,---m, then ¥: HP(L,G,R) — HP(L, R) is bijective for
each p > 0.

5 Proofs of results

We give proofs of some results.

Proof of Proposition 2.3: Let n € N with n > 1. Let ¢ > 0 be a
sufficiently small number. For each j = 1,---,n, let g; be a polynomial
such that J(g;) = {|2| = j}. Similarly, for each j = 1,---,n, let ge; be a
polynomial such that J(g.;) = {|z — €| = j}. Take a sufficiently large { € N.
Let Gp = (¢}, , g%, 9&,17 e ,gi,n). Then, we can show G, € G. By using
Theorem 4.6, we can show §J = n. O
Proof of Proposition 2.4: Let g;(z) be the second iterate of z +— 22— 1.
Let g be a polynomial such that J(gz) = {|z| = 1} with ga(—1) = (=1).
Then g1(i) = 3 € C\ K(g1). Take a sufficiently large m; € N and let
a := g™ (i). Let g3 be a polynomial such that J(g3) = {|2| = a}. Take
sufficiently large my and mz in N and let G := (7™, 952,95 ). Then, we
can show G € G. By using some results in [S6], we can show J = N. O

Theorem 5.1. Let L be a backward self-similar set with respect to {hi, -+ , hm}
such that L, is connected for each T € Xp,. Let L be the set of all conntected '
components of L. Then, we have the following.

1. There exists a bijection:
@ : fim o (|N Uhe)]) 2 L.

(® is defined as follows: let B = (By)y € limmo(|N (Us)|) where By €
no(|N(Ue)|) and or(Br+1) = By for each k. Take a point x € Xy such
that (zg,-+- ,21) € By for each k. Take an element C € L such that
L,CC. Lt ¥(B)=C.)

2. L is connected if and only if |[N(Uy)| s connected: i.e. for eachi,j €
{1,---,m} there ezists a sequence (i;);_; in {1--- ,m} such that i, =
i, is =] andh;l(L)ﬂh-_1 (L) # 0 for eacht=1,---,5—1.

L+1
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3. tmo(|NUe)]) < tmo(INUk+1)l), for each k € N.
Furthermore, {§mo(|N(Uk))}x is bounded if and only if §£ < oo. If
§L < oo, then
Tim gro(|N (@4e)]) = BL-
— 00
Ifm =2 and L is disconnected, then £ = {1,2}Y (Cantor set).
If m =3 and L is disconnected, then §£ > Rg.

dim H%(L, G, R) < o if and only if £ < oo.

SR

If diim H°(L, G, R) < oo, then dim H°(L, G, R) = {L.

Remark 1. Let L be a self-similar set with respect to {hi,---,hm} such
that L, is connected for each z € X,,. Then, we obtain a result similar to
Theorem 5.1.

Proof of Theorem 2.6 and Theorem 3.3: By Theorem 5.1 and Propo-
sition 4.5. O

Theorem 5.2. Let L be a backward self-similar set with respect to {hy,- - , hm}.
Let G = (hi,++ ,hm). Let R be a field. We assume all of the following:

1. |N({Uy)| is connected.

2. There exists a number j € {1,--- ,m} such that
(RN (Ugizeihy (L)) = 0.

8. There exist mutually distinct elements j1 = j, ja, ja € {1,---,m}
such that {j1,ja}, {jo,j3} and {j1,j3} are 1-simlezes in N(U).

4. For any r > 2 there exists no r-simplez S in N(U1) with j € S.
Then, dimp HY(L, G, R) = oc.

Remark 2. Let L be a self-similar set with respect to {h1, -+, hm}. Then,
we obtain a result similar to Theorem 5.2.

Proof of Theorem 3.5: By Theorem 5.2, Proposition 4.5, Theorem 4.6,
and Lemma 4.7-4, we obtain dimg HX(J(G), G, R) = dimg ¥(H'(J(G), G, R) =
co. Hence, dimg H(J(G), R) = co. By the Alexander duality (see [Sp]), we
have H1(J(G), R) = Hy(C\ J(G), R), where Hy denotes the 0-th reduced
homology. Hence, F(G) has infinitely many connnected components. O
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