A survey of real transverse sections of holomorphic foliations

Toshikazu Ito and Bruno Scárdua

Introduction

Let M be a closed, connected, smooth submanifold of real dimension 2n-1 in the complex space \mathbb{C}^n of dimension $n \geq 2$. Given a holomorphic one form ω in \mathbb{C}^n , for each $p \in \mathbb{C}^n$ with $\omega(p) \neq 0$ we define a (n-1)-dimensional linear subspace $P_{\omega}(p) = \{v \in T_p\mathbb{C}^n \mid \omega(p) \cdot v = 0\}$. If $\omega(p) = 0$, we set $P_{\omega}(p) = \{0\}$ and we shall say that the distribution P_{ω} defined by ω is singular at p. We denote by $Sing(\omega) = \{p \in \mathbb{C}^n \mid \omega(p) = 0\}$ the singular set of ω . We have the following definition of transversality.

<u>Definition</u> We shall say that M is transverse to P_{ω} if for every $p \in M$ we have $T_pM + P_{\omega}(p) = T_p\mathbf{R}^{2n}$ as real linear spaces.

In particular, since $P_{\omega}(p) = \{0\}$ for any singular point p, we conclude that $Sing(\omega) \cap M = \emptyset$. In this note, we survey an existence of a non-existence of M such that M is transverse to P_{ω} .

1 Facts and Known results

In this section, we review the case of holomorphic vector field Z in \mathbf{C}^n , $n \geq 2$. Given complex numbers $\lambda_1, \cdots, \lambda_n \in \mathbf{C}^*$, we denote by $\mathcal{H}(\lambda_1, \cdots, \lambda_n)$ the convex hull of the subset $\{\lambda_1, \cdots, \lambda_n\}$ in \mathbf{C} . Let $Z = \sum_{j=1}^n \lambda_j z_j \partial/\partial z_j$ be a linear vector field on \mathbf{C}^n , $n \geq 2$. We denote by $S^{2n-1}(1) = \{z \in \mathbf{C}^n | \parallel z \parallel^2 = 1\}$ the (2n-1)-dimensional sphere. We have a well-known fact.

<u>Fact</u> (1) If the origin $0 \in \mathbb{C}$ does not belong to $\mathcal{H}(\lambda_1, \dots, \lambda_n)$, then $S^{2n-1}(1)$ is transverse to \mathbb{Z} .

(2) If the origin 0 belongs to $\mathcal{H}(\lambda_1, \dots, \lambda_n)$, then $S^{2n-1}(1)$ is not transverse to Z.

This Fact suggests to us the following properties.

Theorem ([4]) If the origin 0 belongs to $\mathcal{H}(\lambda_1, \dots, \lambda_n)$, then there is no smooth embedding φ of a closed connected smooth manifold M of dimension 2n-1 to \mathbb{C}^n such that $\varphi(M)$ is transverse to $Z = \sum_{j=1}^n \lambda_j z_j \partial/\partial z_j$.

We have a Poincaré-Bendixson type theorem for holomorphic vector fields.

<u>Theorem</u> (A. Douady and T. Ito [3]) Let **N** denote a subset of \mathbb{C}^n holomorphic and diffeomorphic to the 2n-dimensional closed disc $\overline{D^{2n}(1)}$ consisting of all z in \mathbb{C}^n with $||z|| \le 1$.

Let Z be a holomorphic vector field in some neighborhood of N. If the boundary $M = \partial \mathbf{N}$ of N is transverse to Z, then

- (1) Z has only one singular point, say p, in N.
- (2) the index of Z at p is equal to one.
- (3)each solution L of Z which crosses M tends to p, that is, p is in the closure of L. Further, the restriction $\mathcal{F}(Z) \Big|_{\mathbf{N} \{\mathbf{p}\}}$ of the foliation $\mathcal{F}(Z)$ defined by the solutions of Z to $\mathbf{N} \{p\}$ is

 \mathbf{C}^{ω} – diffeomorphic to the foliation $\mathcal{F}\left(Z\right)\Big|_{M}\times\left(0,1\right]$ of $\mathbf{N}-\{p\}$, where $\mathcal{F}\left(Z\right)\Big|_{M}$ denotes the restriction of $\mathcal{F}(Z)$ to M.

<u>Theorem</u> (M. Brunella[1]) Soit $\Omega \subset \mathbb{C}^n$, $n \geq 2$, un ouvert borné avec frontière lisse et fortement convexe, et soit v un champ de vecteurs holomorphe défini au voisinage de $\overline{\Omega}$ et transverse à $\partial\Omega$. Il existe un difféomorphisme $\Phi: \overline{\Omega} \to \overline{D^{2n}(1)}$ qui envoie le feuilletage holomorphe singulier engendré par v dans un feuilletage \mathcal{G} singulier à l'origine et transverse aux sphères $S^{2n-1}(\lambda)$, $\lambda \in (0,1]$.

<u>Theorem</u> (M. Brunella and P. Sad[2]) Let $\Omega \subset \mathbf{C}^2$ be a generalized bidisc and let \mathcal{F} be a holomorphic foliation defined in a neighborhood of $\overline{\Omega}$ and transverse to $\partial\Omega$. Then there exists a locally injective holomorphic map ϕ which sends a neighborhood of $\overline{\Omega}$ to a neighborhood of 0 in \mathbf{C}^n such that $\mathcal{F} = \phi^*(L_\lambda)$ for some $\lambda \in \mathbf{C} \setminus \mathbf{R}$, where L_λ is a linear hyperbolic foliation in \mathbf{C}^2 defined by $xdy + \lambda ydx = 0$.

2 Existence or non-existence of real transverse sections

Let $\omega = \sum_{j=1}^{n} f_j(z) dz_j$ be a holomorphic one form on \mathbb{C}^n , $n \geq 2$. We denote by P_{ω} the distribution defined by ω in $T\mathbb{C}^n$.

<u>Theorem 1</u> ([5]) Let M be a real 2-dimensional closed, connected, smooth manifold. If a smooth embedding φ of M to \mathbb{C}^n is transverse to P_{ω} , then M is a torus.

We can construct a torus T^2 which is transverse to a holomorphic vector field Z. Let $Z = z_1 \partial/\partial z_1 + \lambda z_2 \partial/\partial z_2$ be a linear vector field on \mathbb{C}^2 and $T^2(r_1, r_2) = S^1(r_1) \times S^1(r_2) = \{|z_1| = r_1\} \times \{|z_2| = r_2\}$ a torus in \mathbb{C}^2 .

<u>Proposition 1</u>([6]) The 2-dimensional torus $T^2(r_1, r_2)$ is transverse to Z if and only if the imaginary part of λ is different from zero.

We have the following non-existence theorems of transverse sections.

Theorem 2 ([6]) Let $Z = z_1 \partial/\partial z_1 + \lambda z_2 \partial/\partial z_2$, $\lambda \in \mathbf{R}$ be a linear vector field or $Z = z_1 \partial/\partial z_1 + (nz_2 + z_1^n)\partial/\partial z_2$, $n \in \mathbf{N}$ a holomorphic vector field of Dulac's normal form and M a closed, connected 2-dimensional smooth manifold. Then there is no smooth embedding φ of M to \mathbf{C}^2 such that $\varphi(M)$ is transverse to Z.

Theorem 3 ([5]) There exists no holomorphic foliation \mathcal{F} of codimension one in a neighborhood

of the polydisc \triangle^4 in \mathbb{C}^4 with the property that \mathcal{F} is transverse to the product of spheres $S_1^3(1) \times S_2^3(1) = \{(z_1, z_2, z_3, z_4) \in \mathbb{C}^4 | |z_1|^2 + |z_2|^2 = 1, |z_3|^2 + |z_4|^2 = 1\} \subset \mathbb{C}^2 \times \mathbb{C}^2$.

Theorem 4 ([5]) Let $\omega = \sum_{j=1}^{n} h_j(z) dz_j$ be a homogeneous integrable one form on \mathbb{C}^n , $n \geq 3$. The sphere $S^{2n-1}(1)$ of dimension 2n-1 is not transverse to the foliation $\mathcal{F}(\omega)$ defined by $\omega = 0$.

We are very interested in the following properties.

<u>Proposition 2</u>([5]) Take $\omega = z_1 z_2 z_3 (\sum_{j=1}^3 \lambda_j \frac{dz_j}{z_j})$ on \mathbb{C}^3 , where the non-zero complex numbers $\lambda_1, \lambda_2, \lambda_3$ are satisfied with the following properties: $\lambda_i/\lambda_j \notin \mathbb{R}$, $(i \neq j)$ and $\lambda_1 + \lambda_2 + \lambda_3 \neq 0$. We get the following statements (i) \sim (ii).

 $(i)Sing(\omega) = \bigcup_{i \in \mathcal{I}} \{z_i = 0, z_j = 0\}.$

 $(ii)S^5(1) \setminus (Sing(\omega) \cap S^5(1))$ is transverse to $\mathcal{F}(\omega)$.

(iii) Let $P = \{\alpha z_1 + \beta z_2 + \gamma z_3 = 0\}$, $\alpha, \beta, \gamma \in \mathbb{C}^*$ be a hyperplane through the origin. The restriction \mathcal{F}_1 of $\mathcal{F}(\omega)$ to P has only the origin as singularity. P is transverse to $\mathcal{F}(\omega)$ outside $Sing(\omega)$. \mathcal{F}_1 is not transverse to $P \cap S^5(1)$ though $Sing(\mathcal{F}_1) \cap (P \cap S^5(1)) = \phi$.

Example 1 (T.Ito and M. Yoshino) Take complex numbers $\lambda_1, \dots, \lambda_n, \ \mu_1, \dots, \mu_n \in \mathbb{C}^*$ and assume that the origin 0 belongs to $\mathcal{H}(\lambda_1, \dots, \lambda_n)$ and $\mathcal{H}(\mu_1, \dots, \mu_n)$. We make the following assumption: There exist real numbers c_1 and c_2 such that $\mathcal{H}(c_1\lambda_1 + c_2\mu_1, \dots, c_1\lambda_n + c_2\mu_n) \not\ni 0$. Consider linear vector fields $X = \sum_{j=1}^n \lambda_j z_j \partial/\partial z_j$ and $Y = \sum_{j=1}^n \mu_j z_j \partial/\partial z_j$. Then it is clear that [X,Y] = 0 so that X and Y span a foliation \mathcal{F} of complex dimension two on \mathbb{C}^n . Also \mathcal{F} has as singular set $Sinq(\mathcal{F})$ the union of the coordinate axis. Denote by $\sum (X)$ the set of tangency

as singular set $Sing(\mathcal{F})$ the union of the coordinate axis. Denote by $\sum(X)$ the set of tangency points of X with the spheres $S^{2n-1}(r) \subset \mathbb{C}^n$, $r \geq 0$, then we have $\sum(X)$ given by the equation $\sum_{j=1}^{n} \lambda_j |z_j|^2 = 0$. This is a real cone. Analogously we define $\sum(Y)$ and describe it by the equation

 $\sum_{j=1}^{n} \mu_{j} |z_{j}|^{2} = 0.$ Under the assumption, we have $\sum(X) \cap \sum(Y) = \{0\}$. \mathcal{F} is transverse to $S^{2n-1}(r) \setminus (Sing(\mathcal{F}) \cap S^{2n-1}(r)), r > 0$. Moreover each leaf of \mathcal{F} accumulates the origin.

Theorem 5 ([5]) Let $\omega = \sum_{j=1}^{2n+1} f_j(z)dz_j$ be a holomorphic one form on \mathbb{C}^{2n+1} . Then the sphere $S^{4n+1}(r), r > 0$ is not transverse to P_{ω} .

By this theorem 5 or Proposition 2, the sphere $S^5(1)$ of dimension 5 is not transverse to $\mathcal{F}(\omega_{\lambda})$ where $\omega_{\lambda} = z_1 z_2 z_3 (\sum_{j=1}^3 \lambda_j \frac{dz_j}{z_j}), \ \lambda_j \neq 0$ is a linear logarithmic one form on \mathbb{C}^3 .

Example 2([5]) (1) If λ_i/λ_j , $i \neq j$, are not positive real, then we can construct a smooth embedding $\phi: S^1 \times S^3 \times S^1 \longrightarrow \mathbf{C}^3$ such that $\phi(S^1 \times S^3 \times S^1)$ is transverse to $\mathcal{F}(\omega_{\lambda})$. (2) If λ_i/λ_j , $i \neq j$, are not real, then there exists a smooth embeddin $\Phi: T^5 = S^1 \times T^3 \times S^1 \longrightarrow \mathbf{C}^3$ such that $\Phi(T^5)$ is transverse to $\mathcal{F}(\omega_{\lambda})$.

References

- [1]M. Brunella; Une remarque sur les champs de vecteurs holomorphes transverse au bord d'un domain convexe, C. R. Acad. Sci. Paris, t.319(1994), Série I. 1253-1255.
- [2]M. Brunella and P. Sad; Holomorphic foliations in certain holomorphically convex domains of \mathbb{C}^2 , Bull. Soc. Math. France, 123(1995), 535-546.
- $[3]\mathrm{T.}$ Ito; A Poincré-Bendixson type theorem for holomorphic vector fields, RIMS Kokyuroku $878(\mathrm{June},\,1994)$, 1-9.
- [4]T. Ito; The number of compact leaves of a one-dimensional foliation on the 2n-1 dimensional sphere S^{2n-1} associated with a holomorphic vector field, RIMS Kokyuroku 955(August, 1996), 75-79.
- [5]T. Ito and B. Scárdua; On real transverse sections of holomorphic foliations, pre-print.
- [6]B. Scárdua and T. Ito; On the geometry of holomorphic flows and foliations having transverse sections, pre-print.

Toshikazu Ito Department of Natural Science, Ryukoku University Fushimi, Kyoto, 612-8577 Japan

B. Azevedo Scárdua
Instituto de Matemática
Universidade Federal do Rio de Janeiro
Caixa Postal 68530
21945-970 Rio de Janeiro-RJ
Brazil
scardua@im.ufrj.br