CLASSIFICATION OF QUASITORIC MANIFOLDS OVER A CUBE

大阪市立大学・大学院理学研究科 枡田幹也 (Mikiya Masuda)

Graduate School of Science,

Osaka City University

I report some results obtained as a joint work in progress with Taras Panov and some with Dong Youp Suh.

1. BOTT TOWER

For a complex vector bundle $E \to X$, we denote its projectivization by P(E). We consider the following sequence:

$$B_n \xrightarrow{\pi_n} B_{n-1} \xrightarrow{\pi_{n-1}} \cdots \xrightarrow{\pi_2} B_1 \xrightarrow{\pi_1} B_0 = \{a \text{ point}\}$$

where $B_k = P(1 \oplus L_k)$, L_k is a holomorphic line bundle over B_{k-1} and 1 denotes the product complex line bundle. If every line bundle L_k is trivial, then $B_n = (\mathbb{C}P^1)^n$. Each $\pi_k \colon B_k \to B_{k-1}$ is a $\mathbb{C}P^1$ -bundle and it has two natural cross sections which correspond to the zero sections of L_k and 1. The above sequence together with these natural cross sections is called a *Bott tower* in [5]. In this article we are only concerned with the top space B_n of a Bott tower and call B_n a *Bott* manifold. Our starting point is

Problem. Classify Bott manifolds B_n 's up to diffeomorphism.

It follows from Borel-Hirzebruch formula that

$$H^*(B_k) = H^*(B_{k-1})[y_k]/(y_k^2 - c_1(L_k)y_k)$$

where y_k is the first Chern class of the canonical line bundle over B_k associated with the fibration $\pi_k \colon B_k \to B_{k-1}$. Therefore

$$H^*(B_k) \cong H^*((\mathbb{C}P^1)^k)$$
 as groups

but not as rings in general. Since $H^2(B_k)$ is additively generated by y_1, \ldots, y_k over \mathbb{Z} , L_{k+1} is parameterized by \mathbb{Z}^k so that there is a canonical surjection

(1.1)
$$\mathbb{Z} \oplus \mathbb{Z}^2 \oplus \cdots \oplus \mathbb{Z}^{n-1} = \mathbb{Z}^{n(n-1)/2} \to \{B_n, s\}.$$

Example. When n = 2, we have a surjection $\mathbb{Z} \to \{B_2 \text{'s}\}$ and $L_2 = \gamma^m$ for some $m \in \mathbb{Z}$ where γ is the canonical line bundle over $B_1 = \mathbb{C}P^1$. It is well-known that

 $P(\gamma^m \oplus \mathbf{1}) \cong P(\gamma^{m'} \oplus \mathbf{1}) \Longleftrightarrow m \equiv m' \pmod{2}.$

The proof goes as follows. We note that $P(E) \cong P(E \otimes \eta)$ for any complex line bundle η . Suppose $m \equiv m' \pmod{2}$. Then $m' - m = 2\ell$ for some $\ell \in \mathbb{Z}$ and we have

$$P(\gamma^m \oplus \mathbf{1}) \cong P((\gamma^m \oplus \mathbf{1}) \otimes \gamma^{\ell}) = P(\gamma^{m+\ell} \oplus \gamma^{\ell}).$$

Here $\gamma^{m+\ell} \oplus \gamma^{\ell}$ and $\gamma^{m'} \oplus \mathbf{1}$ are over $\mathbb{C}P^1$ and have the same first Chern class, so they are isomorphic. Hence the last space above is same as $P(\gamma^{m'} \oplus \mathbf{1})$. This proves the implication \Leftarrow above.

On the other hand, it is not difficult to see that if $H^*(P(\gamma^m \oplus 1)) \cong H^*(P(\gamma^m' \oplus 1))$ as rings, then $m \equiv m' \pmod{2}$. \Box

The example above shows that cohomology ring detects diffeomorphism types of Bott manifolds B_n 's when n = 2. One can check that this is also the case when n = 3. So we are led to ask

Question. Are Bott manifolds B_n and B'_n diffeomorphic if and only if $H^*(B_n) \cong H^*(B'_n)$ as rings?

The following proposition gives a partial affirmative answer to the question above.

Proposition 1.1. Bott manifolds B_n and $(\mathbb{C}P^1)^n$ are diffeomorphic if and only if $H^*(B_n) \cong H^*((\mathbb{C}P^1)^n)$ as rings.

Proof. We prove the "if part" by induction on n. When n = 1, the statement is trivial and we assume $n \ge 2$. From

$$H^*(B_n) = H^*(B_{n-1})[y_n]/(y_n^2 - c_1(L_n)y_n)$$

one can conclude that $H^*(B_{n-1}) \cong H^*((\mathbb{C}P^1)^{n-1})$, so B_{n-1} is diffeomorphic to $(\mathbb{C}P^1)^{n-1}$ by induction assumption. Let $x_1, \ldots, x_{n-1} \in H^2(B_{n-1})$ be generators with square zero and write $c_1(L_n) = \sum_{i=1}^{n-1} a_i x_i$. Then

$$H^*(B_n) = \mathbb{Z}[x_1, \ldots, x_{n-1}, y_n] / (x_1^2, \ldots, x_{n-1}^2, y_n^2 - (\sum a_i x_i) y_n).$$

Since $H^*(B_n) \cong H^*((\mathbb{C}P^1)^n)$, there must be an element of the form $y_n + \sum b_i x_i$ with square zero:

$$0 = (y_n + \sum b_i x_i)^2 = \sum (a_i + 2b_i) x_i y_n + (\sum b_i x_i)^2.$$

This holds only when at most one a_i is non-zero and even because $x_i x_j$ (i < j) and $x_i y_n$ form an additive basis of $H^4(B_n)$. Therefore L_n is the pullback of γ^{-2b_i} over $\mathbb{C}P^1$ by a projection $B_{n-1} = (\mathbb{C}P^1)^{n-1} \to \mathbb{C}P^1$. Since $P(\gamma^{-2b_i} \oplus 1)$ is a product bundle as observed in the example above, so is $P(L_n \oplus 1)$, proving the proposition. \Box

CLASSIFICATION OF QUASITORIC MANIFOLDS OVER A CUBE

2. Equivariant classification of Bott manifolds

Each B_k admits an effective action of $(\mathbb{C}^*)^k$ constructed inductively as follows. Suppose B_{k-1} admits an action of $(\mathbb{C}^*)^{k-1}$. Then it lifts to an action on L_k . On the other hand, the product bundle 1 admits an action of \mathbb{C}^* by scalar multiplication. These define an action of $(\mathbb{C}^*)^k$ on $1 \oplus L_k$ and induce an action of $(\mathbb{C}^*)^k$ on B_k .

It turns out that B_k with the action of $(\mathbb{C}^*)^k$ is a compact nonsingular toric variety of complex dimension k. A toric variety of complex dimension k is a normal algebraic variety with an algebraic action of $(\mathbb{C}^*)^k$ having a dense orbit ([4]). The orbit space of B_k by the maximal compact torus T^k of $(\mathbb{C}^*)^k$ is a k-cube. In particular B_n admits an action of $T = T^n$ and its orbits space is an n-cube.

For a T-space X, its equivariant cohomology is by definition

$$H_T^*(X) := H^*(ET \times_T X)$$

where $ET \to BT$ is a universal principal *T*-bundle and $ET \times_T X$ is the orbit space of $ET \times X$ by the diagonal action of *T*. $H_T^*(X)$ is not only a ring but also an algebra over $H^*(BT)$ through the projection map $ET \times_T X \to ET/T = BT$.

As is well known, $H_T^*(B_n)$ is isomorphic as a ring to the face ring of (the dual of) the *n*-cube. So the ring structure of $H_T^*(B_n)$ does not detect the *T*-equivariant diffeomorphism type of B_n , but the algebra structure does.

Theorem 2.1. Bott manifolds B_n and B'_n with the above *T*-actions are equivariantly diffeomorphic if and only if $H^*_T(B_n) \cong H^*_T(B'_n)$ as algebras over $H^*(BT)$.

3. Quasitoric manifolds over an n-cube

If M is a compact nonsingular toric variety of complex dimension n, then M has an action of $(\mathbb{C}^*)^n$ and the orbit space M/T of M by the restricted action of the maximal compact torus T of $(\mathbb{C}^*)^n$ is a manifold with corners such that every face (even M/T itself) is contractible. In fact, M/T is often a simple convex polytope (e.g. B_n/T is an *n*-cube) and this is the case when M is projective (see [4]).

Davis-Januszkiewicz [2] introduced a topological counterpart to a compact nonsingular toric variety in algebraic geometry. They used the terminology toric manifold for the topological counterpart, but Buchstaber-Panov [1] started calling it a quasitoric manifold because the terminology toric manifold was already used in algebraic geometry for (compact) nonsingular toric variety. Roughly speaking a quasitoric manifold is a closed smooth manifold M of dimension 2n with smooth T-action such that M/T is a simple convex polytope. Not all but many compact nonsingular toric varieties with the restricted action of the maximal compact subtorus of $(\mathbb{C}^*)^n$ provide examples of quasitoric manifolds, and there are quasitoric manifolds which do not arise this way.

We think of the left side of (1.1) as a set of upper triangular matrices with 1 as diagonal entries. Obviously all principal minors of such an upper triangular matrix are 1, where the determinant of the matrix itself is considered to be a principal minor. It turns out that any quasitoric manifold over an *n*-cube is associated with an integer square matrix $C = (c_{ij})$ of size *n* such that

(3.1) $c_{ii} = 1$ for any *i* and all principal minors of *C* are ± 1 .

The correspondence is as follows (cf. [5]). We view S^1 and S^3 as the unit spheres of \mathbb{C} and \mathbb{C}^2 respectively. Associated with the matrix $C = (c_{ij})$, we define an action of $(g_1, \ldots, g_n) \in (S^1)^n$ on $(S^3)^n$ by

$$(z_1, w_1, \ldots, z_n, w_n) \mapsto (g_1 z_1, (\prod_{i=1}^n g_i^{c_{i1}}) w_1, \ldots, g_n z_n, (\prod_{i=1}^n g_i^{c_{in}}) w_n)$$

where $(z_j, w_j) \in S^3 \subset \mathbb{C}^2$ denotes the coordinate of the *j*th factor of $(S^3)^n$. The condition (3.1) ensures that the action of $(S^1)^n$ on $(S^3)^n$ is free, so that its orbit space is a closed smooth manifold of dimension 2n, which we denote by M(C). Note that when C is the identity matrix, $M(C) = (\mathbb{C}P^1)^n$. M(C) admits an action of T induced from an action of $(t_1, \ldots, t_n) \in T$ on $(S^3)^n$ defined by

$$(z_1, w_1, \ldots, z_n, w_n) \mapsto (z_1, t_1 w_1, \ldots, z_n, t_n w_n).$$

The orbit space of M(C) by the induced T-action is an n-cube, so that M(C) with this T-action is a quasitoric manifold over an n-cube.

Theorem 3.1. The following are equivalent.

- (1) M(C) is equivariantly diffeomorphic to a Bott manifold.
- (2) All principal minors of C are 1.
- (3) M(C) admits a T-invariant almost complex structure.

Example. A simple example of an integer square matrix C which satisfies the condition (3.1) but does not satisfy (2) in the theorem above is $\begin{pmatrix} 1 & 1 \\ 2 & 1 \end{pmatrix}$. In this case M(C) is (equivariantly) diffeomorphic to $\mathbb{C}P^2 \# \mathbb{C}P^2$ (with an appropriate action of T^2).

Theorem 3.2. Let C' be another integer square matrix of size n satisfying the condition (3.1). Then the following are equivalent.

- (1) M(C) and M(C') are equivariantly diffeomorphic.
- (2) C and C' are conjugate by a permutation matrix and a matrix with ± 1 as diagonal entries and 0 as off-diagonal entries.
- (3) $H^*_T(M(C)) \cong H^*_T(M(C'))$ as algebras over $H^*(BT)$.

CLASSIFICATION OF QUASITORIC MANIFOLDS OVER A CUBE

We do not know the corresponding results for (non-equivariant) diffeomorphism classification of M(C)'s although we can describe explicitly matrices C such that M(C) is diffeomorphic to $(\mathbb{C}P^1)^n$.

An *n*-cube is a product of *n* number of 1-simplices. It turns out that most of the results mentioned so far can be extended to quasitoric manifolds over a product of finitely many simplices (with possibly different dimensions). Those quasitoric manifolds are also studied in [3].

4. Torus manifolds

As remarked before, a compact nonsingular toric variety with restricted action of the maximal compact torus is not necessarily a quasitoric manifold and vice versa. A *torus manifold* introduced in [6] is a closed smooth manifold of dimension 2n with a smooth *T*-action having a fixed point. Precisely speaking, orientation data is incorporated in the definition of torus manifold, but we do not care about it. A compact nonsingular toric variety with restricted action of the maximal compact torus and a quasitoric manifold are both a torus manifold, but of a special type. Their odd degree cohomology groups vanish and every fixed point set component of a subtorus is simply connected. It follows from [7] that

Proposition 4.1. Let M be a torus manifold of dimension 2n such that $H^{odd}(M) = 0$ and every fixed point set component of a subtorus of T (even M itself) is simply connected. Then M/T is a manifold with corners such that every face (even M/T itself) is contractible.

Because of this, a torus manifold satisfying the assumption in the proposition above seems an appropriate topological counterpart to a compact nonsingular toric variety. We conclude this article with the following question.

Question. Let M and M' be torus manifolds satisfying the assumption in the proposition above.

- (1) Are they equivariantly diffeomorphic if and only if $H_T^*(M) \cong H_T^*(M')$ as algebras over $H^*(BT)$?
- (2) Are they diffeomorphic if and only if $H^*(M) \cong H^*(M')$ as rings?

REFERENCES

- V. M. Buchstaber and T. E. Panov, Torus Actions and Their Applications in Topology and Combinatorics, University Lecture, vol. 24, Amer. Math. Soc., Providence, R.I., 2002.
- [2] M. W. Davis and T. Januszkiewicz, Convex polytopes, Coxeter orbifolds and torus actions, Duke Math. J. 62:2 (1991), 417-451.
- [3] N. E. Dobrinskaya, Classification problem for quasitoric manifolds over a given simple polytope, Functional Analysis and its Applications 55 (2001), 83-89.
- [4] W. Fulton, An Introduction to Toric Varieties, Ann. of Math. Studies, vol. 113, Princeton Univ. Press, Princeton, N.J., 1993.

CLASSIFICATION OF QUASITORIC MANIFOLDS OVER A CUBE

- [5] M. Grossberg and Y. Karshon, Bott towers, complete integrability, and the extended character of representations, Duke Math. J 76 (1994), 23-58.
- [6] A. Hattori and M. Masuda, Theory of multi-fans, Osaka J. Math. 40 (2003), 1-68.
- [7] M. Masuda and T. Panov, On the cohomology of torus manifolds, preprint

DEPARTMENT OF MATHEMATICS, OSAKA CITY UNIVERSITY, SUGIMOTO, SUMIYOSHI-KU, OSAKA 558-8585, JAPAN

E-mail address: masuda@sci.osaka-cu.ac.jp