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ISOVARIANT BORSUK-ULAM TYPE RESULTS
AND THEIR CONVERSE

Tkumitsu Nagasaki (RERRZERZFHEFZER - RIF  400)
Department of Mathematics, Graduate School of Science
Osaka University

0. THE BORSUK-ULAM THEOREM

In this note, we first make a brief survey of Borsuk-Ulam type theorems, and
next introduce some results on the isovariant Borsuk-Ulam theorem and its converse
from [22, 23].

K. Borsuk (1905-82) showed the following three results in 1933.

Theorem 0.1 ([21]). :
(B1) If f: S — S™ is antipodal, i.e., f{—z) = —f(x) for all x € S”, then [ is
essential, i.e., f is not null-homotopic.
(B2) For any continuous map f : S™ — R", there exists xo € S™ such that
fl@a) = f(—mo).
(B3) Suppose S™ = ;o Fi, Fi: nonempty closed sets. Then some F; contains
an antipodal pair; {zo, —zo} C Fi. (Lusternik-Schnirelmann 1930)

The second result was conjectured by S. Ulam; so it is usually called the Borsuk-
Ulam theorem. It is known that the Borsuk-Ulam theorem has various equivalent
statements; indeed, the above statements (B1)-(B3) are equivalent, and in addition,
the following statements are also equivalent to the Borsuk-Ulam theorem.

(B4) If f : S® — R" is antipodal, then f~1(0) # 0.

(B5) If f:S™— S™ is antipodal, then n < m.

0.1. Generalization. Each of (B1) — (B5) has various generalizations and related
topics. Indeed (B1) says that the degree of f is nonzero; in fact, it is well known
that deg f is odd. Thus (B1) is related to the degree of (equivariant) maps or degree
theory. Recently Hara [11] and Inoue [13] obtained a natural extension of (B1) for
equivariant maps between Stiefel manifolds with standard O(n)- or Zt-action.
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Statements (B2) and (B4) are related to coincidence theory or fixed point the-
ory, and there are various researches in this fleld; see, for example, Gongalves-
Jaworowski-Pergher [8], Gongalves et al. [9], Gongalves-Wong [10].

Statement (B3) is related to the Lusternik-Schnirelmann category or Lusternik-
Schnirelmann theory, which provides lower estimate for the number of critical
points of a smooth function. For example, (B3) implies catRP™ > n and so
we obtain cat RP" = n, where cat X denotes the Lusternik-Schnirelmann category
of X, Le., cat X := min{n|X = |J}_, Fi, each F; is closed and contractible in X}.

0.2. Equivariant generalization. From the viewpoint of transformation groups,
(B5) can be rephrased as follows: If there is a Zy-map f : S* — S™, then n < m
holds, where Z, acts antipodally on the spheres. This formulation has a lot of
equivariant generalizations; see, for example, Jaworowski [14], Dold [6], Fadell-
Husseini [7], Marzantowicz [18], Bartsch [1], Komiya [16], Hara-Minami [12], etc.
We recall some well-known equivariant generalizations. A direct generalization of

" (B5) is the following.

Theorem 0.2. Suppose that G # 1 acts freely on S™, S™. If there is a G-map
f:8% — 8™ then n < m holds. (Dold [6], Kobayashi [15], Laitinen [17] etc.)

The proof of Theorem 0.2 is reduced to the case G = Z,. An important fact is
that the degree of a self G-map f : S® — S™ is nonzero; in fact deg f =1 mod p.

Remark. This result still holds for free finite G-CW complexes homotopy equivalent
to spheres.

In nonfree case, the following is known.

Theorem 0.3. If there is a ZE-map (or T*-map) f : S* — S™, where Zf or T* acts
fired-point-freely on spheres, then n < m holds. (Fadell-Husseini 7], Marzantowicz
(18], etc.) Moreover this result still holds for Z,, (or Q)-homology spheres. (Clapp-

Puppe [4].

A euclidean space V with linear G-action is called a G-representation. We may
suppose that the action is orthogonal. Let SV denote the unit sphere of a G-
representation V. In this case, we say that G acts linearly on SV or that SV is a
linear G-sphere.

A fundamental question is: For which finite groups does a Borsuk-Ulam type
result hold? T. Bartsch [1] answered this question as follows.

Theorem 0.4 ([1]). Suppose that G is a finite group. The “weak” Borsuk-Ulam
theorem for linear G-spheres holds if and only if G is a p-group. Namely G has the
following property (W) if and only if G is a p-group.



(W) : There exists o monotonely increasing function g diverging to infinity such
that for any linear G-spheres SV, SW (V¢ = W¢ = 0) with a G-map
f: 8V — SW, the inequality we(dim SV) < dim SW holds.

By Theorem 0.3, one can take the identity map as ¢ for G = Z’;, which is the
best possible function satisfying (W); such a function ¢ is called the Borsuk-Ulam
function. In general, it is difficult to determine the Borsuk-Ulam function, but a
few results are known; see [1] for relevant results.

For other topics on the Borsuk-Ulam theorem, see also Steinlein [25, 26], Ma-
tousek [19].

1. THE ISOVARIANT BORSUK-ULAM THEOREM

Let G be a compact Lie group. Let X, Y be G-spaces, and V, W G-representa-
tions.

Definition 1. A continuous map f : X — Y is called G-isovariant (or isovariant)
if f is G-equivariant and preserves the isotropy groups, i.e., Gz = Gy for any
zeX.

A. G. Wasserman [27] first studied an isovariant version of the Borsuk-Ulam
theorem. Using the Borsuk-Ulam theorem for free Z,-actions, one can obtain the
following result.

Theorem 1.1 (Isovariant Borsuk-Ulam theorem). Let G be a solvable compact Lie
group. If there is an isovariant map f : SV — SW, then

dim SV — dim SVE < dim SW — dim SW©.
We note that this result still holds for semilinear actions on spheres.

Definition 2. The smooth G-action on a (homotopy) sphere M is called semalinear
if for any H < G, M¥ is a (homotopy) sphere or §. We call such a G-manifold M
a semilinear G-sphere.

Theorem 1.2 ([21]). Let G be a solvable compact Lie group and let M, N be
semilinear G-spheres. If there is an isovariant map f : M — N, then

dim M — dim M% < dim N — dim N°.

It is still open whether Theorem 1.1 holds for an arbitrary compact Lie group,
but Theorem 1.2 does not hold if G is nonsolvable.

Theorem 1.3 ([21]). Let G be a nonsolvable compact Lie group. There are fized-
point-free semilinear G-spheres My, n > 1, with hm dim M,, = oo and a represen-

n—

tation sphere SW such that there is an isovariant maps fn: My — SW for every
n.
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Consequently, we obtain a Bartsch type result for semilinear actions; namely,
the isovariant Borsuk-Ulam theorem for semilinear G-spheres holds if and only if
(G is solvable.

Remark. Bartsch’s result, Theorem 0.4, still holds for semilinear G-spheres.

2. THE CONVERSE OF THE ISOVARIANT BORSUK-ULAM THEOREM

Let G be a solvable compact Lie group. A subgroup means a closed subgroup.
As mentioned in the previous section, the isovariant Borsuk-Ulam theorem holds
for G. We would like to consider the converse.

If there is an isovariant map f : SV — SW, then f# : SVHE — SWH H <«
K < G, is K/H-isovariant. Since K/H is also solvable, we can apply the isovariant
Borsuk-Ulam theorem to f¥. Hence we have

Proposition 2.1. Let G be a solvable compact Lie group. If there is an isovariant
map [ SV — SW, then
(Cyw) : dim SVH — dim SVX < dim SW¥ — dim SW¥ for any pair of
closed subgroups H <1 K.

We formulate the converse problem of the isovariant Borsuk-Ulam theorem as
follows.

Question. Let G be a solvable compact Lie group. Suppose that a pair (V, W) of
G-representations satisfies

(a) Iso SV C Iso SW,

(b) (Cvw).
Is there a G-isovariant map f: SV — SW (or f: V — W)?

Remark. (1): The condition (a) is obviously necessary. However if G is abelian,
then one can see that the condition (b) implies (a); so the condition (a) can be
omitted.

(2) Note that there exists an isovariant map f: SV — SW if and only if there
exists an isovariant map f:V — W.

Definition 3. If this question is affirmative for (7, we say that G has the complete
Borsuk-Ulam property (or G is & complete Borsuk-Ulam group).

Unfortunately the complete answer is not known yet, but there are some partial
results. In this note, we would like to give the outline of proof of the following
theorem; the full detail will appear in [23].

Theorem 2.2. The following groups have the complete Borsuk-Ulam property.
(1) finite abelian p-group,



(2> Zp"qmr
(3) Zpgr,

where p, q, v are prime numbers.

Let T}, k € Z, be the irreducible Sl-representation given by t-2 1= t*z,t € §* (C
C), z € Ty, (= C). Restricting T to Z,, C S*, we have a Zy,-representation, denoted
by the same symbol 7. For simplicity we here treat only complex representations.

2.1. Proof of Theorem 2.2 (1) (outline). Let us consider the case G = Zj,.
Then Ty, 0 < k < p— 1, are all irreducible Z,-representations. We may suppose
VG = W€ = 0. In fact, one can see that there exists an isovariant map f : V — W
if and only if there exists an isovariant map f : Vg — Wy, where Vi denotes the
orthogonal complement of V¢ in V. Therefore we may set V = Ty, & - & T,
W=T,® - &1, where k;, [; are prime to |G]|.

An isovariant map f : T, — T} is defined by fi,(2) = €¥'z, where k'k = 1
mod |G]. Since condition (Cy,w) implies n < m, one can construct an isovariant
map f:V — W using fi,.

For a general abelian p-group, a similar argument shows Theorem 2.2 (1).

2.2. Proof of Theorem 2.2 (2) (outline).

Definition 4. A pair of representations (V, W) is called primative if V and W cannot
be decomposed inte V = V; @ Vs, W = W, @ W, such that (V;, W;) # (0,0) satisfies
(CVi,VVL‘): 1=1, 2.

If there are isovariant maps f; : V; — Wi, then fid fo: Vi@ W, — Vo @& W,
is also isovariant; therefore it suffices to construct an isovariant map between each
primitive pair.

Let us consider G = Z,, for example. Clearly (0,7;) and (Tx,T3), (k,|G]) =
(1,|G]), are primitive, and one can easily construct isovariant maps between these
representations as in the proof of (1). Tn addition, a new primitive pair (11, T, ®7;)
appears for G = Z,,. In this case an isovariant map exists; for example, the map
defined by f : z — (2P, 29) is isovariant. These pairs mentioned above are essentially
all primitive pairs for Z,,. Therefore Z,, has the complete isovariant Borsuk-Ulam
property.

For Zyng-, other primitive pairs appear, but one can directly define isovariant
maps in a similar way. For example, (T, ® Ty, T2 ® Ty, ® T;2) is primitive for
Lngr, m,m 2> 2. In this case there is an isovariant map; for example f : (21, z3) —
(28, 22+2, 23) is isovariant. Thus one can see that Zgyn,m has the complete isovariant
Borsuk-Ulam property.
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2.3. Proof of Theorem 2.2 (3) (outline). Next consider the case of Zpg-. The

proof is more complicated.
For all primitive pairs except one type, one can directly define isovariant maps
as before. The exception is the following type of primitive pair:

(LeT, T, Ty ® T ® Ty ®Tp)

If there is an isovariant map for this pair, it turns out that Zy, has the complete
isovariant Borsuk-Ulam property. It seems, however, difficult to directly define an
isovariant map; so we would like to use equivariant obstruction theory.

The question is the following:

Question. Is there a Zjy,-isovariant map
[ LT, 8T, =Ty ® T ® Ty ®Ty?
The answer is yes. Actually we shall show the existence of an S*-isovariant map
J:S(TLoT,®T) — S(T1® T ® Ty & Tpr)-

Therefore we see that Zy,, has the complete Borsuk-Ulam property.

3. THE EXISTENCE OF AN ISOVARIANT MAP

We shall discus the above question in a more general setting. Let G = S! and
let M be a rational homology sphere with pseudofree S'-action.
Definition 5 (Montgomery-Yang). An Sl-action on M is pseudofree if

(1) the action is effective, and
(2) the singular set M= ==, sm<gt M H consists of finitely many exceptional
orbits.

Here an orbit G(z) is called exceptional if G(z) = S§'/C, (1 # C < S%).

Example 3.1. Let V =7, & T, ® T,. Then the S*-action on SV is pseudofree.
Indeed it is clearly effective, and

SVt =ST, [ [ ST, ][ ST
=52, [ 8'/2, [ ] $*/ 2.

Remark. There are many “exotic” pseudofree S'-actions on high-dimensional ho-
motopy spheres. (Montgomery-Yang [20], Petrie [24].)

Let SW be any S'-representation sphere. We consider an Sl-isovariant map
f:M— SW. '
The result is the following:



Theorem 3.2. With the above notation, there is an S*-isovariant map f : M —
SW if and only if

(): Iso M C Iso.SW,
(PF1): dimM — 1 < dim SW — dim SWH when 1 # H < C for some C &€ Iso M,
(PF2): dim M + 1 < dim SW — dim SW¥ when 1 # H £ C for every C € Iso M.

3.1. Examples. We give some examples. Let p, g, 7 be pairwise coprime integers
greater than 1.

Example 3.3. There is an S'-isovariant map
fiS(LeT,dT,) = STy T ® Ty @ Try).

Proof. (PF1) and (PF2) are fulfilled. One can see Iso M = {1,Zy,Zg, Z,} and
Iso SW = {1, 2y, Zy, Lr, Lopg, Lgr, Ly }; hence Iso M C Iso SW. O

Example 3.4. There is not an S'-isovariant map
F:S(T,aT,®T) — STy ® Ty & Trp).
Proof. (PF1) is not fulfilled. O
Remark. There is an S*'-equivariant map
[8(L@T,0T,) — S(Tpg ® Tor @ Trp)-
By Example 3.3, we see that Z,,, has the complete Borsuk-Ulam property.

3.2. Proof of Theorem 3.2 (outline). We shall give the outline of Theorem 3.2.
The full detail will appear in [22]. Set Y := SW \ SW>1. Note that S acts freely
onY. Let N; be an S'-tubular neighborhood of each exceptional orbit in M. By
the slice theorem, N; is identified with S x¢, DU; (1 < @ < 1), where C; is the
isotropy group of the exceptional orbit and U; is the slice Cj-representation. Set
X = M\ (]],int N;). Note that S* acts freely on X.

The “only if” part is proved by the (isovariant) Borsuk-Ulam theorem. Indeed
we can show (PF1) as follows. Take a point ¢ € M with G, = C and a C-invariant,
closed neighborhood B of z C-diffeomorphic to some unit disk DV. Hence we
obtain an H-isovariant map f : SV -— SW. Applying the isovariant Borsuk-Ulam
theorem to f, we have (PF1).

We next show (PF2). Since f is isovariant, f maps M into SW \ SWH, and
since SW \ SW# is S'-homotopy equivalent to SWg, we obtain an S*-map g :
M — SWpy. By Theorem 0.3, we obtain (PF2).

To show the converse, we begin with the following lemma.

Lemma 3.5. There is an S*-isovariant map ﬁ Ny — SW.
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Proof. Let N; = N = S x¢ DV, where C is the isotropy group of the exceptional
orbit and V is the slice representation. Similarly take a closed S*-tubular neighbor-
hood N’of an exceptional orbit with isotropy group C, and set N’ = S*x¢ DV, By
(PF1), we see that dim SV +1 < dim SV’ — dim SV">*. Since C acts freely on SV,
by obstruction theory, there is an C-map g: SV — SV’ \ SV>t ¢ SW, and so we
obtain a C-isovariant map g : SV — SW. Taking a cone, we have a C-isovariant
map §: DV — DV’; hence there is an S'-isovariant map f=8%¢§g: N—- N C
SW. O

Set fi := filow, 1 ON; — Y, and f =[], fi : 0X — Y. If f is extended to an
Sl-map F': X — Y, by gluing the maps, we obtain an Sl-isovariant map

Fu([] f): M —sw.

Thus it suffices to investigate the following question:
(Q) Is there an extension F': X —Y of f: 90X — Y7
Since S! acts freely on X and Y, the obstruction to an extension lies in
H*(X/S', 0X/SY me_1(Y)).
Set k = dim SW — dim SW>!. A standard computation shows
Lemma 3.6. (1) Y is (k — 2)-connected and (k — 1)-simple.
(2) 751 (Y) = He (V) 2 @peul, where A = {H € Iso SW|dim SWH# =
dim SW>1}, and generators are represented by SWy, H € A.
Note that dim M — 1 < k by (PF¥1) and (PF2). We divide into two cases.
Case I dim M — 1 < k (i.e., dim X/S* < k). In this case, we see that
HY(X/S,0X/SYm 1 (Y))=0
by dimensional reason. Hence the obstruction vanishes and there exists an exten-
sion F: X =Y.
Case II: dim M — 1 = k (ie., dim X/S* = k). The obstruction v5:(f) to an
extension lies in
HY(X/SY,0X /8" o1 (Y) = ©pesl.
(HY(X/S', 80X/ mpr(Y)) = 0,1 # k)
To detect the obstruction, we introduce the multidegree.

3.3. Multidegree. Let N = S? xo DU C M, 1 # C € Iso(M), dimM — 1 =
dimU =k, and f: 0N —Y: Stmap, f = flsy : SU = Y: C-map.

Definition 6. Degf = fi([SU]) € ®nesZ, fo : Hee1(SU) — He_1(Y), under
identifying Hy 1(Y) with ®yeaZ.

Then the obstruction vs:(f) is described by the multidegrees.



Proposition 3.7. Let Fyy: X — Y be a fized S*-map (not necessary extending f).
Set fo’z‘ = FOlE)NZ'- Then

T

ys1(f) =Y _(Deg f; — Deg fos)/ICil.

i=1
Remark. (1) There always exists Fp .
(2) Deg f; — Deg fo; € ®ues|CilZ by the equivariant Hopf type result. (See
the next section.)

Using this proposition and equivariant Hopf type results in the next section, we
can choose St-isovariant maps f; : N; — SW so that ys1(f) = 0.

4. EQUIVARIANT HOPF TYPE RESULTS

Let N = S x¢ DU (C M), dim M — 1 = k as before. Then the following Hopf
type theorem holds.
Theorem 4.1 ([22]). (1) Deg : [ON,Y]s1 — ®yeal is injective.
(2) The image of Deg — Deg fo coincides with ®pea|C|Z, where fy is any fizved
St-map.
The next result shows the extendability of f : N = §' x¢ SU — Y. Set
Deg f = (du(f))rea € Dreal.
Theorem 4.2 ([22]). (1) f: 8N — Y is extendable to an S*-isovariant map
fiN — SW if and only if dg(f) = 0 for any H € A with H £ C.
(2) For any extendable f and for any (on) € ®nca|C|ZL satisfying ax = 0
for H € A with H £ C, there exists an S*'-map f' : IN — Y such that
f" is extendable to an S*-isovariant map f': N — SW and Deg f' =
Deg f + (au).
4.1. Example of multidegrees. Finally we give some examples. Take S'-repre-
sentations V =T, @ T, @ T, and W = T Ty, ® Ty ® Ty, where p, g, 7 are distinct
primes. Let us consider linear spheres SV, SW. Let N; be a closed S'-tubular
neighborhood of the exceptional orbit ST; & S!/Z; in SV, where i = p, ¢, r, and
then Nj is identified with ST} x D(T; @ T)) = St xz, D(T; ®Tj). Thus we may set

Ny ={(21,2,23) € V||| = 1, (22, 28)[| < 1},
Ny = {(21,23,23) € V| |22 = L, [[ (21, 23)|| < 1},
N, = {(21,22,23) € V| 2] = 1, || (21, 2)|| < 1}.
We have A = {Z,, Zy, Z,}; hence we can set
Deg f = (dz,(f), dz,(f), dz.(f)) € Z°.
Take positive integers o, 8, 7, 6, &, nsuch that ap—LFg =1, y¢—dér = 1, {r—np=1.
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Example 4.3. We define g; : V — W as follows:
gp(Zl, 22,23) (Zgzla'zl:z?’Zl):
gq(zlpz21z3) (251 Z2742>297Z3))
gr(zla 22, ZB) - (Z?,Zgi Zl: 231 23)‘
Restricting g; to N;, we obtain an S?-map h; := gy : Ny — W. Since R7HO) = 0,
we have an S'-map f; == hi/||lil| : Ny — SW. Moreover f; is an S'-isovariant.
Set f; = f:igam-‘ Then dg,(fp) is equal to the degree of the map f, : S(T, & T,) —
S(Tl ® Tqr);
(22, 23) = (52, 2) /1| (571, 2),
where z is any fixed nonzero number. Hence we have dg,(fp) = §r = 1 + np.
Similarly one can see that dz,(f,) = dz.(fp) = 0. Thus we obtain
Deg f, = (1+7p,0,0).
In a similar way, we have
Deg f; = (0,1 + 8g,0),
Deg f. = (0,0,1+ 7).
Example 4.4. Next we consider the following S'-maps g; : V — W:
gp(z1, 22, 23) = (2325, 29, 25 + 24, 2]),
g;(zla 22, Z3) = (zgi?, Zg, 2‘37 Z§ + ZI)a
gu(21, 22, 28) = (2028, 20 + 25, 24, 25).
Then by restriction and normalization, we obtain S*-isovariant maps f] : Ny — SW
and f!: ON; — SW, respectively. In this case, one can see that
Deg f, = (1,0,0),
Deg f, = (0,1,0),
Deg f, = (0,0,1).
In fact, for example, dg,(f,) = 1 is showed as follows. Consider the map 9 :
T,®T\0 — Ty Ty \0; (22, 23) = (2723, 2{, 25 +2§). One can see that PH(1,0) =

{((~1) (—1)")} and the Jacobian is vg + 76 > 0; hence (1,0) e T1 & T, \ O is &
regular value, and so deg = 1.

Y = SW\ SW>L Let [ON;, Y%, i = p, g, v, denote the set of S'-homotopy
classes of S*-maps extended to S'-isovariant maps from N; to SW. By Theorems
4.1 and 4.2, we see the following.

Proposition 4.5. The map D; : [ON;, Y5 — Z,[f] = (dg,(f)—1)/i, is a bijection
fori=p, q,r



For the above maps, we have D,(f,) =7 and Dyp(f}) = 0.

Example 4.6. We next define another S*-map fy,; as follows. Define an S'-map
go: V — W by setting

) 758 Esm 4 v D
golz1, 22, 23) = (277, + 2323 + 237, 2, 23, 23).

Since go maps the free part of V into the free part of W, by restriction and nor-
malization, we have an S*-map fo; : N; — V. In this case we have

Deg fop = (1 +np, —fFp, 0),

Deg fO,q = (07 1 =+ /BQ; —6Q)7
Deg for = (—nr, 0,1+ o7).
By Theorem 4.2, each fy,; cannot be isovariantly extended on N;.

However, restricting go on X = SV \ int (N, U N, U N,.), one can regard go as
an S'-map from X to Y. Consequently it turns out that [[. fo,; can be extended
on X. Consider the S*maps f = [[.fi : ON; = Y and f/ = [[,fl : ON; = Y
in Examples 2 and 3. By Proposition 3.7, the obstruction ys:(f) to an extension
on X is described as ys1(f) = (n,5,6) and v5:(f') = (0,0,0); hence f cannot be
extended on X, but f’ can.

We also note the following.

Proposition 4.7. An S'-isovariant map b =[], by : [ [, Ni — SW is isovariantly
extended on SV if and only if Deghy = (1,0,0), Degh, = (0,1,0) and Degh, =
(0,0,1), where h; = hypn,.

Proof. One can set Degh, = (14 np,0,0), Degh, = (0,1 4+ mq,0) and Degh, =
(0,0,1 4 Ir). Then one can see vs1(h) = (n,m,1), and so yg1(h) = 0 if and only if
(n,m,1) =(0,0,0). 0
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