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TRANSFER IN THE EQUIVARIANT

SURGERY EXACT SEQUENCE

MASATSUGU NAGATA

RIMS, Kyoto University

永田雅嗣 (京都大学数理解析研究所)

SECTION 1. INTRODUCTION: THE EQUIVARIANT SURGERY EXACT SEQUENCE

Let $G$ be a finite group. The classification of $G$-manifolds can be approached
through the equivariant surgery exact sequence. In the category of locally linear PL-
$G$-manifolds with a certain stability condition ( $‘\zeta \mathrm{t}\mathrm{h}\mathrm{e}$ gap hypothesis” ), a surgery exact
sequence was set up by I. Madsen and M. Rothenberg in $[\mathrm{M}\mathrm{R}2]$ , when the group $G$

is of odd order. One of its central feature is equivariant transversality, which holds
only in those circumstances.

Let $X$ be a (locally linear $\mathrm{P}\mathrm{L}$) $G$-manifold with boundary. The main target

we wish to investigate is expressed, in this context, as the “structure set” $\overline{S}_{\mathrm{G}}(X, \partial)$ ,
which is the set of equivalence classes of $G$-simple homotopy equivalences $h$ : $Marrow X$

with ah a $\mathrm{P}\mathrm{L}$-homeomorphism, where two such objects are equivalent when they are
connected (in a commutative diagram) with a PL-G-homeomorphism of the domain
$M$ .

When one wishes to analyze the surgery exact sequence, one needs to compute
the set $\tilde{N}_{G}(X)$ of $G$-normal cobordism classes of $G$-normal maps. By virtue of G-
transversality, this set is interpreted in terms of bundle theories, and therefore is
classified by a $G$-space $F/PL$ . (See [MR 2, \S 5].)

Madsen and Rothenberg set up the equivariant surgery exact sequence and

identified $\overline{N}_{G}(X)$ as a term in the sequence, in a suitable category of $G$-spaces when
$G$ is a group of odd order. Here we cite their main result $\mathrm{s}$
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The strong gap condition. [MR2, Theorem 5.11] if G is a group of odd order and
X is a $G$ -oriented $PL- Garrow man\mathrm{i}fold$ which satisfies the gap conditions

$10<2\dim X^{H}<\dim X^{K}$ for $K$ (: $H$, $X^{H}\neq X^{K}$ ,

then $\Lambda^{\overline{r}}c(X/\partial X)$ is in one-to-one correspondence with normal cobordism classes of
restricted G normal maps over X, as defined in [MR 2, 5.9].

The equivariant surgery exact sequence. [$\mathrm{M}\mathrm{R}2$ , Theorem 5.12] If $G$ , $X$ are as
above and we assume that $X^{H}$ $\mathrm{i}s$ simply-connected for all $H$ , then there is an exact
sequence

$arrow\tilde{S}_{G}(D^{1}\mathrm{x} X_{7}\partial)arrow\overline{N}_{G}(D^{1}\mathrm{x}X, \partial)arrow \mathcal{L}_{1+m}arrow\overline{S}_{G}(X, \partial)arrow\tilde{N}_{G}(X/\partial X)arrow L_{m}(G)$

where
$\mathcal{L}_{m}(G)=\oplus_{(H)}L_{m(H)}(N_{G}H/H)$

with $m(H)=\dim X^{H}$ , and the sum is over the conjugacy classes of subgroups of $G$ .

Madsen and Rothenberg $([\mathrm{M}\mathrm{R}2])$ identified the terms of the exact sequence
in geometric and homotopy theoretic methods, and the author $([\mathrm{N}5])$ modified their
methods to interpret the terms in a homotopy theoretic way.

Two of the terms in the equivariant surgery exact sequence, $\overline{N}_{G}(X/\partial X)$ and
$\mathcal{L}_{m}(G)$ , are defined using homotopy-theoretic and algebraic methods, respectively.
Therefore they naturally inherit a Mackey functor structure over the system of sub-
groups of $G$ . However, the remaining term, the structure set $\overline{S}_{G}(X, \partial)$ , is concerned
with homeomorphisms, and so it does not provide a straightforward way to construct
a functorial (Mackey) structure with respect to the system of subgroups of $G$ .

Ranicki $([\mathrm{R}1,2])$ has identified the structure set term in the equivariant surgery
exact sequence with an “algebraically defined structure set,” in his terminology. He
used categorical constructions to identify the surgery exact sequence itself using al-
gebraically constructed objects, thus making it possible to apply various categorical
techniques. Making use of his methods, it is possible to interpret the equivariant
structure set $\overline{S}_{G}(X, \partial)$ in a categorical manner. However, that approach puts one in
a stabilization situation, and thus requires a very strong stability hypotheses.

In $[\mathrm{N}2]$ we used geometric methods, rather than algebraic, to directly construct
a Mackey structure in the terms of the equivariant surgery exact sequence, in the case
where the manifold $X$ is a very special one. We recall the construction in $[\mathrm{N}2]$ in
Sections 3 and 5, below. So, at least in that situation, the Mackey functor structure is
realized in the equivariant surgery exact sequence, without going through the stable
homotopy category, thus giving the result to the structure set of the manifold itself,
that is considered here
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SECTION 2. DEFINITION: THE MACKEY FUNCTOR STRUCTURE

The Mackey functor structure over the system of subgroups of the finite group
$G$ is defined as follows. For an $\mathbb{R}G$-module $V$ , let Iso(V) be the set of isotropy
subgroups of the $G$-module $V$ .

Let $\mathcal{M}$ be an abelian group valued bifunctor over the category Iso(V), and
for the morphisms in Iso(V), that is, inclusions of subgroups $H<K$ , we use the
notation ${\rm Res}_{K}^{H}$ : $\mathcal{M}$ $(K)$ $arrow \mathcal{M}(H)$ and $\mathrm{I}\mathrm{n}\mathrm{d}_{H}^{K}$ . $\mathcal{M}(H)arrow \mathcal{M}(K)$ for the corresponding
morphism $\mathrm{s}$ . Also we suppose there is a conjugation morphism $c_{g}$ : $\mathcal{M}(H)$ $arrow \mathcal{M}(H^{g})$

for any $H$ and and $g\in G$ .
The system $\mathcal{M}$ , ${\rm Res}_{K}^{H}$ , Ind$HK$ , $\mathrm{c}_{g}$ is called a Mackey functor if the following con-

ditions are satisfied for all $H<K$ in Iso(V):

$c_{g}=\mathrm{i}\mathrm{d}_{N(H)}$ if $g\in H$ ; $c_{g_{1}\mathrm{o}g_{2}}=c_{g_{1}}\circ c_{\mathit{9}2}$

$\mathrm{I}\mathrm{n}\mathrm{d}_{H^{G}}^{K^{\mathit{9}}}\circ c_{g}=c_{g}\circ \mathrm{I}\mathrm{n}\mathrm{d}_{H}^{K}$ , ${\rm Res}_{K^{q}}^{H^{g}}\circ c_{g}=c_{g}\circ{\rm Res}_{K}^{H}$

${\rm Res}_{G}^{H} \circ \mathrm{I}\mathrm{n}\mathrm{d}_{K}^{G}=\sum_{H\backslash G/K}\mathrm{I}\mathrm{n}\mathrm{d}_{h\cap K^{g}}^{H}\circ c_{g}\circ{\rm Res}_{K}^{k\cap H^{g^{-1}}}$

Let $A(G:V)$ be the Grothendieck group of finite $G$-sets $X$ such that Iso(X) $\subseteq$

Iso(V). Then a Mackey functor $\mathcal{M}$ over Iso(V) becomes a natural $A(G:V)$-module,
and thus traditional algebraic calculations are applicable to compute such terms. See
[MS] for example.

SECTION 3. THE TRANSFER $\mathrm{c}_{\mathrm{o}\mathrm{N}\mathrm{S}\mathrm{T}\mathrm{R}\mathrm{U}\mathrm{C}\mathrm{T}\mathrm{I}\mathrm{O}\mathrm{N}}$ FOR $X=D^{k}\mathrm{x}$ $SU$

We now specialize to the following case: Let $X=D^{k}\mathrm{x}$ $SU$ where $D^{k}$ is the
$k$-dimensional disk with the trivial $G$-action, $U$ is an $\mathbb{R}G$-module with no $\mathrm{G}$ trivial
summand, that is, $U^{G}=0$ , $V=U\oplus \mathbb{R}^{k-1}$ , and we assume that $X$ satisfies the strong
gap condition that was defined in the above.

We will construct a Mackey functor structure for the structure set

$\tilde{S}_{H}(D^{k}\mathrm{x}SU, \partial)$ $(H\in \mathrm{I}\mathrm{s}\mathrm{o}(V))$
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The restriction and the conjugation maps are defined naturally. That is, for $H<K$ ,
with $H$, $K\in$ Iso(V ), we define the restriction map:

${\rm Res}_{K}^{H}$ : $\overline{S}_{K}(D^{k}\mathrm{x}SU, \partial)arrow\tilde{S}_{H}(D^{k}\mathrm{x} SU, \partial)$

by the natural restriction (forgetful map) of viewing a $K$-simple homotopy equivalence
as an $H$-simple homotopy equivalence. Similarly, the conjugation map:

$c_{g}$ : $\tilde{S}_{H}$ $(D^{k}\mathrm{x} SU, \partial)arrow\tilde{S}_{H^{g}}(D^{k}\mathrm{x} SU, \partial)$

is defined by sending a map $(f : Marrow X)$ to $(f : M^{g}arrow X)$ , where the inaction
on the manifold $M^{g}=M$ is given by the map $H^{g}arrow Harrow$ Aut $M$ , in which the first
map ser ds $x\in H^{g}$ to $g^{-1}hg\in H$ .

Thus, it remains to define the induction map

$\mathrm{I}\mathrm{n}\mathrm{d}_{H}^{K}$ : $\tilde{S}_{H}(D^{k}\mathrm{x} SU, \partial)arrow\overline{S}_{K}(D^{k}\mathrm{x}SU, \partial)$

for all subgroup inclusions $H<K$ in Iso(V) $=$ Iso(U % $\mathbb{R}^{k-1}$ ).
An element of the domain $\overline{S}_{H}(D^{k}\mathrm{x} SU, \partial)$ is represented by an H-simple

homotopy equivalence
$f$ : $(M, \partial)arrow(D^{k}\mathrm{x} SU, \partial)$

such that its restriction to the boundary $\partial M$ is a PL homeomorphism. Thus, $\partial M\cong$

$S^{k-1}\mathrm{x}SU$ . Divide the $(k-1)$-dimensional sphere into northern and southern hemi-
sphere $S^{k-1}=D_{+}^{k-1}\cup D_{-}^{k-1}$ . Thus the boundary manifold is divided into

$\partial M=\partial_{+}M\cup\partial_{-}M$

where the map $f$ can be assumed to be the identity on the southern hemispere part:

$\partial_{-}M=D^{k-1}\mathrm{x}SU$.

Using this identity map, we extend the $H$ homotopy equivalence $f$ into:

$\hat{f}$ : $\hat{M}=M\bigcup_{\partial}$ ( $S^{k-1}\mathrm{x}$ DU) $f\cup \mathrm{i}\mathrm{d}arrow D^{k}\mathrm{x}$

$SU\cup\partial S^{k-1}\mathrm{x}$ DU
$\cong S(\mathbb{R}^{k}\mathrm{x}U)$

Next, we remove the interior of a small disk $D(\mathbb{R}^{k-1}\mathrm{x}U)=D_{+}^{k-1}\subseteq S^{k-1}\mathrm{x}$ DU, out
of $\hat{M}$ , to get:

$M_{0}=\hat{M}$ - int $(D(\mathbb{R}^{k-1}\mathrm{x}U))$

$f_{0}=\hat{f}|_{M_{0}}$ : $(M_{0}, \partial))arrow(D(\mathbb{R}^{k-1}\mathrm{x} U), \partial)=(DV, \partial)$ .
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Since the Whitehead torsion does not change:

$\tau_{H}(f)=\tau_{H}(\hat{f})=\tau(f_{0})$

because the $D^{k}$ -direction has the trivial $H$-action, the result map $f_{0}$ is an X-simple
homotopy equivalence. Furthermore, it is easily seen that $\partial f_{0}=$ id and that $f_{0}$ is a
$\mathrm{P}\mathrm{L}$-homeomorphism in the neighborhood of $f_{0}^{-1}$ $(D^{k-1}\mathrm{x} \{0\})$ .

Now for each $H\in \mathrm{I}\mathrm{s}\mathrm{o}(_{\backslash }V)$ , choose a G-embedding

$\mathrm{i}_{H}$ : $G/Harrow V$

such that the isotropy subgroup of $\mathrm{i}_{H}(eH)$ is $H$ , and fix all the $\{\mathrm{i}_{H}\}$ for the rest of
the construction.

For any subgroup inclusion $H<K$ in Iso(V), choose a positive number $\epsilon$ small
enough so that the G-embedding

$\rho:Varrow V$, $v \vdash+\epsilon\frac{v}{1+|v|}$

satisfies the condition that $\mathrm{i}_{H}(gH)+\rho(DV)$ for all $g\in K/H$ are mutually disjoint.
That is, $\rho(K\mathrm{x}_{H}DV)$ is embedded into $DV$ . Since the map $f_{0}$ : $(M_{0}, \partial)arrow(DV, \partial)$

has been defined so that it is the identity on $\partial M_{0}=SV$ , we can now paste them
together to get a manifold $N_{0}$ and a map $F_{0}$ :

$N_{0}=(K \mathrm{x}_{H}M_{0})\bigcup_{\partial}$ ($DV-$ int $\rho(K\mathrm{x}_{H}DV)$ )

$F_{0}=(K\underline{\mathrm{x}_{H}}f_{0})\cup \mathrm{i}\mathrm{d}DV$.

Because the map $F_{0}$ is aPL homeomorphism in a neighborhood of $F_{0}^{-1}(D^{k-1}\mathrm{x}\{0\})$ ,
we can now remove the interior of its neighborhood to get:

$N_{1}=N_{0}-$ int $F_{0}^{-1}(D^{k-1}\mathrm{x}D_{\epsilon}V)$

$arrow D^{k}f_{1}\mathrm{x}$ $SU$.

This result map $fi$ turns out to be a $K$-simple homotopy equivalence. That it is aK-
homotopy equivalence is shown by the standard argument, because the construction
is by pasting together $H$-homotopy equivalences via the group-level transfer construc-
tion $K\mathrm{x}_{H}DV$ inside the representation space $DV$ . The Whitehead torsion doesn’t
change either, because the pasting and the removal were all done with respect to the
trivial action directions. We now use this as the definition of $\mathrm{I}\mathrm{n}\mathrm{d}_{H}^{K}[f]$ :

Definition 3.1. For $anyclass-$ $[f]\in\overline{S}_{H}(D^{k}\mathrm{x}SU, \partial)$ , define its induction image as

follows: $\mathrm{I}\mathrm{n}\mathrm{d}_{H}^{K}[f]$ $=[f_{1}]\in S_{K}(D^{k}\mathrm{x}SU, \partial)$
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Theorem 3.2. If $X=D^{k}\mathrm{x}$ $SU$ satisfies the strong gap condition explained in the
above, then the induction map

$\mathrm{I}\mathrm{n}\mathrm{d}_{H}^{K}$ : $\tilde{S}_{H}(D^{k}\rangle\langle SU, \partial)arrow\tilde{S}_{K}(D^{k}\mathrm{x}SU, \partial)$

is will efined, and, together with the restriction and conjugation maps, ${\rm Res}_{K}^{H}$ and $c_{g}$ ,
that were defined in the beginning of this section, satisfies the conditions of Mackey
functor (defined in Section 2).

The proof of this theorem will occupy the rest of this section.
We follow the argument in Section 3 of Madsen-Svensson’s paper [MS], which

checks the Mackey conditions in the homotopy-theoretic situation. In our geometric
situation, where (simple) homotopy equivalences are constructed by pasting home-
omorphisms together, we simply have additional need to check that the homotopy
constructed in their paper would be able to made, in our situation, to become a
shifting by homeomorphisms. In fact this can be done, thanks to the existence of
collars ( $‘\zeta \mathrm{f}\mathrm{a}\mathrm{t}\mathrm{t}\mathrm{e}\mathrm{n}\mathrm{i}\mathrm{n}\mathrm{g}$ by identity maps” ) in our construction, and to the general position
allowance provided by the codimension condition given by the strong gap condition.

So, we simply follow the Section 3 of [MS], adapted to our construction with
$\tilde{S}_{\langle-)}$ $(D^{k}\mathrm{x} SU, \partial)$ . The strong gap condition guarantees just enough trivial-action
dimension that allows the existence of homotopies between maps of (3.5) of [MS],
which they give by explicit parameter formula. We can use the same homotopy, glued
together with the identity maps outside of the embedding neighborhoods, strictly
following their construction.

As in Madsen-Svensson’s argument, only the double-coset formula (the last
equation in our definition of the Mackey conditions) and the commutation of Ind and
$c_{g}$ need real checking. For the commutation of Ind and $c_{g}$ , we define our homotopy
as:

$\Psi|_{\theta(t\}+\gamma_{\epsilon}}$ : $(\psi(t)\mathrm{i}_{H}(t)+t\mathrm{i}H(gH)+\rho(v), t)arrow f^{g}(v)$

on the “core” $K\mathrm{x}_{H}M_{0}$ , where $f^{g}(v)$ is the map twisted by the conjugation action
$c_{g}$ , $\psi(t)$ is a path modification in the trivial representation component so that the
$g$-orbits avoids crossing together, and $\theta(t)$ is the result curves in $DV\mathrm{x}$ I that are
disjoint each other. We paste this homotopy on the “core” with the identity maps on
the outside of the core neighborhoods, and, thanks to the strong gap condition, the
pasting can still be done without making the homeomorphisms crossing together in
$DV\mathrm{x}I$ .

Now the diagram

$\overline{S}_{H}(D^{k}\mathrm{x} SU_{7}\partial)\underline{c_{q}}\tilde{S}_{H^{g}}(D^{k}\mathrm{x} SU, \partial)$

$\mathrm{I}\mathrm{n}\mathrm{d}_{H}^{K}\downarrow$ $\downarrow \mathrm{I}\mathrm{n}\mathrm{d}_{H}^{K}$

$\tilde{S}_{K}(D^{k}\mathrm{x}SU, \partial)arrow c_{g}\tilde{S}_{K^{g}}(D^{k}\mathrm{x}SU, \partial)$
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commutes, with the same reason that the homotopy gives the commutative diagram
in the homotopy sets in the situation of Section 3 of Madsen-Svensson [MS],

The (more complicated) diagram for the double-coset formula also holds with
the similar construction of homotopies, again as in Madsen-Svensson’s argument, and
our Theorem 3.2 is proved.

The main point is the appropriate construction of the map, and once it is
constructed properly, then the proof of the required Mackey functor condition is done
by the standard argum $\mathrm{e}\mathrm{n}\mathrm{t}$ .

SECTION 4. WEINBERGER-YAN PERIODICITY

We try to expand the construction in the previous section to more general
G-manifolds.

The main tool here is going to be a stratified surgery, that needs an isovariant
data rather than just equivariant one. A map is called isovariant if $G_{f(x)}=G_{x}$

holds everywhere, that is, the map preserves the orbit tyPe everywhere. In the case
of manifolds with finite PL-G-triangulation, this results in a stratified surgery data.
(See Section 13.2 of [We 1].)

The key tool to be used for the proofs is the following result of Browder ([Br],
[Do] $)$ :

Theorem (Browder). If $M$ and $N$ are $G$ -manifolds with the strong gap condition,
then for any $G$ -homotopy equivalence $f$ : $Marrow N$ there is a $G$ -isovariant homotopy
equivalence $f’$ : $Marrow N$ that is $G$ -homotopic to $f$ .

That is, if we start with a $G$-homotopy equivalence, we can equivariantly homo-
tope it into an isovariant situation, which induces a stratified homotopy equivalence,
making it possible to apply the stratified surgery theory in the sense of Browder and
Quinn ([BQ]. See also [We 1].)

Recently S. Weinberger and M. Yan have developed methods of constructing a
periodicity in the equivariant structure sets. One of their main results is the following:

Theorem (Weinberger-Yan). Let $W$ be $a\mathbb{C}G$ -module, and let $V=W\oplus W$ . Let
$\mathrm{A}^{\mathit{1}}I$ be $a$ (homotopically stratified) $G$ -manifold with $\mathrm{c}\mathrm{o}\dim\leq 3$ gaps, and assume that
$M$ and $M\mathrm{x}V$ have the same isotropy everywhere, that is, for any $x\in M$ and
any neighborhood $U_{x}$ of $x_{l}$ there is a smaller neighborhood $U_{x}’$ such that Iso(U;) $=$

$\mathrm{I}\mathrm{s}o(U_{x}’\mathrm{x} V)$ . In other words, assume that $M$ and $M\mathrm{x}V$ have the same fixed pint
structure locally everywhere. Then, there is a periodicity equivalence

$S_{G}^{\tilde{\mathrm{i}}\mathrm{s}\mathrm{o}}(M, \partial)\cong S_{G}^{\overline{\mathrm{i}}\mathrm{s}\mathrm{o}}(M\mathrm{x} DV, \partial)$
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where $\tilde{S}_{G}^{\mathrm{i}\mathrm{s}\mathrm{o}}$ is the $G$ -isovariant structure set

Note that, by Browder’s theorem in the above, the latter (isovariant) structure
set is equivalent to the (equivariant) structure set

$\tilde{S}_{G}(M\mathrm{x}DV, \partial)$

if we choose $V$ with large enough gap condition.
It turns out that this same isotropy everywhere condition is the key for pasting

isovariant pieces together.
Now we claim the following:

Theorem 4.1. Let $M$ and $V$ be as in the Weinberger- $Yan$ theorem and assume also
that $M\mathrm{x}$ $V$ satisfies the strong gap condition (in Section 1). Then we can construct
a transfer map

$\mathrm{I}\mathrm{n}\mathrm{d}_{H}^{K}$ : $\tilde{S}_{H}(M, \partial)-\tilde{S}_{K}(M\mathrm{x}DV, \partial)\cong\overline{S}_{K}(M, \partial)$

up to 2-torsion. The latter equivalence is Weinberger- $Yan$ periodicity. We can also
make it compatible with the other Mackey structures in the equivariant surgery exact
sequence for $M$ .

We start with an element of $\overline{S}_{H}(M, \partial)$ . That is a map from a $G$-manifold $X$ to
$M$ . Apply Browder’s theorem to make it an isovariant homotopy equivalence. This
provides a stratified surgery data, each of whose strata looks like:

$U_{x}$

$\underline{f_{(H}\mathit{1}}$

, $DV$

Since each of the strata looks like a piece used in the previous Section 3, we
get the transfer of the above data as:

$(K\mathrm{x}_{H}U_{x})\mathrm{x}$ $DV$
$\frac{f_{(K\}}}{}$

, $DV$

Now we paste those strata together. Since we have the strong gap condition,
those pieces of maps can be assumed to be in the general position, and thus the
stratified surgery can be applied. We use the following (See Section 7.1 of [We 1]):

Stratified $\pi-\pi$ Theorem. Suppose $(Y, X)$ is a strongly stratified pair, $X=\partial Y$ , and
each pure stratum of $Y$ touches exactly one stratum of $X$ for which the inclusion is $a$

$1$ -equivalence. If all strata of $X$ are of dimension $\geq 5$ , then any normal invariant of
$(W, V)$ $arrow(\mathrm{Y}, X)$ can be surged into a simple homotopy equivalence.

Since our strong gap condition is stronger than the condition needed here, our
general position situation is enough to apply the Stratified $\pi-\pi$ Theorem to our strat-
ified data, we can surger the data to construct a $K$ hornotopy equivalence. However,
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in order to get an equivariant homotopy equivalence map in the global level, we still
need a destabilization obstruction, as explained in Section 6.2 of [We 1]:

$S(X)$ $-S^{-\infty}(X)$ $arrow$ II $(\mathbb{Z}/2$ : $\mathrm{W}\mathrm{h}^{\mathrm{T}\mathrm{o}\mathrm{p}}(X))$

where the latter term is 2-torsion only. Thus, the surgery can be done uP to
2-torsion. That provides a transfer map between the structure set, up to 2-torsion,
thus w\"e can complete the proof Theorem 4.1.

Corollary, In $a$ 1 $g\mathit{8}\mathit{5}$ version of their preprint $\lfloor \mathrm{M}r\mathrm{R}3$], Madsen and Rothenberg
claimed that they have a Mackey functor structure in the equivariant surgery exact
sequence (as in Section 1 above) localized away from 2, but no proof was published
at the time. Since the 2-torsion obstruction vanishes when localized away from 2, we
have now proved the claim of Madsen and Rothenberg (of 1985) here.

SECTION 5. THE TRANSFER COMPATIBILITY 1N THE SURGERY EXACT SEQUENCE

Once we have a Mackey functor structure in each of the terms in the equivariant
surgery exact sequence, we want to check if the maps in the exact sequence are
compatible with those Mackey structures. In fact this is true, as in the following:

Theorem 5.1. Let $X$ be either $X=D^{k}\mathrm{x}SU$ (considered in Section 3) or $M\mathrm{x}DV$

with the same isotropy everywhere condition (considered in Section 4) and assume
that the $X$ satisfies the strong gap condition as in the above. Then, the equivariant
surgery exact sequence for $X$ consists of Mackey functor maps, where the structure
set term is given the Mackey structure constructed in Sections 3 and 4 above, and
the other terms are given the natural homotopy-theoretically and algebraically defined
Mackey structures, that were explained in Section 1, at lease after localizing away

from 2.

Proof The $L$-group term in the equivariant surgery exact sequence was interpreted
by Madsen-Rothenberg $([\mathrm{M}\mathrm{R}2])$ as hierarchical strata-wise $L$-group classes, each of
which is interpreted (by the original realization theorem of C. T. C. Wall ([W], Section
3)) as appropriate classes of equivariant normal maps. Therefore, we can re-interpret

the construction of the induction maps in the L-group term with the geometric normal
map level constructions, and once we do that, the exactly similar construction to
our one in the above Section 3 (replacing equivariant homotopy equivalences with
equivariant normal maps, homotopies with normal cobordisms, etc.) for the structure
set term can be checked to be compatible with the induction maps in the L-group
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term. In the case of $X=D^{k}\mathrm{x}SU$ , our construction of $K\cross H\rho(f\mathrm{o})$ is compatible
with the inductive splitting correspondence of Theorem 9.1 and Theorems 10.1 and
10.2 of Mad $\mathrm{s}\mathrm{e}\mathrm{n}$-Rothenberg $([\mathrm{M}\mathrm{R}2])$ .

Similarly, the normal invariant term in the equivariant surgery exact sequence
is interpreted by homotopy classes of equivariant normal maps as done in Madsen-
Rothenberg $([\mathrm{M}\mathrm{R}2])$ , and, again, the comparison of constructions can be done, to
provide the compatibility of induction maps between the structure set term and the
normal invariant term.

Other Mackey structure maps, that is, the restriction maps and the conjuga-
tion maps, are obviously compatible with the maps in the surgery exact sequence,
by definition, and thus we see that the exact sequence consists of maps of Mackey
functors.

In the case $M\mathrm{x}DV$ , the check for the compatibility is also routine. The
construction was done with the application of Stratified $\pi-\pi$ Theorem, and thus the
naturality and the compatibility with the Mackey structures is part of the data pro-
vided with the stratified surgery. The point is that the strata-wise pasting is done
using the dimension gap between trivial-action summands, and thus the homotopy
providing the compatibility is allowed to make it compatible with all other strata.
We will provide the details elsewhere.
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