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SOME REMARKS ON THE JOHNSON HOMOMORPHISM OF THE
AUTOMORPHISM GROUP OF A FREE GROUP

MR R (Takao Satoh)
B R R ELRHIERA LR (The University of Tokyo)

Dedicated to Professor Yasuhiko Kitada on the occasion of his siztieth birthday

ABSTRACT. In this paper we construct new obstructions for the surjectivity of the
Johnson homomorphism of the automorphism group of a free group. We also deter-
mine the structure of the cokernel of the Johnson homomorphism for degrees 2 and
3.

1. Introduction

Let F,, be a free group of rank n > 2 and F, = [',(1), ['h(2), ... its
lower central series. We denote by Aut F,, the group of automorphisms
of F,,. For each k > 0, let A, (k) be the group of automorphisms of F;,
which induce the identity on the quotient group F,/T',(k 4 1). Then we
have a descending filtration

Aut Fy = Ay(0) D An(1) D An(2) D -+

of Aut F,,. This filtration was introduced in 1963 with a remarkable
pioneer work by S. Andreadakis [1] who showed that A,(1), A.(2),
... is a descending central series of A,(1) and each graded quotient
gr¥(A,) = An(k)/Au(k + 1) is a free abelian group of finite rank. He
[1] also computed that rankyg gr®(As) for all £ > 1 and rankgz gr(As),
and asserted rankgz gr*(A3) = 44. In Section 5, however, we show that
gr3(A3) = 43. Moreover, by a recent remarkable work by A. Pettet [15]
we have rankyz gr*(A4,) = in*(n? —4) + in(n — 1) for all n > 3. However,
it is difficult to compute the rank of gr¥(A4,).

Let H be the abelianization of F,, and H* = Homgz(H,Z) the dual
group of H. Let £, = @;>,Ln(k) be the free graded Lie algebra gen-
erated by H. Then for each k > 1, a GL(n,Z)-equivariant injective
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homomorphim
ot gt (Ay) = H*®z Lo(k +1)

is defined. (For definition, see Section 2.) This is called the k-th Johnson
homomorphism of Aut F},. The theory of the Johnson homomorphism
of a mapping class group of a compact Riemann surface began in 1980
by D. Johnson [6] and has been developed by many authors. There is
a broad range of remarkable results for the Johnson homomorphism of
a mapping class group. (For example, see [5] and [13].) However, the
properties of the Johnson homomorphism of Aut F), are far from being
well understood.

The main interest of this paper is to determine the structure of the
cokernel of the Johnson homomorphism 7 as a GL(n,Z)-module. For
k =1, it is a well known fact that the first Johnson homomorphism 7
is an isomorphism. (See [8].) For k& > 2, the Johnson homomorphism 73
is not surjective. In fact, a recent remarkable work by Shigeyuki Morita
indicates that there is a symmetric product S*Hq of Hq = H®zQ in the
cokernel of 7, @ = 7% ® idq for each £ > 2. To show this, he introduced
a homomorphism

ﬂk . H*®Z »C'n,(k ~+ 1) — SkH,

called the trace map, and showed that Try vanishes on the image of 7
and is surjective after tensoring with Q for all £ > 2.

The trace maps were introduced in the 1993 by Morita [12] for a John-
son homomorphism of a mapping class group of a surface. He called
these maps traces because they were defined using the trace of some
matrix representation. Morita’s traces are very important to study the
Lie algebra structure of the target H*®z L, = Der(L,) of the Johnson
homomorphisms. Here Der(L£,,) denotes the graded Lie algebra of deriva-
tions of £,. Morita conjectured that for any n > 3, the abelianization of
the Lie algebra Der(L,) is given by

Hy(Der(£R)) ~ (Hy®zA’Hg) & (P S*Hg)
k>2

where £2 = £,®z Q and the right hand side is understood to be an
abelian Lie algebra. Recently, combining a work of Kassabov [7] with
the concept of the traces, he [14] showed that the isomorphism above
holds up to degree n(n —1).
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The subgroup A, (1) is called the IA-automorphism group of F;, and de-
noted by I A,,. The group I A, is the kernel of the natural map Aut F,, —
GL(n,Z) which is given by the action of Aut F;, on H. The structures
of IA, plays an important role in the study AutF,. W. Magnus [10]
showed that IA, is finitely generated for all n > 3. However, it is not
known whether I A, is finitely presented or not for any n > 4. For n = 3,
by a remarkable work by S. Krsti¢ and J. McCool [9], it is known that
I A3 is not finitely presented. On the other hand, the abelianization of
1A, is given by

TA® ~ H*®zA’H
as a GL(n,Z)-module. (See [8].)

Now let A’ (1), A, (2), ... be the lower central series of I A, = A,(1)
and grf(A]) its graded quotient of it for each £ > 1. In Section 2, we
define a GL(n, Z)-equivariant homomorphism

7 gi?(A) = H'®z Lo(k+1)
which is also called the k-th Johnson homomorphism of Aut F,. In this

- paper, we construct new obstructions of the surjectivity of the Johnson

homomorphism 7. Let us denote the tensor products with Q of a Z-
module by attaching a subscript Q to the original one. For example,
Hg = H®z Q and L(k) := L, (k)®z Q. Similarly, for a Z-linear map
f : A - B we denote by fq the Q-linear map Aq —+ Bgq induced by f.
It is conjectured that Coker7; o = Cokermyq for k > 1. It is true for
1 <k <3. Infact, 4,(1) = A, (1) by definition. We have A,(2) = A,,(2)
from the result stated above. (See [8].) Moreover, Pettet [15] showed
that A7 (3) has a finite index in A,(3). Hence, Coker 7y o = Coker7yq

for 1 < k < 3. Our main result is

Theorem 1.
(1) A*Hq C Coker T, ¢ for odd k and 3 < k < n.

(2,152 / —
(2) Hq C Coker 7y q for even k and4 <k <n— 1.
Here A*Hq denotes the k-th exterior product of Hq, and Hg’lk_z] denotes
the Schur-Weyl module of Hq corresponding to the partition [2,1%72].

In order to prove this, in Section 3, we introduce homomorphisms de-
fined by |

» | Tr[lk] = f[lk] o (I)’f H*(X)Zﬁn(k + 1) — AkH,
Tr[Z,lk—z} = (ZdH K f[lk—l]) 0 (I)g : H*@)zﬁn(k + ]_) — H@ZAk_IH



and show that these maps vanish on the image of the Johnson homomor-
phism 7. Since these maps are constructed in a way similar to that of
Morita’s trace Try, we also call these maps traces.

In Section 5, we determine the GL(n,Z)-module structure of the cok-
ernel of the Johnson homomorphism 7 for 2 and 3. Our result is

Theorem 2. We have GL(n, Z)-equivariant ezact sequences
0 — gr’(A4,) B H*®z L,(3) = S?H — 0
and
0 — grd(As) =2 Hy®z LI(4) = S*Hq & A*Hg — 0
forn > 3.

Thus we have

Corollary 1. Forn > 3,

rankg gr’(A,) (3n* — 7Tn? — 8).
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2. Preliminaries

In this section we review some basic facts. First, we note that the
group Aut F, acts on F,, on the right. For any 0 € Aut F,, and z € [,
the action of o on z is denoted by z°.

2.1. Commutators of higher weight.
In this paper, we often use basic facts of commutator calculus. The

reader is referred to [11] and [16], for example. Let G be a group. For
any elements z and y of G, the element

.’L’yl’_ly—l

is called the commutator of z and y, and denoted by [z,y]. In general,
a commutator of higher weight is recursively defined as follows. First, a
commutator of weight 1 is an element of G. For k > 1, a commutator of
weight k is an element of the type C = [C}, Cs] where Cj is a commu-
tator of weight a; (j = 1, 2) such that a; + a2 = k. The weight of the
commutator C is denoted by wt (C) = k. The commutator which has
elements g1,...,g: € G in the bracket components is called the commu-
tator among the components gy, ...,g;. For elements g1,...,9: € G, a
commutator of weight k among the components g, ..., g; of the type

{[ ot [[giu g’i2]a gig,}: - ‘]: g’ik]: 7’_7 € {17 e 1t}
with all of its brackets to the left of all the elements occuring is called a
simple k-fold commutator and is denoted by
[gi17 Gisy " :gik}-

For each k& > 1, the subgroups I'g(k) of the lower central series of G
are defined recursively by :

Fe(l) =G, Tek+1)=[Te(k),q].
We use the following basic lemma in later sections.

Lemma 2.1. If a group G is generated by g1,...,g:, then each of the
graded quotients Tg(k)/Tq(k+ 1) for k > 1 is generated by the cosets of
the simple k-fold commutators

[giugiz)“')gik]) 136{17,1;}
Now, for each k > 1, let T,(k) be the k-th subgroup I's, (k) of the

lower central series of a free group Fj, of rank n and gr(T;) its graded
quotient I';(k)/Tn(k + 1). We denote by gr(I'y) = @kzlgr"’(f‘n) the



associated graded sum. Then the set gr (I';,) naturally has a structure
of a graded Lie algebra over Z induced from the commtator bracket on
F,. Let H be the abelianization of F,, and £, = @,-;Ln(k) the free
graded Lie algebla generated by H. It is well known that the Lie algebra
gr (I',) is isomorphic to £, as a graded Lie algebra over Z. Thus, in
this paper, we identify gr (I';) with £,. For any element 2 € I',(k), we
also denote by z the coset class of z in £,(k) = [',(k)/Tn(k + 1). Let
T(H) be the tensor algebra of H over Z. Then the algebra T'(H) is the
universal envelopping algebra of the free Lie algebra £, and the natural
map L, — T(H) defined by

X,Y]» XY -Y®X

for X, Y € L, is an injective Lie algebra homomorphism. Hence we also
regard L,(k) as a submodule of H®* for each k > 1.

2.2. IA-automorphism group.

The kernel of the natural map Aut F,, - GL(n,Z) which is given by
the action of Aut F,, on H is called the [A-automorphism group of F;, and
denoted by IA,. Let {z1,...,z,} be a basis of a free group F;,. Magnus
[10] showed that I A, is finitely generated by automorphisms

T, > xb“lzcaacb,
K :
Ty > Ty, (t ?,é CL)

and
1

K Tg .’Ba.’Ebecxb—l.l‘c_ ;
ahe -
Ty >z, (EF# a)

for any distinct a, b and ¢ € {1,2,...,n}. It is known that the abelian-
ization TA? of the IA-automorphism group is free abelian group with
generators Ky, for distinct a and b, and K, for distinct a,b,c and b < c.
More precisely, if we denote by H* = Homg(H,Z) the dual group of
H, we have a GL(n,Z)-module isomorphism JA% ~ H*®zA*H. (For
details, see [8].)

2.3. The associated graded Lie algebra.

Here we consider two descending filtrations of I A,. The first one is
{An(k)} 45, defined as above. Since the series An(1), An(2), ... 1s central,
the associated graded sum gr(A,) = @ k>1gr"c (A,) naturally has a struc-
ture of a graded Lie algebla over Z induced from the commutator bracket
on A,(1). For each k > 1, the group A,(0) = Aut F,, naturally acts on
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A, (k) by conjugation, hence on gr*(A4,). Since the group A,(1) = I'4,
trivially acts on gr (.A ), we see that the group GL(n, Z) ~ An(0)/An(1)
naturally acts on gr*(A,).

The other is the lower central series A/ (1), A/(2), ... of Ay(1). Let
gri(AL) = Al (k)/ Al (k+1) be the graded quotlent for each & > 1. Sim-
ilarly the associated graded sum gr(A,) = @;,8r*(A;,) has a structure
of a graded Lie algebra structure on Z. Moreover, each graded quotient
gr®(A) is a GL(n,Z)-module. It is clear that A} (k) C An(k) for every
k > 1. In particular, we have A/ (k) = A,(k) for 1 < k < 2 and Pettet
[15] showed that A, (3) has finite index in .4,(3) as mentioned in section
1. From Lemma 2.1, for each k > 1, the graded quotient grf(A) is
generated by (the cosets of) the sunple k-fold commutators among the
components K, and K.

2.4. Johnson homomorphism.
Here we define the Johnson homomorphisms of Aut F,,. For each k > 1,
let 73, : A, (k) — Homgz(H, L,(k + 1)) be the map defined by

(1) o (x> z'2%)

for o € A,(k) and z € H. Then the map 7, is a homomorphism and
the kernel of 7 is just A,(k + 1). Hence, identifying Homgz(H, L, (k +
1)) with H*®z L,(k + 1), we obtain an injective GL(n, Z)-equivariant
homomorphism, also denoted by 7%,

7 : gt (Ay) = H*®gz Lk + 1).

This homomorphism is called the k-th Johnson homomorphism of Aut F,.
Similarly, for each k > 1, we can define a homomorphism 7, : A/ (k) —
Homg(H, L,(k + 1)) as (1). Since A/ (k + 1) is contained in the kernel
of 71, we obtain a GL(n, Z)-equivariant homomorphism, also denoted by
T,

7 g (A) — H*®z Lo(k+1).
We also call the map 7/, the Johnson homomorphism of Aut F,.

Let {x1,...,z,} be a basis of F,,. It defines a basis of H as a free abelian
group, also denoted by {z1,...,z,}. Let {z],...,z}} be the dual basis of
H*. For any o € Al (k), if we set 8;(¢) := z; '2¢ € Lo(k+1) (1 <7< n)
then we have

7i(0) = T4(o Zax ® 5i(0) € H*®zLa(k +1).



Let Der (£,,) be the graded Lie algebra of derivations of £,. The degree
k part of Der (L,) is expressed as Der (L£,,)(k) = H*®@zL,(k). Thus we
sometimes identify Der (£,,) with H*®zL,,. Then the Johnson homomor-
phism 7 = @, 7 is a graded Lie algebra homomorphism. In fact, if
we denote by do the element of Der (£,) corresponding to an element
o € H*®zL,, and write the action of 8o on X € L, as X% then we have

(2) Tesa(] Z$ ® (si(0)” — si(1)%).

for any o € Al (k) and 7 € A;L(l).

In general, each s;(0) € £,(k+1) cannot be uniquely written as a sum
of commutators among the components zi,...,Z,. In this paper, each
s;(c) is recursively computed in the following way. First, for o = K,
we can set

Sa<Kabc) = [SU(;, xc]; St(Kabc) =0 if t#a.

For o = K, we see that

- lwa: [al’xbll if t=a,
b 1 if t#a

1

in F,. Since [z;},7;"] = [Za, 76] in L£n(2), sO We can set

Sa(Kab) = [a:a,a:b], St(Kab) =0 if t#a.

Next, if o = [r, Kg) for k-fold simple commutator 7, following from (2),

we can set

si(o) = s;(7)7Kw — sy Ko)?

for each 4. Furthermore, since a commutator bracket of weight [ is con-
sidered as a I-fold multilinear map from the cartesian product of [ copies
of £,(1) to L(l), we can also set

a(i)
si(0) = )_(—1)%Ciy
p=1
where e;, = 0 or 1, and Cj is a commutator of degree k -+ 1 among the
components zi,...,z, We compute s;([7, Kac)) for o = [7, Kabe| simi-

larly. These computations are perhaps easiest explained with examples,
so we give two here. For distinct a, b, ¢ and d, we have
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75 (1 K aps Kpacl) = 7 ® ([Ta, 7)) 755 — 3} @ ([, 7)),
= 37:; ® [ma: [ma: xc]] — Z'z & [[ma; mb]: xc}
and

T.‘g([Kab; Kiaes Kad}) = 33; Y ([xa: {"Ea: xc”)aKad - CUZ ® ([[3741’ 331,], -'Ec])
])B[Kmvabac]

aKad

- :E; &® ([xa: Zd
=z @ [[24, Td), [Ta, T]] + ) @ (24, [[Ta, 2d], 2]
- ':CZ & [[[xm .CL‘d], 33(,], xc]
[

- J’.Z ® {:L'a, [mm xc]]:xd]-

?

3. The contractions

Fork>1land 1 <[ <k+1,let of : H*@zH®* D — H®* be the
contraction map defined by

TIRTH Q@ T (Ty) T, @O T, BTy, B Q Ty
For the natural embedding #*! : L,(k 4+ 1) — H®¥D we obtain a
G L(n, Z)-equivariant homomorphism

O = oF o (idg- ® 1) : H*'@g L, (k+ 1) — H®.
We also call the map @f contraction.

Here we introduce one of methods of the computation of ®F(z} ® C)
for a commutator C € L,(k + 1) among the components z1,...,Zx.
In this paper, whenever we compute ®F(z} @ C), we use the following
method. First, if z; does not appear among the components of C, then
®¥(zf ® C) = 0. On the other hand, if z; appears among the components
of C'm times, then we distinguish them and write such z;’s as z;,, ..., %;
in C. Then ®F(z} ® C) is given by rewriting z;,,...,z;, as z; in

> @z ®0).
3=1

m

Thus it suffices to compute ®F(z; ® C) for a commutator C which has
only one z; in its components. Now, C is written as [X,Y] for some
commutators X and Y. Rewriting the commutator C' as —[Y, X] if z;
appears in Y, we may always consider C' = £[X, Y] such that z; appears
among the components of X. By a recursive argument, we have C' =
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+[x;, Cy, ..., Ct] where each C; (1 < j <t} is a commutator of weight d;
and d1+"'+dt:k'.

Lemma 3.1. For a commutator [z;,C1,...,Cy € L,(k + 1) as above,
e ® [, Chy...,C) =C1® - R C,.
Lemma 3.2. For a commutator [z;,Cy,...,Ci| € L,(k+ 1) as above,
®4(z} ® [2i,Cy, ..., Cl]) -

== Z C,ieCi®®Ci11®Cj11® - ®Ch.
wt (C;)=1

Let T(H) = @, H® and S(H) = @;-,S"H be the tensor algebra
and the symmetric algebra on H respectively. Then the kernel of a
natural map T(H) — S(H) is a graded ideal of T(H), and denoted
by I(H) = @, IF(H). For each k > 2, let Uy (k) be the GL(n,Z)-
submodule of H®* generated by elements type of

[A,B]:=A®B-B®A

for Ae H® B € H® and a+ b= k. If we put Uy, = @>Un(k), then

U, is the kernel of the abelianizaton T(H) — T(H )™ as a Lie algebra.
We have

L.(k) C Up(k) C TF(H) C H®.

3.1. The image of ®% o 7].
Here we prove

Proposition 3.1. For n >3 and k > 2, Im (®} o 7)) C Un(k).

It suffices to check that the image of any simple k-fold commutator o
among the components Kg and K is in U, (k). We have

7 i)
(o) = Zﬂf ® si(o), silo) = Z(‘l)ei”’ci,p-
i=1 p=1

Now, for convenience, for every t € {1,...,n}, if each Cjp has 2; in
its components (i, p,t) times, we distinguish them and write such z;’s
as Ty,s- .., Tug,,, 0 Cip. We denote by Cj, the element C;p whose

componets are distinguished as above. If we denote by ol (=7, ® Cip)t
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the element of H®* which is given by rewriting zy, ..., %y, as 7 in
®f(z; @ Ciyp) for all ¢, then we have

n a Z) ﬁ(ispa
(3) ®f o 7,(0) ZZ (=1)% Z o (2} ® Ciphy-
i=1 p=1

Then Proposition 3.1 follows from

Lemma 3.3. Let k be an integer greater than 1. According to the nota-
tion as above, for each i, p and g, one of the following holds:

(1) ®5(z}, ® Cip)y =0,

(ii) <I>’f(a:;?‘q ® Cip)y = X; a commutator of weight k in Ln(k)
or '

(ii1) There exist some j, p' and ¢ such that (5,9',q¢") # (i,p,9),

(~1)00b(zt, @ Cly = A8 B,
(1) 04(a3, @ Cypr)y = FB © A
where A € H® B € H®” and p+v = k.

3.2. The image of ®5 o ;.
Here we prove

Proposition 3.2. Forn >3 and k > 3, Im (®5 o 7}) C H®zl,(k — 1).
For each 4, p and ¢ in (3), if C;, has ; , rewriting C; as £[z; , D}, . . .,

2,p?
v(i:p,9)
D; "] we have,

q)lzg(x:'; ® éi,p)
= Y FD,eD,e 9D eDie- @Dt
wt (D;p)zl
Set T(C;,) := {t|wt (Di,) = 1} If Cip does not have z; or T(C;,) =0
then @%(w}‘q R Ciply=0. UT(C;p) =1 and v(i,p, q) = 2, then
®5(z; @ Ciply = +2,® Z € HRz Ln(k ~ 1)

for some commutator Z of weight £ — 1. Then Proposition 3.2 follows
from

Lemma 3.4. Let k be an integer greater than 2. According to the nota-
tion above, for each i, p and q, one of the following holds:
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(i) Bither Gy does not have x;,, or T(C;p) =0,
(i) T(Cip) = 1 and 1(i,p,q) = 2,
or
(iii) For eacht € T(C;,), there exist some j, p/, ¢ and ¥, (4,7, ¢,t') #
(i,p,q,t), such that if we set

X = F(~1)% (D!, ® DL,® - - @ D],
Y := F(-1)%# (D!, @ D} ,® . @D IP Iy,
then X +Y =0 or
X=4+1,0A®B, Y=F2,9BQA
where A€ H® B e H® and p+v =k — 1.

4. The trace maps

In this section, using the contractions defined in Section 3, we define
a homomorphisms called the trace map which vanishes on the image
of the Johnson homomorphism. Here we use some basic facts of the
representation theory of GL(n,Z). The reader is referred to, for example,
Fulton-Harris [4] and Fulton [3].

For any k > 1 and any partition A of k, we denote by H * the Schur-Weyl
module of H corresponding to the partition A of k. Let fy : H® — H?
be a natural homomorphism. In this paper, we mainly consider the case
for A = [k] or [1¥]. The modules H* and H''] are the symmetric product
S*H and the exterior product A¥H respectively. Using the natural map
£ 2 Ln(k) — H®, we denote fix 0 ¢i(C) by C for any C € L, (k).

Lemma 4.1. For any commutator C' of weight k > 3, C=0in A*H

Lemma 4.2. For 1 < k <n —2 and any commutator C of weight k+1
among the components 1, ...,&, except for z;, there erists an element
o € Al (k) such that

(o) =z; ® C € H*'@zLn(k+1).

4.1. Morita’s trace (Trace map for S*H).
Here we consider the map

Trpy = fiy 0 @F : H*®zLy(k + 1) — S*H.
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By definition, this map coincides with the Morita’s trace Try. For n > 3
and k > 2, Morita defined the trace map Tr using the Magnus represen-
tation of Aut F,, and showed that Tr; vanishes on the image of 7. By a
recent work, he showed that Tr,ﬁ2 is surjective. Hence we have

Theorem 4.1. (Morita) Forn > 3 and k > 2,
S*Hq C Coker 74.q-
Corollary 4.1. Forn > 3 and k > 2,

rankz(Coker (7)) > (n Tk 1) :

k

4.2. Trace map for A*H.
Here we consider the map

Trps = fuv 0 ®F : H*@zLa(k + 1) — A*H.

Theorem 4.2.
1) For 3 < k < n, Tryx is surjective,
[1¥]
2) Im (Trpmom) =0 if k is odd and 3 < k < n,
[1F] © Tk
(3) Im (T o 7)) = 2(AFH) C A*H if k is even and 4 < k <n —2.

Corollary 4.2. For an odd k and 3 < k <mn,
A*Hq C Coker 7 q.
Corollary 4.3. For an odd k and 3 < k < n,

rankz(Coker (7)) > (Z) .

4.3. Trace map for H21"1,
Here we consider the map

Trpy sy = (idn © fiiely) © @ - H'®zLn(k+ 1) — HOzA™ H.
Let I be the GL(n,Z)-submodule of H®zA*'H defined by
I={z@zn N ANz aAy+y®@z A AzgaAz | z,y,2 € H).
Theorem 4.3. For an even k and 4 < k <n —1,

(1) Tm (Teg o)) = Ta,
(2) Im (ﬁ[g)lk—l] O T;’c) = 0.
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Now we have Hq®zA* 1 Hq =~ H, g’lk_z] ®A*Hq from the representation
theory of GL(n,Z). For even k, since Iq is contained in the kernel of a
natural map Hq®zA*1Hq — A*Hq defined by 2 @ y1 A -+« A yp—1

(2,157
TAY A+ Ayg-1, we have Iq ~ H, )

Corollary 4.4. For an even k and 4 < k <n —1,

k-2
Hg’l !¢ Coker Q-

Corollary 4.5. For an even k and 4 <k <n -1,

rankg (Coker (1)) > (k — 1) (”Z 1).

5. The cokernel of the Johnson homomorphism 7; for k = 2
and 3

5.1. The case k£ = 2.

In this subsection we consider the case where n > 3. From Theorem
4.1 and rankz(Coker (73)) = ("3') by Pettet [15], we have a GL(n,Z)-
equivariant exact sequence

0 — grd (An) =% Hy®z L3) — S*Hg — 0.
Q Q n Q

In this subsection we show that the exact sequence above holds before
tensoring with Q. Here are some examples of commutators of degree 2
among the components Ky and Ky and their images by the Johnson
homomorphism 7.

(Cl): [ abs K } .’E; ® [[mm wc]’ xb] [[mm *’Ebla I"CL
(C2> [ aby acd] :BZ ® [[.CEC, :Ud]: Z’b],

(C3): [Kup Kane)s k@ [[3, 7], T3],

(64)5 : [ abs Kbac} z, ® [17117 [maa 3’30]] - wz @ [[wa: xb}a mc]a
(C5): [Kabe, Kpad)y o ® [[Ta, 2, 2] — 5 @ [, Tc], Tal,
(06): [Kaber Kpac)y 73 ® [[Ta, Tl 2] — 23 @ ([, ], ]

Theorem 5.1. For n >3,
0 = gr’(An) 2 H*®zL,(3) = S°H — 0

is a GL{(n,Z)-equivariant ezact séquence.



5.2. The case k = 3.

Next we compute the cokernel of the Johnson homomorphlsm T3 for
n > 3 using the fact that Coker 73q = Coker 73 . We use commutators
of weight 3 among the components Kz and Kgpe:

(Cl—l)i {[KabyKac] Kbd] (01-2)1 [[Kaba Kac]aKbc]y

(C1-3): [[Kab, Kacl; Koal,

(03'1)3 [[ abs abc] cab]7 (03'2) [[Kab: Kabc]) Kca]:

(C3-3): [[Kap, Kabe], Kad,

(04"1) [[ aby KbGCL KacL (04'2) [[Kab7 Kbacla Kba]:

(04“3): [[ absy Kb(ZC]7 cd] (C4‘4) [[Kaba Kbac]: Kabc]a
(04’5): [[ abs Kbac]p Keap ’ (04‘6): [[Kaba Kba,c]7 Kca];

(C4_7) {[ abs Kbac]y KabL (04'8) [{Kaby Kbac]: ch}:

(04‘9) [[Kaba Kbac} Kad]
Here are a few examples of their images by 73:

(Cl‘l)’: 1‘3 ® [[3307 wc]v [mlﬂ xd]] — T, ® [[xa’ [mba xdﬂv $CL
(03'1)’: ZBZ ® [[mba [(Ea, xb]L mb] - :UZ ® [[[wb’ wcjv xb}a mb]a
(C4'1)’: Z‘Z ® [[9361 [-’L’a, xc]]v ma] + 372 ® [[Z‘c, xa]a [xm xCH + 5”2 ® Hwbv [.'Ba, wcn7 JIC]

"1‘2 ® [[[3307 CEa]a ma]a $c]-
Theorem 5.2. Forn > 3,

0 — grd(An) = Hy®zL3(4) — S*Hq ® A*Hgq — 0
is a GL(n,Z)-equivariant ezact sequence.

Corollary 5.1. Forn > 3,

(4) rankz gr’(A4,) = —n(3n* — Tn?® - 8).
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In particular, substituting n = 3 into (4), we have rankg gr’(As) = 43.
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