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Spaces of holomorphic maps
between complex projective spaces
and group actions
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1 Introduction.

The main purpose of this note is to announce the recent results con-
cerning the topology of spaces of maps between complex projective spaces
and related group actions on them.

First recall several notations used in this note. Let j : S% = (CP1
CP™ be the inclusion map given by j([z : y]) =[xy : 0: : 0. If
1<m <nand f: CP™ — CP" is a continuous map, the homotopy class
of foj € m(CP™) = Z is called the degree of f. Let Map,(CP™,CP")
be the space consisting of all continuous maps f : CP™ — CP” of de-
gree d, and Mapj(CP™,CP"*) C Map,(CP™,CP") the subspace of all
based continuous maps f : CP™ — CP” of degree d. We also de-
note by Holy(CP™, CP™) C Map,(CP™, CP") (resp. Holj(CP™,CP™) C
Mapj(CP™, CP™)) the corresponding subspace consisting of all holomor-
phic maps (resp. based holomorphic maps). If m > n, there is no holo-
morphic map CP™ — CP”" except constant maps, and if f : CP™ — CP"
is a non-constant holomorphic map, degf =d > 1. So we shall only
consider the case 1 <m < n with d > 1.

The origin of our work derives from the work of G. Segal [17], in which
he describes that the Atiyah-Jones type result (cf. [1]) holds for the
inclusion map Hol(CP!, CP*) — Map(CP!, CP™). For understanding his
result intuitively, recall the case m =n = 1.



Let C$°(CP?, CP?) denote the space of all smooth maps f : CP* — CP!
of degree d and consider the energy functional E : CP(CP!, CP!) — R
defined by

B(f) = [ Idflfdvol for f € CF(CP,CPY)

The critical point of E is called a harmonic map and it is known that
the space of all harmonic maps is just Holy(CP!,CP!) in this case. If
we believe that Morse theoretical principle would hold for this case,
Holy(CP?, CPY) C CP ~ Map,(CP*,CP') is a deformation retract. This
is clearly false, but Segal showed that it was true if "d — 00”. More
precisely, he proved the following important result:

Theorem 1.1 (G. Segal, [17]). The inclusion maps

iq : Holiy(CP!, CP™) — Map}(CP?,CP") = Q3CP" ~ Q25%"+1

4 : Holg(CP*, CP™) — Map,(CP?, CP")
are homotopy equivalences up to dimension (2n — 1)d. U
Remark. A map f: X — Y is called a homotopy equivalence (resp. a
homology equivalence) up to dimension D if the induced homomorphism
Fo t me(X) — m(Y) (vesp. fy : Hi(X,Z) — Hi(Y,Z)) is bijective when
k < D and surjective when k = D. Similarly, amap f: X — Y is
called & homotopy equivalence (resp. a homology equivalence) through

dimension D if the induced homomorphism f, : (X} — 7(Y") (resp.
fo : Hi(X,Z) — H,(Y,Z)) is bijective whenever k < D.

In [17], Segal also expected that a similar Atiyah-Jones type result
would hold for the inclusion Hol(CP™, CP™) — Map(CP™,CP") even if
2 < m < n, and we would like to investigate this problem. Recently we
obtain the following result:

Theorem 1.2 ([12], [22]). If 2 £ m < n, the inclusion maps
iq : Holi}(CP™,CP™) — Map(CP™,CP")
jg : Holy(CP™, CP™") — Map,(CP™,CP")

are homotopy equivalences through dimension D(d;m,n), where |z] de-
notes the integer part of a number x and the number D(d;m,n) is given

by D(d;m,n) = (2n—2m+1)(Ld-;1J +1) -1
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2 The case d = 1.

Because the spaces Holy(CP™,CP") and Map,(CP™, CP") are easily
understood when d = 1, in this section we review the case d = 1.

First, we recall the interesting result due to S. Sasao [16].

Define the map s;,,, : Upi1 — Map,(CP™,CP") by the usual matrix
multiplication

S Ao 1+t zp]) = [mo i i 1002 0] - A

for ([zg : -+ : Zm], A) € CP™ X Upy1.
If Ap C Ui denotes the center of Uy, because the subgroup A1 X
Un—m C Uny is fixed by the map s, ,, it induces the map

Smun ¢ PWn+1,m+1 - Map1 (CPm, CPn)’

where PWoi1mi1 = Uni1/(Dmi1 X Un—m) denotes the complez projective
Stiefel manifold of orthogonal (m+1)-frames in C™*. Then Sasao showed
the following interesting result.

Theorem 2.1 (S. Sasao, [16]). If 1 < m < n, the map Smp : PWoaimer —
Map, (CP™, CP"®) is a homotopy equivalence up to dimension (4n —4m +
1. O

Similarly, define the map s, ,, : U, — Mapi(CP™,CP") by the matrix
multiplication

7 ' 1 0,
SmalA) (o iap]) =lzo: 12y 0001 0] [:t() A}

for ([xg : +++ : 2], A) € CP™ x U,, where 0, = (0,---,0) € C". Since
the subgroup Up—m C U, is fixed under this map, it also induces the map

Smn  Wom — Map(CP™, CP"),

where W, ., = U, /U, denotes the complexr Stiefel manifold of orthogo-
nal m-frames in C™. Then we also obtain:

Theorem 2.2. If 1 <m < n, the map 3myp : Wom — Mapi(CP™,CP™)
is a homotopy equivalence up to dimension 4n — 4m + 1.



Proof.  An easy diagram chasing shows that there is a commutative
diagram of fibrations

Wn,m — PWn+1,m+1 — CP”

o | s | u

Map’(CP™,CP") —— Map,(CP™,CP") —Z— CP"

Then the assertion follows from the Five Lemma and the homotopy exact
sequences of fibrations. O

Now we can easily understand the reason why the two spaces PW, 11 m11
and W, , approximate Map, (CP™, CP") and Mapj(CP™, CP") up to ho-
motopy equivalence as above. This can be explained by the following
result.

Theorem 2.3 ([10]). Let 1 <m <n and d > 1 be integers.
(1) If d = 1, there are homotopy equivalences

Hol; (CP™,CP") ~ W,
H011 (CPm, CPn) f-d PVn+1,m+1

(2) The inclusion maps

i1 : Hol3}(CP™, CP™) — Mapi(CP™,CP")
41 : Hol; (CP™, CP™) — Map,(CP™, CP")

are homotopy equivalence up to dimension 4n —4m + 1.

Sketch proof We shall only give the proof of the existence of the homo-
topy equivalence Hol;(CP™, CP") &~ Wy .

We take e; = [1 : 0: 0 : -- : 0] € CP/ as the basepoint of CP’.
An element f € Hol3(CP™,CP") is a holomorphic map CP™ — CP™
satisfying the condition f(e,) = e,. Such a map can be identified with
the (n+ 1)-tuple f = (fo, f1,- - , f») of homogeneous polynomials of the
degree d in Clz, -+ , 2] such that,

() fo, f1,*- , fa have no common root except Omiy € C™*,

(ii) the coefficient of (2)¢ in fo is 1, and these in the other polynomials
are 0.
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If d = 1, we can write

f= (f();fla"‘ afn) = (ZO+Zbkzk’Zak,lzky"' 7§:ak,nzk)

=] k=1 k=1

= ) 1 0,
= \Z0; %, y ~m b A )

where b = (by, -+« ,bm) € C™, A= (as;): (m x n)-matrix.

First, we note that the polynomials fy, fi, -, f» have no common
root except Op,.1 if and only if rank A = m. Next, we also remark that
the space of all (m X n) matrices of rank m is homeomorphic to the
homogenous space GL,(C)/GL,-(C). Via this identification, we define
a map 7 : Hol}(CP™,CP™) — C™ X (GL,(C)/GLA-m(C)) by

Af) = 4fo: fri oot f) = (b, A).

Next define a map ' : C™ x GL,(C) — Hol{(CP™,CP®) by matrix
multiplication

f . —_ . . . .. . . . 1 0""
ﬁ(b,B)([mol.:cl. T =(Toi® i 1m0 2 0] [tf) B

for ([zo : 21 : -+ : Zm),b,B) € CP™ x C™ x GL,(C), where b =
(b,0,.,) € C* Since ' maps the subspace {0n} X GLn,_n(C) C
C™ x GL,(C) to the basepoint, it induces a map

8: C™ % (QLp(C)/GLym(C)) — HolZ(CP™, CP™).

Simple computation shows that Foy = id, yof = id, and y is & homeomor-
phism. Hence, Hol;(CP™,CP") & C™ x (GL,(C)/GLp-m) * Wy O

Corollary 2.4 ([10]). There are homotopy equivalences

{Hol{(CP”, CP™) = U,, -

HO].]_(CP”, CPn) s P(SUn+1) = SUn+1/An+1,
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3 The space Hol(CP™, CP™).

Recently, J. Mostovoy [12] obtained the remarkable important result
concerning the topology of Hol(CP™, CP™). In this section we recall his
result, and for this purpose, we study the restriction fibration sequence

Fy(m,n) — Map}(CP™,CP™) ' Map}(CP™!,CP"),

where the map r is defined by the restriction r(f) = fICP™}, Fy(m,n)
denotes the fiber of » defined by

Fa(m,n) = r~ (g5~") = {f € Map}(CP™,CP") : f|ICP™ " =77},
and Y™ € Mapj(CP™, CP") is the holomorphic map defined by

P ([o -t B)) = [(mo)? 1+ (Tm)? 0102 0]

for [zg: -1 2y] € CP™.

We choose it as the basepoint of Mapj(CP™,CP”). We remark that
there is a homotopy equivalence Fy(m,n) ~ Q*™CP" ([16]).

Let Hy(m,n) C Hol}(CP™, CP") be the subspace defined by Hy(m,n) =
Fy(m,n) N Hol}(CP™,CP™). We investigate the homotopy types of the
subspaces Hy(m,n), Hol;(CP™, CP") and Holy(CP™,CP") with the cor-
responding inclusion maps

i« Hy(m,n) — Fy(m,n), i4: Holj(CP™, CP"™) — Mapy(CP™,CP")
ja : Holz(CP™, CP™) — Map,(CP™, CP™).

Theorem 3.1 (J. Mostovoy, [13]). If2 < m < n, the inclusion maps
il : Hy(m,n) — Fy(m,n), iq: Holy(CP™,CP") — Mapg(CP™, cp™)

| ja : Holg(CP™, CP?) — Mapy(CP™,CP")

are homotopy equivalences through dimension D(d;m,n) when m < n,

and homology equivalences through dimension D(d;m,n) when m = n.
O

Since dlim D(d;m,n) = oo, we may regard Hy(m,n) and Hol(CP™, CP™)
00
as finite dimensional homotopy (or homology) models for the infinite di-
mensional spaces Q*™CP” and Map(CP™, CP"), respectively. We know
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that the Atiyah-Jones type Theorem holds for several other cases, and
the homotopy stability is usually satisfied for these cases (cf. [2], (3], [5],
6], 9], [19]). So one may expect that the homotopy stability may hold
even if m = n. We consider the case m = n in the next section.

4 The case m = n.

In this section we consider the space Hol(CP™  CP™) when m = n.
From now on, we write Fy(n) = Fa(n,n) and Hy(n) = Hy(n,n).
First, recall the following two results.

Theorem 4.1 ([21]). (1) If m = n, there are isomorphisms

71 (Holj(CP™, CP")) = 7y (Hol}) = Z
™ (HOld(CPn, CP"’)) =T (H()Id) = Z/(n + 1)dn

(2) The inclusion maps induce isomorphisms

{z’d* - my(Hol?) S my(Map?) = m(Mapi(CP™, CP™)),
Gy : m1(Holg) = my(Mapy) = m1(Map,(CP", CP™)).

Theorem 4.2 ([22]). Ifn > 1 and d > 0 be integers, the inclusion
i1 Hy(n) = Fy(n) ~ Q**CP" induces an isomorphism

i, w1 (Ha(n)) S mi(Fa(n)) = m (Q*CP?) = Z.

Sketch proof. If we use an easy diagram chasing and Theorem 4.1, we
can show that 71 (Hz(n)) = Z. Then the assertion follows from Theorem
3.1 and Hurewicz Theorem. O

If we use the above two results and some group actions, we obtain the
following two results.

Theorem 4.3 ([22]). If n > 2, the inclusion i, : Hy(n) — Fy(n) ~
Q**CP™ is a homotopy equivalence through dimension D(d,n), where we

take D(d,n) = D(d;n,n) = [g—g—lj O



Theorem 4.4 ([22]). If n > 2, the inclusion maps
iq : Hol3;(CP", CP™) — Map}(CP™, CP™)
ja : Holy(CP", CP") — Map,(CP*, CP")

are homotopy equivalences through dimension D(d,n) = {i:—lj. |

Proof of Theorem 1.2. The assertion follows from Theorem 3.1 and
Theorem 4.4. ' a

5 The orbit spaces.

Finally, in this section, we consider the right PGL,+1(C) action on
Holy(CP™, CP”) given by the matrix multiplication

Holy(CP?, CP") X PGLy41(C) —— Holy(CP™, CP™).
(forifudhd)  —— [fore-iful- 4

We denote by X4(n) the orbit space X4(n) = Holg(CP™, CP”)/PGL,.1(C).

Theorem 5.1 (R. Milgram, [11]). If n = 1, there is a homeomorphism
X,4(1) & P(Fy), where F; denotes the space consisting of all (d x d) non-
singular Toeplitz matrices. O

Then our main result of this section is as follows.
Theorem 5.2 ([21]). (1) m(Xa(n)) = Z/d".

(2) There is a fibration sequence (up to homotopy)
(+) SUns1 — Xa(n) — Hola(CP", CP),

where Y denotes the universal covering of a space Y.
(8) If n = 1, the fibration (x) is trivial and there is a homotopy equiv-

alence X4(1) =~ S® x Holy(CP?,CPY). O

Corollary 5.3 (J. Havlicek, [8]; [21]). m1(X4(1)) = Z/d. o
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