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FINDING FAMILIES OF UNITS OF CYCLIC FIELDS

F. THAINE

Department of Mathematics and Statistics - CICMA, Concordia University,
1455, de Maisonneuve Blvd. W., Montreal, Quebec, H3G 1M8, Canada

ABSTRACT. Let m > 2. Let K be the m x m matrix [;41,5]4,5, where §; ; = 1 if i = j mod
m and d; ; = O otherwise. Let 1 < k < w(m), t1,...,% indeterminates, @ = t1 + t2m +
+tkd$f1 and ¢ = N(a) € Z[t1,...,tx], where N is the norm from Q(i1,...,t,$m) to
Q(t1,...,tx). Suppose g is irreducible. We show a method to construct an m x m matrix C,
with entries in Q{t1,. . ., t%], which has the following properties: The characteristic polynomial
& of C is cyclic over Q(%1,...,t). The field Q(t1,...,%)[C] is a splitting field for ® and
the roots of & in this field are the conjugates C,K~1CK, ... JKm=Dogm=1 of C. If we
give t1,...,%; integer values, such that g is a prime number (so ¢ = 1 mod m), then C is
(basically) the matrix of cyclotomic numbers of order m corresponding to g, the K —iICK
can be identified with the Gaussian periods of degree m in Q({y) and the units of the cyclic
subfield of degree m of Q((,) can be identified with the linear combinations, over Z, of the
K—*CK* which have determinant 41. This gives us the following method to find families
of units of cyclic fields of degree m at the parameter t. Regard the ¢; as elements of Z[t].
Find linear combinations over Z[f] of the matrices K *CK?®, i = 0,...,m — 1, which have
determinant £1. The characteristic polynomials of these matrices, when they are irreducible,
are cyclic, and their roots are units. We show several examples of such families of units.
When m is prime and a matrix C as above, with entries in Qft], is given there is a procedure,
found by René Schoof and to be published elsewhere, to decide whether or not this method
will produce a family of units.

1) CYCLIC POLYNOMIALS

I thank the organizer Professor Masanori Morishita for the invitation. I also thank
Professor Ki-ichiro Hashimoto for his support and for some useful comments, and Professor
Masanari Kida for showing me some material that I used in preparing this talk. This work
originated in a question posed to me by René Schoof about generalizing a family of cyclic
polynomials found by Emma Lehmer.

Let D = Z[ty,...,tx], with #1,...,t; indeterminates. Let K be the field of fractions of
D and K an algebraic closure of K. Let m > 2 and P = 2™ + ¢ 1™ 1 + -+ ¢ € D[]
a cyclic polynomial; that is P is irreducible over K with cyclic Galois group. We can
regard P as a family of cyclic polynomials at the parameters t1,...,t,. We are interested
in finding such families P whose constant term cg is 1 or —1. Those are the polynomials
P as above whose roots are algebraic units when we give integer values to the parameters
t1,...,ts. Those families are, in general, difficult to construct for arbitrary m. To show a
few examples:
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Form=2,P=2*+tr+1.

For m = 3, P = 2® — tz? — (t + 3)z — 1, studied by D. Shanks (1974).

For m = 5, P = a5 + t22% — (213 + 62 + 10t + 10)23 + (t* + 5> + 11¢% + 15t + 5)2® + (3 +
4¢2 + 10t + 10)z + 1, Emma Lehmer, 1988 (reference [2]). If for some integer ¢ the number
g = t* + 5t3 + 1512 + 25t + 25 is prime, then P is cyclic and any set of four of its roots
is a fundamental system of units of the rink of integers of its decomposition field. This
family was used by Schoof and Washington (1988) to construct a real p-cyclotomic field
with class number divisible by a large prime (reference [3]).

Families for m = 4 and m = 6 were found by M-N. Gras (1977, 1987).

For m = 8 a family was found by Y.Y. Shen (1988).

More examples and references can be found in [6].

For m = 7 no such families are known, but Professors Hashimoto and Hoshi, using their
geometric method to construct families of cyclic polynomials, have found (reference [1]) a
family 7 — (3 + 2 4+ 5t 4 6)x5 + - - - + 7, with constant term 17,

In this talk we show a method to search for such families, of cyclic polynomials with
constant term 41, for arbitrary m > 2 and give several examples.

Let 6g,01,...,0,,_1 be the roots of P in K, L = K|[fy] = K|b,...,0mn-1] and 7 a
generator of Gal(L/K). Suppose that 6g,61,...,60mn_1 are linearly independent over K and
that they are labeled so that 7(6;) = 6,4, (indices modulo m). For 0 < 4,5 < m — 1 define
the elements a; ; € K by

m—1
6o0; = Z_ai,jej- (1)
j=0

Let A = [a; ]o<i j<m. We call A the multiplication matrix of the 6;.
By applying powers of 7 to (1), we get, for all i, 7,

m—1
9;0; = Z Qi—jk—; Ok (2)
k=0 ’
(indices modulo m).

We use the following version of Kronecker’s delta: for 2,7 € Z,

(5--“—{1 if =7 mod m
10 ifi# j mod m.

010 ... 0
001 .. 0

Let K be the m x m matrix [6;11];4; that is K = |11 1. 1. We have K™ = I,
000 ... 1 '

_ ) _ 100 ... 0
the identity matrix. It follows from formula (2) and a little linear algebra, that P is the

characteristic polynomial of A, that K[A] is a splitting field for P and that the conjugates
K7AK* of A (i = 0,...,m — 1) belong to K[A]. It follows that P splits in K[A][z] as
P=(z—-A)z—K'AK)...(s— K™D AK™ ). Hence we can identify the conjugates
K" AK® with the roots 8; of P.
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We will show how to construct some multiplication matrices as above, whose character-
istic polynomials are cyclic with constant term 41. By knowing the multiplication matrices
we get more information than by just knowing the irreducible polynomials. For example,
suppose m and n are relatively prime integers > 2. Suppose A and B are multiplication
matrices of orders m and n respectively of the roots cyclic polynomials over D with con-
stant terms +1. Then we can construct a cyclic polynomial over D, with constant term &1
of degree mn by calculating first the multiplication matrix of its roots. So, for example,
since we can construct such polynomials for m =2, 4, 8, 3 and 5, we can construct several
families of cyclic polynomials at two parameters of degrees 10, 12, 15, 20, 30, etc., even
families at three parameters of degree 120. In fact, let A = [a;;] and B = [b; ;]. Denote
by 6; the roots of det(zI — A) and by 7; the roots of det(z] — B). They are units. Since
ged(m,n) = 1 we have that the 6;7;, 0 < i <m —1,0 < j < n—1, are linearly inde-
pendent (over K) units in the composite field K[y, no]. If we arrange these elements as
Bom0, 01, - - - » Omn—1Mmn—1 (indices of # modulo m and indices of  modulo n), then their
multiplication matrix is the mn x mn matrix E = [e; ;] with e; ; = a3, 1| li|n,j].> Where
|ilm is the integer such that 0 < |é|;, < m —1 and [i|m =i mod m. (This fact had also
been noticed by Professor Hashimoto who pointed out that E is the tensor product of the
matrices A and B.) As we said before, P = det(zI — E) is a cyclic polynomial of degree
mn with constant term equal to 1. We will see later examples of this composition.

2) GENERALIZATIONS OF GAUSSIAN PERIODS

We are going to construct the multiplication matrices of some generalizations of Gauss-
ian periods. Since these generalizations behave in a very similar manner than the actual
Gaussian periods, we recall some properties of these numbers. Let m > 2. Let ¢ =1 mod
m be a prime number, f = (g — 1)/m, {, a primitive g-th root of 1 and s a primitive root
modulo g. For 0 <7 <m —1, define '

F-1
i+mg
m=y,¢
=0

These are the Gaussian periods of degree m in Q[(,]. They are real numbers if f is even
and complex nonreal if f is odd. The Gaussian periods 7o, 71, -, Mm-1 form a normal
integral basis of the only subfield (Q[no]) of degree m of Q[(4]. In particular all units of
the ring of integers of this subfield are linear combination over Z of the ;. The irreducible
polynomial of these periods is @ = (z — no)(z — M) ... (& — Mm—1) € Zlx]; it is a cyclic
polynomial. Its multiplication matrix is basically the matrix of cyclotomic numbers of
order m. Call it C = [¢;;]. We can express the numbers c; ; in terms of some Jacobi
sums J, 5 and we can construct those Jacobi sums using Stickelberger Theorem and some
roots of 1. More precisely, let (, be a primitive m-th root of 1. The Jacobi sums Jg,
0 < a,b<m—1, are elements of Q[(x} defined by

g—1
Ja,b — Z grf;inds {k)+binds (1—k)
k=2
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where ind, (k) is the least nonnegative integer such that s%:*) = k mod q. We have

m—1lm—1

5 = —fo(g-1)/2,i — ) Z Z (~1)f2¢ 070 g .

a=0 =0

Let @) be the prime ideal of Z[(m] over ¢ such that sf = ¢, mod Q, and suppose that
@ is a principal ideal: @ = (). Then by Stickelberger Theorem we have that, for all a, b,

(Jup) = ( H G'ﬁl(a) [(etble] [ge] [bc])

1<e<m

(c,m)=1
(an equality of ideals), where the over bar is complex conjugation and [p] is the integral
part of the real number p. To take out the brackets we have to multiply by some roots of
unity, this can be tricky when m is not a prime number. We have that ¢ = Ngy,.j/0(a)-
This is the only prime that ramifies in Q[no]/Q, and if (¢) = P™, then the ideal P divides
all elements u =dong +dim + -+ dm-1Mm—1 wWith d; €Zand do +d1 +-+- +dm-1=0.
So g divides the norm (from Qo] to Q) of such an element p.

As we said before, we can apply this method to a much more general situation, working,
for example, over D instead of Z. We start with m > 2 and o = ¢1 + to(pm + -+ + tkg’ﬁjl
t1,...,t indeterminates, 1 < k < o(m), such that ¢ = Ngy,,;/x (o) is irreducible (or at
least squarefree). By the above method we get matrices C' that behave very much like
matrices of cyclotomic numbers. In particular their characteristic polynomials ¢ are cyclic
of degree m over K and the matrices C, K~'CK,..., K™ UCK™ 1 can be identified
with the roots of ®, that is with the generalized Gauss1an periods. (For a more detailed
account of cyclic polynomials over characteristic zero domains see [5].) We have a simple
MAPLE program to construct such m x m matrices C (see the last section of [4] for C
generalizing real Gaussian periods, and [5] for C generalizing complex Gaussian periods),
and once we have such C our problem of finding families of units of cyclic fields becomes
one of elementary algebra; indeed, we are searching for matrices M of the form M =
bC + b K 1CK 4 -+ + by 1 K~ DCK™ ! with b; € D such that det(M) =
(determinants correspond to norms) and such that g(z) = det(zI — M) is irreducible, then
automatically g(z) is cyclic. In searching for such matrices M, a very useful trick is the
following. The matrices N = doC + d1 K 'CK + -+ + dpp_1 K~ ™ DCK™ 1 guch that
do +di + -+ dm-1 = 0 are {as in the case of linear combinations, over Z, of Gaussian
periods) such that ¢ divides their norms, that is g| det(N). It is easier to find matrices
N with det(N) = +¢ than matrices M with det(M) = +1. Once we have such a matrix’
N, then any of the matrices K *NK‘N~!, i = 2,...,m — 1, has determinant +1 and
characteristic polynomial in D{z]. This is basically our method. Now we show some
examples.

3) EXAMPLES
For m = 3, with a = n + t{3, we get g = n® — nt + 2 and
1 [—a—b—Q a—3{(g—1) b—3(g—-1)

C=- a b 4
3
9 b c a
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wherea =qg+n—2t—2,b=¢g+n+t—2andc=qg—-2n+t+1.

Let W = C — K~'CK. We have that det(W) = tq/3. For A = K"'WKW~1!, we have
that P = det(z] — A) = 23 + 3222 + 3%tz — 1.

Takingt =1, weget g=n? —n+1 and P =z +3nz?+ (3n —3)z — 1.
Taking t = 3, we get ¢ = n? —3n+9 and P = 2° + nz? + (n — 3)z — 1, Shanks’ polynomial.

Also we have, for example, det(W—K 'WK) = (2n—t)q, det(W 2K ' WK-K2WK?) =
(6n+1t/3)q, det(W —2K WK +2K2WK?) = (—12n—17t/3)q and det(W —3K WK+
2K 2W K?) = (—20n — 17t)q. By finding values of n and ¢, depending on one parameter,
such that those determinants equal ¢ we can obtain more families of cyclic polynomials;
for example:

Fort = 2n+1, wehave g = 3n2+3n+1, andfor U = W~ K~ 'WK and A = K"'UKU 1,
we get P = det(z] — A) = 2° + (9n + 6)z% + (9n + 3)z — 1.

In this and in the following examples, observe that P has the form z° +uz® + (u—3)z — 1
as before, but the conductor is distinct than that corresponding to the Shanks’ polynomial,
in particular, when n runs through the integers, the sets of prime values taken by the
conductors q are different.

For t = —18n+3, we have ¢ = 343n? — 111n+9, and for U = W —2K WK - K ?WK?
and A=K UKU™!, we get P = det(x] — A) = z® + (343n — 54)z% + (343n — 57)z — 1.

For n = —17u + 7 and t = 36u — 15, we have ¢ = 2197¢? — 1825u + 379, and for U =
W —2K-'WK + 2K ?2WK? and A= K"'UKU 1, we get
P =det(x] — A) = 23 + (2197u — 911)z2 + (2197u — 914)z — 1.

Forn = —17u — 6 and ¢t = 20u + 7, we have ¢ = 102942 + 723u + 127, and for U =
W —3K WK+ 2K 2WK? and A = K"'UKU 1, we get
P =det(x] — A) = z° + (3087u + 1086)z?* + (3087w + 1083)x — 1.

Form =4, with & = n + £y, we get ¢ = n? + % and

—a—b—c—16 a—4(q—1) b—4(g—1) c—4(g—1)

Cxi a c d d
16 b d b d ’
c d d a

wherea=q¢+2n—4t—-3,b=q+2n—-3,c=q+2n+4 -3 andd=qg—2n+1.

Let W = C — K 'CK. We have that det(W) = —t2¢/16. For A = K" 'WKW !, we
have that P = det(z] — A) = z* + 4223 — 62% — 4%z + 1.

Taking t = 1 and t = 2, we get some families.

Taking ¢t = 4, we get ¢ = n? + 16 and P = z* + nz® — 62 — nz + 1, first found by M-N.
Gras.

For A = K 2WK?2W ™!, we have that P = z* + 423 — @iﬁ;}pﬁmz +4z + 1.
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Taking t = 1, £ = 2 and t = 4, we get more families.

Let U = W — K-'WK. We have that det(U) = t?q/4. For A= K~'UKU!, we have
2 2 2 2
that P = det(z] — A) = zt+ 8n2+8tgz+4ntm3 + 20n ;2-141& z2 4+ 8n +stg —dnt, | q

Taking ¢ = 1 and ¢ = 2, we get more families.

For A = K~2UK?U !, we have that

—16n2—-12¢2 2 2 C1Rn2_ 1942
P =d€t(.’L’I—A) :$4+ 16nt2 12¢ $3 + 32n t—é—38t $2 + lﬁnt2 12¢ 41,

Taking ¢t = 1, £ = 2 and ¢ = 4, we get more families.

Also we have, for example, det(W — 3K~2WK? + 3K 3WK?) = —(24n + Tt)%q/16. If
we take n = —Tu — 8 and ¢ = 24u + 28, then ¢ = 625u® + 1456w + 848 and, for U =
W —3K?2WK? +3K3WK?3 and A= KUKU™', we get

P =det(z] — A) = x* — (625u + 728)z> — 622 + (625u+ 728)x + 1

For m =5, with o = n + (5 + u¢Z + v(Z, we get

g = 2v%ut + 2vt2n + 2vun — 3vltn + 20%un + v* + 2ultn + v¥n? + 2vtn? — uPn — V%t
vutn — udt +u2n? — tnd — un® — utd + w22 — vnd — vt — vud + 242 + v2u? — v3n — 3vun? —

Jutin 4+ nt + 2out? — 3vut + 2uin? + 2n? + ut + t* — t3n — v3u and

—a—b-c—d—-25 a—5(q—1) b—5(g—1) e¢—-5(g—1) d-5(g—1)

1 a d e f e
C = % b e c f f ,
¢ f f b e
d € f e a
where

a=q—4+3n?+ 30 — 9tn — 2u? + 3t? + 6tu — dnu — 4vt + vn — 4vu,
b=gq—4+3n? — Tv? +tn + 3u? + 3t? — 4tu — 9nu + vt + 6vn + vu,
¢=q—4+3n+3v% — 4tn — Tu® — 2t + 6tu + 6nu + 6vt — Yvn + vu,
d=q—4+3n? — 202 + 6in + 3u? — Tt? 4+ tu + nu + 6vt — 4vn — 4ou,
e=gq+1-2n2? —20? +tn — 2u? + 3t — 4tu + nu + vt + vn + 6vu and
f=g+1-2n%+ 302 +tn+ 3u? — 2% + tu + nu — 4vt + vn — 4vu.

With a = n+2+(5+2¢2, we get ¢ = n*+5n°+15n2+25n+25. Let W = C—K~'CK.
We have that det(W) = —q.

For A = —-K?WK?W !, we have that P = det(z] — 4) =
z° +n%zt - (2n3+6n2+10n+10)z3+ (' +5n3 + 11n2 4+ 15n+5) 2%+ (n3+4n? + 10n+10)z+1,
Lehmer’s polynomial.

For A= K'WKW !, we have that P = det(z] — A) =
z° + (2n? + 5n + 10)z* + (n* + 513 + 1702 + 25n + 25)2% + (n* + 3n® + ™% + 5n + 5)x? —
(n3 + 3n? + 5n + 5)z — 1.
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For m = 6, with a = n + t(s, we get ¢ = n? + nt + t* and

—a—b—c—d—e—36 a—8(g—1) b—6{g—1) c—6{g—1) d—6{q—1) e—6(qg—1)

. a e I f ! !

O = L b f d f 7 7
36 c ! ! e 1 o

d 7 ! 7 b !

e f 1 1 7 a

wherea =q+4n—Tt—5,b=¢q+4n—t -5, c=q+4n+ 2t -5, d=g+4n+ 5t -5,
e=q+4n+11t—band f=gq—2n—1t+1 Let W = C — K"'CK. We have that
det(W) = —t%q/5184.

For A= K~ 'WKW !, we have that P = det{z] — A) =

o8 + 6225 — 15224 + 202° + 1552 — 62 2 + 1.

Taking t = 1, we get ¢ =n2 +n+ 1 and P = 2% + 6na® — (15n + 15)z* + 2023 + 15nz? —
(6n +6)z + 1.

Taking t = 3, we get ¢ = n® +3n+ 9 and P = 2% + 2n2® — (5n + 15)z* + 202® + 5nz® —
(2n + 6)z + 1, first found by M-N. Gras.

For A = K2WK?W ™!, we have that P = det(z] — A) =

2 2 2
236 + 6n;¥~t$5 . 324n +2:g, +19ntm4 + 209n2+8ti22+9ntx3 _ 324?1 +2§2t2+29ntx2 - 6%$ 4 1.
Taking t = 1 and ¢ = 3, we get more families.

For A = K3WK3W ™!, we have that P = det(z] — A) =
75 + 625 — 348n2+4?2t2+48nt T4+ 472n2+7;72tz+72nt 3 — 348n2+4?2t2+48nt 72 + 6z + 1.

Taking t =1,t=2,t=3,t=4,¢t=6 and t = 12, we get more families.

For m = 7 we could not find a family of cyclic polynomials in Z[z] whose roots are units, but
the following family of cyclic polynomials, with constant term n?, was found by Professors
Hashimoto and Hoshi using a different method (see [1]).

P =27 — (n3 +n2 +5n+6)z° + (90 + 9n? + 24n + 12)2° + (n7 +n® +9n° — 5n* — 15n° —
22n2 — 36n — 8)a* — (n® + 5n” +12n° + 24n® — 6n* 4 2n® — 20n* — 16n)z° + (2n° + Tn” +
1908 + 14n° + 2n4 + 8n® — 8n?)z? — (n® +4n” + 8n® + 4n*)z +n".

This can be obtained using our method as follows: Take & = n~2+(1—{r}(1—¢3)(1+¢r+
¢3) and U = C — K2CK?. We have that det(U) = —n*q. With A = —nK2UK?*U L,
we have that P = det(z] — A). Here g = N(a) = nS + 2n° + 11n* + n® + 16n® + 4n + 8.
If we take A; = nKSUKSU !, we get another family P, = det(z] — A;) =

27 — (05 + 20t + 1103 + 202 + 100 + 2)3° + (n® + 4n® + 16n7 + 26n° + 31n° + 450" +
21n® +12n2 + 12n — 4)2° + (! + 2010+ 120 + Tn® + 3907 + 58n8 + T4n® + 68n* + T4n° +
2412 + 16n + 8)z? — (n12 + 4n!l 4 16020 + 27n° + 33n® + 54n7 + 19n8 + 2n° — 9n* — 14n’ —
20n2)z3 — (2n' + Tn'® + 30n° + 4008 + 5617 + 6618 + 46n° + 30n* + 20n° + 8n?)z? —
(n10 + 3n® + 1208 + 1007 + 1208 + 10n° + 4n*)x —n".

Also, for a =n—1+(1—¢7)(1—¢3) and U = C — K~2CK?, we have that det(U) = n'q.
If we take As = —nK " UKU™!, we get Po = det(z] — Asz) =
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27 + (n® + 4n2 4+ 3n 4 6)z% + (3n° + 6n® + 1603 + 15n% + 120+ 12)2° + (3n7 +4n® +20n° +
11n4 + 27n® + 6n2 + 12n + 8)z* + (n® 4+ n8 + 8n7 + n® + Tn® — 17n* — 2n3 — 20n?)2® —
(n® + TnT + 1108 + 1905 + 16n* + 8n3 + 8n2)2? — (n® + 5n” — 4nf + 2n® — dn*)z + 7.

If we take Az = nK PUKU ™!, we get Ps = det(z] — Az) =

27+ (2n8 +n? +6n—2)zb + (NS +n® + 5nt 4+n3 —2n2 — 16n —4)z° — (n” +12n° + 130 +
3603 + 16n2 — 8)z — (n® +4n” + 6n° + 1005 — 2603 — 28n2 — 16n)z3 + (n° + 2n° + 90" +
1816 + 38n° + 36nt + 28n° + 8n?)x? + (n® 4 2n8 + 507 +5n° + AnB + 4nt)x —n".
Here ¢ = N(a) = nb +n® + 8nt + nd + 22n? + 8n 4 8.

Observe that if g1 (n) = n® + 2n° + 11nt +n? + 16n? + 4n + 8 and g2(n) =nf 4+ n° +
8nt + n3 + 22n2 + 8n + 8, then ga(n) = nbq; (2n~1)/8 and g1 (n) = n¢(2n~1)/8.

For m = 8, take for example o = n + t(g, we get ¢ = n* +1*. Let U = C — K 2CK?. We
have that det(U) = —#12¢/4096.

Take t = 1. For A = K-'UKU™!, we have P = det(z] — A) = 2® + 8na” + (—16n* +
28n2 — 16)a® + (—64n5 — 16n? + 56n3 — 64n — 16)2® + (—64n° + 96n* — 64n? + 26)z* +
(64n° +128n5 +16n* +64n? + 72n+16)2% + (—32n° — 16n* — 28n% — 32n— 16)z® — 8n’z + 1.

For A= K 2UK2U™!, we have P = det{x] — A) = 2% + (16n* — 8n? + 16)z” + (80n* +
52)a8 + (—64n° + 64n* — 8n? 4 64)z5 4+ (—64n° — 48n* — 64n? + 22)z* + (—16n* — 56n* —
16)z® + (16n* — 12)z? + 8n?z + 1.

For A= K *UK*U™!, we have P = det(x] — A) = 28 + (—16n* — 8)z” + (64n® — 32n* +
64n2 — 4)2% + (16n* 4+ 72)25 + (—128n8 — 192n* — 128n? — 122)z* + (16n* + 72)z* + (64n° —
32n* + 64n? — 4)z* + (—16n* — 8)z + 1.

Take t = 2. For A= K 'UKU™!, we have P = det(z] — A) = 28 + 4nz” + (—n* + n? —
16)28 + (—2n° — n* 4 Tn® — 32n — 16)2® + (—nf + 6n* — 1602 4 26)z* + (n® + 4n® +n* +
1612 + 36n + 16)2° + (—n® —n* — Tn% — 16n — 16)2? — n3z + 1.

For A= K2UK?U~!, we have P = det(z] — A) = 2%+ (n* —2n2+16)z" + (5n* +52)2% +
(—n® + 4n?* — 2n? 4 64)z° + (—n® - 3n? — 16n? + 22)z? + (—n* — 14n? — 16)2° + (n? -
12)x2 + 2n2z + 1.

For A= K~*UK*U ™!, we have P = det(z] — A) = 2% + (—n* — 8)z" + (n® — 2n* + 16n% —
4)2% + (n* + 72)2° + (—2n8 — 12n* — 32n2 — 122)z* + (n* + 72)2% + (n® — 2n* + 1612 —
4)z? + (—n* — 8)z + 1. '

Now we construct families at two parameters of degrees 10 and 12. For example, for
m = 2, the matrix A = [njll/n " —11/777] is the multiplication matrix of the roots of the
polynomial P; = det(z] — A) =22 —nz —1 (see [6]). Form =5, a=t—1— (5 — 2¢? and
W =C — K 'CK, we have that ¢ = t* — t3 + 612 — 6t + 11,

a a ¢ a—25a—25

1 a e ¢-25 a a—25
B=K?*WK*Wl=_1| b b2 a4 § f |,
25 | g-25 a e g a
a—25a-25 e a g+25
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where g = —t4 + 3 — 42 + B¢, b = 4t* — 43 + 2142 — 10t + 50, ¢ = —t* + 3 — 9% + 20¢,
d = 4t — 443 + 4142 — 20¢ + 50, e = —t* + 3 — 912 — 5¢, f = 4#* — 4¢3 + 214? — 35t + 50
and g = —t4 + 3 — 442 + 30t — 25, and P, = det(z] — B) = 2° + (—t? — 2t — 1)z* + (263 +
4t —4)z® + (—t* + 3 — 242 + 4t + 3)z? + (13 +t* — 5t + 3)z — 1. Let E be the composite
of A and B as defined in Section 1. Then we have the following family at two parameters
of degree 10.

P =det(z] — E) = 2% —n(t? + 2t + 1)z° + (2n3 + 4n?t — 4n? — t* — 61* + 44 — 9)z® +
n(—n2tt + 2t — 20262 + 4n2t + 3n? + 25 + 1 4 013 — 267 + 8t + 5)2” + (—n*t? + 2 —
5nit —n2t8 — n?t5 — n2tt — 3023 + 130262 — 1002t + 3n* + 15n2 + 218 — 265 + 14¢* — 1643 +
36t2 — 22t + 28)28 — n(n?t® + n?t* + 40?3 + 602 — n%t + nt + 2% + 207 — 20 4+ 114° —
1314 + 1813 — 612 + £ + 8)2® + (—n*t2 — 2%t — 2215 + 2025 — 14n?t* + 14n2t% — 28n%t* +
24n2t — nt — 16n2 — 18 + 2t7 — 918 + 1615 — 341* + 38t% — 5442 + 36t — 35)z* — n(2n?t® +
An2t —4n? +17 — 245 + 885 — 14¢% + 201% — 2312 + 9t — 3)2® + (—n?tt + n?t® — 2n%t? +4nPt +
3n2 6 — 265 + 91t — 143 L 2712 — 22t + 15)2? + (83 — 2+ 5t — 3)z — L.

Form =3, a=n+3C and W =C — K"'CK, we have that ¢ =n%? —3n+9,

91bb4+9 d
where a =n?2 —5n+13, b= ~2n2 4+ —23, ¢ =n? —2n+1and d = ~2n? +n— 17, and
Py =det(z] — A) = 2> + nz® + (n — 3z — 1.
Form =4, a =t+2(; and W = C — K"'CK, we have that ¢ = > + 4,

a 6 ¢
A=K WKW = }— {a a—9 c+9} ,

1 a a ¢ a

=1 -1 _ aa—8ct8 a

B=K WKW - g I:b b+8 d b——8:| ’
a a ¢—8a+8

wherea =12 —2t+5,b= -3t +2t — 11, c=t*+2t+land d = —3t% — 10t — 15, and
Py = det(z] — B) = z* + 2t2® — 622 — 2tz + 1. Let E be the composite of A and B as
defined in Section 1. Then we have the following family at two parameters of degree 12.
P = det(z] — E) = 22 — 2ntz! + (4nt? — 6n? + 12n — 12t — 36)z'° 4 (2031 + 6n°t —
180t + 83 + 308)7° + (—4n12 + 20nt2 — 28nt? + n? — 4n® + 50n° — 160n + 72t* + 342)z° +
(—2n4t — 8n2t3 4+ 10n2t + 16nt® + 16nt — 48t% — 210t)z7 + (—36n%? + 108nt? — 6n* + 36n° —
138n2 + 252n — 15682 — 522)28 + (2nt — 24n3t + 8043 + 98nt — 32nt® — 140nt + 726° +
234t)z° + (4n3t2 — 160212 + 16nt? + n* — 8n® + 68n? — 140n + 60t% + 285)z* + (2n°t —
24n2t + 72nt — 8t3 — 84t)x® + (—4nt? — 6n? + 24n — 54)2® + (—2nt + 6t)z + 1.
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