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1 Generalized Lerch’s formulas

The zeta-regularized product of a countable sequence {Ax} C C\ {0} is
defined by ‘
s:())

provided that A(s) = Y3 A\;® is continued holomorphically at s = 0. Here

 the branch is chosen so that —m < arg(Ag) < 7.
There are several interesting formulas which can be formulated in terms

of zeta-regularized products. Typical examples are Lerch’s formula -
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and Kronecker’s limit formula
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Here I'(z) is Buler’s gamma function and A(z) = e [ (1 — ™) is

Ramanujan’s delta function.
In this paper, we generalize Lerch’s formula.
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Theorem 1 For z; € C\ {0,—1,-2,...}, we have

T (flm) =ty ()

J=1 J

As a part of Theorem 1, we can obtain the formula of Lerch, Kurokawa
and Wakayama.

Corollary 1 (Lerch)
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ann((n +a)? +y?) = T(z + )T (z — )’

Corollary 2 (Kurokawa and Wakayama [5])
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We would like to mention that our motivation of generalizing Lerch’s
formula is how [, (ay, - b,) is connected with ], an - I1,0n
Suppose that a, and b, depend on some parameters X. In many exam-

ples, we know =N N
Hn(an . bn) — eF(X)Hna-n ) Hnbﬂ (3)

with some F(X). An interesting question is to understand F(X).
Theorem 1 is an example of the case where F(X) vanishes in (3). In fact
we have

Corollary 3 For monic polynomials Pj(z) such that Pj(m) # 0 for any
m € {0} UN, one has

I (HP(m)) =11 (T o70m).

i=1

Corollary 3 is remarkable because it is saying that F(X) = 0 in (3),
which does not hold in general at all. We can see examples for F'(X) # 0 in
Corollary 4 which will be given in Section 2 and Lemma 1 of [8].



2 Two dimensional analogue and g-analogue

There are two dimensional analogue and g-analogue of Euler’s gamma
function, so called Barnes’ double gamma functions and Jackson’s g-gamma,
functions (see [1], [7]). Hence it is natural to seek two dimensional analogue
and g-analogue of Theorem 1.

Barnes’ double gamma function I3(z, (w1, w2)) is defined by

. 0 <, . s
log T3 (2, (w1, we)) = 3 > (miwy + lwy + z) ,

m,i=0 s=0

T3z, (wi,we)) ™" = Hm’zzo(mwl + lwg + 2).

We get a two dimensional analogue of Theorem 1 by using the following
result.

Theorem 2 Assume that g;, 73,25 € C satisfy that R(g;) > 0,R(r) >
0,R(z;) > 0, and ¢; # @&, T # Tk, Tk F kT for § # k. The function
of s defined by
Hy(s) = Y T](mg; +im+2)"°
myd=0 j=1
is continued meromorphically to all s-plane. Ha(s) is holomorphic at s = 0
- and we have the following formula for %HZ(S)'szg’

9 no
~6,—H2(8) = Y logT5(2y, (g5, 71))
§ 8= =
1 q;Tk — Ti%k Q2 — 9x2;
+ = 2= I (log gr — logg;)Ba (——————)
2n 135,;5%{ 5% ( i) 4iTe — Tidk
QxTi — Thdj TiZk — Thj }
+ 7 FHogT —logT)Be | T | 1~
TiThk og 74 873) 2(%‘%’@%)

Here By(z) = 22 — x + 1/6 is the second Bernoulli polynomial. We choose
the principal branch for log g;, log 7.

This is a generalization of Shintani’s result (see {12]). He treated the case
n = 2 to give a new proof of Kronecker’s limit formula (2).
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We remark that in order to conclude

820) = ﬁ:,l=0 (ﬁ(mqj + I —E—»zj)) 7

7]
exp (~— %H2(S)

1

the equation

{ﬁ(m% + 175 + zj)} = ﬁ(m%’ + 17y + 2)° (4)

g=1

J=1

must hold for any m,[ € NU {0}. We take this remark into account to give
a two dimensional analogue of Theorem 1. As an example of g;, 77, 2; which
satisfy the equation (4) for any m, ! € NU{0}, we can take n = 2h,¢;,75,2; €
C,ahts = T Ths = T5s 20 = 25,0 = 1,5 P

Corollary 4 Fiz g;,7;,2; € C such that R(g;) > 0,R(ry) > 0,8(%) > 0,
and q; # qr,T; # Ty @7k F QT for § # k. Suppose that (4) is satisfied for
any m,l € NU{0}. Then we have

ﬁZz:g (ﬁ(mqj + 7 + zz)) = € ]__n[ I3 (%, (qj,'rj))”l

j=1 F=1
= '] (Hm,hg(mqj + 75 + Zj)) :
=1
where
1 4Th — Tidk | g2k — Qk?
F o= - BE % (log g — log g;) Ba |
2n 152571{ q;9x ( }) 9Tk — Tj4k
QkTi — TeGj Ti%k — TkZj
+ ————F(logT —logT)Bs | —— | ¢-
TiTh . (log 7, —log73) 2<quwqm>}

Next we present g-analogue of Theorem 1. Usually the zeta-regularized
product is defined for a sequence {\x} C C\ {0} such that A(s) = Xy A¢”
can be continued holomorphically at s = 0. In case A(s) is meromorphic at



s = 0, Kurokawa and Wakayama [6] define the generalized zeta reguralization

by
o~ A
Hk)\k = exp (~ Res %) )

They obtained several examples of such product, one of which is the following
g-analogue of Lerch’s formula.

Theorem 3 (Kurokawa and Wakayama [6]) Forg> 1,z > 0,

00 Gq
ano[n + .’E]q = Fq(.’}}) .

Here [z], = %;__Tl is the g-analogue of number x,

e, (1 - g ") 1—g ool
) = (i - gy 0700

is Jackson’s g-gamma function,

We obtain the next result which is the g-analogue of Theorem 1 including
the above Theorem 3.

Theorem 4 For g > 1,2z; > 1, we have

ﬁm"(ﬁ[m%zﬂ“) B ”TC—%\Z—)Q‘%@LM%ZLI@
L=

j=1 1i=1 o(2j

n n L OO
— q—i%(zjzl z"’;)2+% Zj:l ZJZ H (Hm=0[n + Zy]q) -

j=1
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3 Double Hurwitz zeta

For B> a >0, let H, p(s1,32) be Dirichlet series defined by

oc

Ho,p(s1,82) = 3_(n + )™ (n+6)7".
n=0
This series converges absolutely for R(s; + s) > 1.
H, s(s1,83) is an important object in the theory of the zeta-regularized
product. For example, as we presented in Section 1, we know generalized
Lerch’s formula

o0 (- o) -

We know also that the spectral zeta function Z,(s) of the unit n-sphere
§7=1 can be written in terms of Hy g(s1,52) a8

n-—-1

Zn(s) = dZ_%Tn,dHl,n(S — dv 3)7 (5)

where N
Foa= 5 3 o)) (-2,
n r=d+1 d
s(r,d) denoting the Stirling numbers of the first kind. See Lemma 2 of [4]
p.202. We get the formula for the functional determinant of the Laplacian
by evaluating %Zﬂ(s)ls_o. See Theorem 1 of [4] p. 200.

In the results mentioned above, the main target is not Hyp(s1,s2) it-
self but evaluating derivative of H,s(s1,8;). In this section, we analyze
H, s(s1,89) itself. First by applying the method described in [2], we can get
the following expression for Hy g(s1, s2).

Has(orson) = st [ a1 =0+ 0 2 (= uld, )

where ((s,z) = £%2(n+%)~* is Hurwitz zeta function. It is very interesting

to note that S. Ramanujan already treated the integral of the right hand side

on (6) apart from Dirichlet series Hyg(s1, 53). See (14) of [9] p.166.
Starting from the integral expression (6), we show the following results.

Theorem 5 H,s(s1,ss) can be continued meromorphically to all 81,89 € C.



Theorem 6 For R(s;) < 0,R(se) < 0,0 <a < <1, we have

F(l — 8 — 52)
(2,”-)1—51-52

. w .
% {el‘%(l—-slwsz) Z n81+82—1€—27"m'6 1F1(51)31 + s2, 271'7,711([3 — OC))

Ha:ﬁ (Sl’ 32) =

n=1

+ e~ Fli-s1-s2) > pft-lg?mine | [ (5o 81 + 89, 2min(0 — a))} (7

n=1

Here 1y (a, b, z) is the confluent hypergeometric series defined by

1F1(a’565z) :g%g (8)

with (z), = S

This is a generalization of well known Hurwitz relation for {(s,z).

Theorem 7 We have

© (gy),
Heplor,o0) = 3 2

n=0

(o1 + 52+ m)(a— A"

This is a special case of Main Theorem of [3]. However we can prove Main
Theorem of [3] by quite different manner using the confluent hypergeometric
series 1F(a, b, 2).

Next we give the evaluation formula of H, s(s1, s3). We can evaluate the
values of H,g(s1,52) at any integers 51,5z in terms of the values of Hurwitz

zets function.

Theorem 8 Forp,q € N, we have

B T'(p +9q)
H,p(q,p) = (p+q-— DT{p)T(g)

- RS et
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3 2 mfa—1 (p+m—1)! o) — @)
S (1) g e mae-5)
C ¢ 1ye-1 (p+q_2)' o — —p—g+1 Ei __I:ia

b g2t o e (L) - T |

Here empty sum is considered as zero.

Theorem 9 For p,q € Z which are not both negative, we have

Hop(—p,~q) = i (Z) (8- a)*¢(-p—q+k0)

k=0
+ Z() *(—p—q+k,B)

Here empty sum is considered as zero.

Finally we mention that we can provide another approach to evaluate the
determinant det A, of the Laplacian on the n-sphere S"~! starting from the
integral expression (6). Here det A, is defined by

350) .

det A, = exp ( Z Ty, iy Hl,n —d, s)

See (5) for the definition of Tj, 4.

Theorem 10

d
%Hl,n+1 (8 - d, S)

= ¢+ 3-m = etn )
( n)d—i—l l:(; 1 '
20d+1) (yzl J)
This is simpler than Kumagai’s fomula given in Lemma 3 of [4] p.202. Com-

paring Theorem 10 and Kumagai's result, we get the following identity for
harmonic numbers. '

s=0
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Corollary 5 The following identity holds:

B d d"l’l ! 1 d 1
2 (10) 25k

I=1,0dd j=1,0dd
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