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Perron-Frobenius Operators in Banach lattices

AR (Shinzo Kawamura)
LT RF T

Introductuion. This is an article about a work deeply related to that of Pro-
fessor Kakutani who passed away in the summer of 2004 [8]. Our work is to give
a Banach lattice version of the paper [5]. We give a generalization of the theory
discussed in [5] and new kind of theorems concerning the orbit of a vector with
respect to the iteration of a linear operator on a Banach lattice.

We have been interested in chaotic maps on a compact space. A map ¢ of a
compact space X into itself X is said to be chaotic if ¢ satisfies the following
conditions ([2: §1.8, Definition. 8}):

(1) The set of periodic points is dense in X.

(2) ¢ is one-sided topologically transitive.

(3) ¢ has sensitive dependence on initial conditions.

The above chaotic conditions are properties of the behavior of the orbits of a
point in X with respect to the iteration of ¢. In [4] and [5], Kawamura studied
the properties of those chaotic maps on a measure space which was called a maps
with n laps ¢ (MWnlL for short) (Defintion in §2) and the behavior of the orbits
of a probability density function on X. The study was extended to the case of
states of von Neumann algebras on a Hilbert space associated with the measure
space. The results were simple convergence theorems in contrast with the above
three conditions and thus turned out to give another view point concerning chaotic
maps.

Here, we study the Perron-Frobenious operator Alp) in L'-space
associated with each MWnL ¢ and the behavior of the orbit of a positive unit
vector with respect to the iteration of A(p). Our main result is to find a sub-
space M of L'-space and a subspace N of L®-space, which satisfies the following
convergence property:

| lim [[Ae)"f — ell, =0

for all positive unit vectors f in M and

Tim [[A(p)"f = el =0
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for all positive unit vectors f in N, where e is an A(p)-invariant positive unit
vector.

Before the discussion, we note that there symbols N, Z and R means the set of
positive integers, the set of all integers and the set of all real numbers.

§1. A property of a sequence in an abstract L-space
A linear space B over the real field R is called a Banach lattice with respect to
(|| - I, £), if B satisfies the following conditions ([6: II.8.1.Definition]):

(B-1) B is a lattice-ordered linear space with order <.
(B-2) B is a Banach space with norm || - ||.
(B-3) |z| = |y| implies ||z]| < |yl|(z,y € B).

Here a linear operator on B means a linear operator of B into B. A Banach lattice B
with norm ||-|| is called an abstract A-space (AL-space for short)([5:11.8.1. Definition])
if B satisfies the following condition.

(L) 2,y 2 0 implies ||z +y| = ||l=[[ + llyll (z,y € B).

It is well known that every AL-space B is isomorphic to L'(X, ) for a locally
compact space X and a strictly positive Radon measure p. This fact is due to
Kakutani [1].

A Banach lattice B with norm || - || is called an abstract M-space (AM-space for
short) ([5:11.7.1.Definition]) if B satisfies the following condition.

(M) z,y 2 0 implies ||z V y|| = max{]|z||, ly|} (z,y € B).

For a subset £ of a Banach lattice B, we denote by L(€) the linear span of £ in
B. Moreover the closure of L(£) in B is denote by L'(£) when B is an AL-space
and L®(€) when B is an AM-space.

In the case where B is an AL-space with norm || - |};. We set

PUV(B)={ee Bl e>0and ||}, = 1}.

Namely, PUV (B) is the set of all positive unit vectors in B. Let A be a bounded
linear operator on an it AL-space B and let e be a vector in PUV(B) with the
property Ae = e. Moreover let £ be a sequence {e;}2; in PUV (B). We say that
& has Property(A,e) if £ satisfies the following conditions:

(1) e; =e.

(2) For each e; in &, there exists m € N such that A™e; = e,.

In this article, we are interested in AL-spaces B and linear operators A on B
such that A(PUV(B)) CPUV(B). Here we remark that the norm ||A|| of those



operators A is always 1. In general, a bounded linear operator A on a Banach
space B is said to be contractive on B if ||A]| £ 1. The following is our first result.

Theorem 1.1. Let B be an AL-space and let A be a bounded linear operator on B
such that A(PUV (B))C PUV(B). Suppose that there exists an A-invarinat vector
e in PUV(B). If a sequence E= {e;}°, in PUV(B) has Property (A,e), then it

follows that for any vector f in PUV (B)NL*(E), we have

lim [[A™f —e|ls =0.
mM—r0C

In order to prove Theorem 1.1, we need the following lemma.

Lemma 1.2. Suppose B is an AL-space with norm || - ||; and f is a vector in
B. Let {e;}t, and {a;}r, be a family of vectors in PUV(B) and a family of real
numbers respectively. Then we have the following:

(1) If f 2 0, then it follows that

k k
> P e
1=1 =1

(2) If there exists a contractive linear operator A on B such that A™e; = ey (i =
1,...,k) for some m € N, it follows that

k k
Z@i“" Hf“l < Zai

171 = > asl S Ul =3 S

1

~fl =

k
f-= Z Qi€
i=1

1

Remark 1.3. Under the conditions (1) and (2) of Lemma 1.2, if f = SF e 2
0, then we have ||f|l; = (zj;l o

Remark 1.4. In Theorem 1.1, if f is in L(£), then we have A™f = e; for some

m € N. Indeed, for f = Zle aze; > 0, we have || flli = Soh_, &; = 1 and thus

k k k
A" = E a; A"e; = E ae1 = E a; el =er
=1 =1 =1

for a large number m € N.

Next we note how the sequences {e;} in B in Theorem 1.1 are constructed when
a bounded linear operator A on B has an invariant positive unit vector e.
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Proposition 1.5. Let B be an AL-space. Suppose that A and {B;}, are bounded
linear operators on B satisfying the following conditions:

(a) Af 20 and B;f Z0for feBwith f 20, ((=1,...,n)

(b) I AfIlL £ Iflly and || Biflly S IFlh G =1,...,n) for f € B and ||Af], =
|1 Biflls = [If{l if f = 0.

(c) AB; =1 (i=1,...,n), where I is the identity map of B.
(d) There ezists A-invariant vector e in PUV(B).
Moreover let
E=UR {€iiain 181 =102,k € {1,-,n}}

be the at most countable set in B defined by the following induction:
(i) e; =e.
(ii)esd,...i, = By, Bs,_, - - Biex

Then £ has the following properties:
(1) €14y, € PUV(B)
(2) Aey = e,
(3) AFtn=le, . i = ey for all non-negative integers n.

Hereafter, for an A-invariant vector e, we denote by £(e) the set £ defined in
Propositin 1.5. The following is our second result.

Theorem 1.6. Let B be an AL-space and A be a bounded linear operator on B.
Moreover let C be a linear subspace of B, which is an AM-space with norm || - |l
such that

Il S 1flleo (£ €C)

Suppose that B, A and C satisfy the following conditions:

(HYA(PUV(B))C PUV(B).

(2) There exzsts an A-invarinat vector e in PUV(B).

(3)A(C)C
(4)The opemtor A is a contraction on C with respect to the norm || - ||,
(5)A sequence £= {€;}2, in PUV(B) has Property (A,e) and is contained in
C.
Then for any vector f in PUV (B)NL>(E), it follows that

lim ||A™f — e|lec = 0.
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§2. Chaotic maps and the behavior of the orbit of probability density
function

Let (X, u) be a o-finite measure space. A measurable map ¢ of X into X is
called a map with n laps (MWnL for short (cf.[5. Definition 2.1])) if there exist n
measurable subsets {X;}*, of X such that

(1) U?:l Xz =X, [J,(Xz N X;) =0 for %j and [,L(X;) > 0 for all 4.
(ii) Each restriction ¢; of ¢ to X; is a non-singular map of X; onto X.

In the case where ¢ is an MWnL on X, since each map ¢; of X; onto X is non-
dpowi L dpopi

m m such that

singular, we have two Radon-Nikodym derivatives

. '_1
(iii) dudc‘;wz (z) # 0 for a.a. z in X; and éﬁ%’oﬂ—(z) # 0 for a.a. z in X.

L dpow, o duog;!
() B () Hg
for a.a. z in X;.

(z) = 1fora.a. zin X an

du du

For a measure space (X, 11), two Banach spaces L'(X, p) (L' (X) for short) and
L®(X, p) (L®(X) for short) with usual norms || - [|; and || - ||s are an it AL-
space and an it AM-space respectively. Here we denote by PDF(X) instead of
PUV(LY(X)). Namely

PDF(X) = {f € (OIS 2 0and [ f)du=1}

For an MWnL ¢ on X, we consider the Perron-Frobenius operator A{p). The
operator A(y) on L*(X) is defined by

n

dpo ;! -
(AP ) =) —Er(ﬂi)f(% Hz)) (z€X).
Our purpose is to analyze the orbit {A(p)"f}22, for a function f € PDF (X) by
using the results in §1. In the present paper, in addition to A(yp), we need other
linear operators B(y); (i=1,...,n) which are defined by

Bl @) = 2P 0) floi@)xe, (5) (@ € X).

Then we have the following result.

27
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Proposition 2.1. Let ¢ be an MWnL on X. Then the operators A(p) and
{B(p);}, satisfy the following conditions.
(a)  A(p)f 20, B(p)if20 (i=1,...,n) forall f in L'(X) with f 2 0.
(1) [LAG@)Fll |l for all £ in LH(X) and [|A(@)fl = |l i F 2 0.
(b-2) [[Ble)iflh = llfll (i=1,...,n) for all f in L}(X).
() AB;=I (i=1,...,n).

Using Theorem 1.1, Proposition 1.5 and the above proposition, we have the
following theorem.

Theorem 2.2. Let ¢ be an MWnL on X. Suppose that there exists an A(p)-
invariant vector e in PDF(X) and £(e) is the sequence defined in Proposition 1.3.
Then, for any vector f in PDF(X) N LY{(&(e)), we have

lim [|A(g)"™f ~ el =0

Moreover, suppose that u{X) = 1 and e belongs to L*(X). Then, for any vector
fin PDF(X)nL®(E(e)), we have

lim [ A(g)"f ~ell,, = 0.

Now let ¢ be an MWnL on a probability measure space (X, u). As in the
case of measure preserving bijectve transformation on X, a map ¢ is said to be
strong-mizing if

Jlim p(o™(E) N F) = p(E)u(F)
for each pair of measurable sets E and F'. Moreover, in the same manner as in [6:

Lemma, 6.11], we can see that this is equivalent to that, for any n in L'(X) and
any f in L®(X), it follows that

. ko

i [ 7 @)@ = /};f(x)u [X ()

This equation can be derived by the conclusion of Theorem 2.2, in which e is the
case where e(z) = 1 (z € X) and L(€(e)) = L'(X). Namely we have the following
corollary.

Corollary 2.3. Let ¢ be an MWnlL on X such that the constant function e(z) = 1
is @- invariant and L(E(e)) coincides with the whole space LY(X). Then ¢ is
strong-mizing.



§3. Example of the case of tent map

Let 7 be the tent map on the unit interval X = [0, 1] with the Lebesgue measure,
that is, 7(z) = 1 — |1 — 2z|. Then 7 is an MW2L with 7 (z) = 2z on X1 = [0, 3]
and 75(z) = 2 — 2z on Xo = [3,1]. Since 7{'(z) = {z and 75} (z) = 1 — 4=, we
have

(A ) ) dpor;

(@) f(r (@) + T(w)f(fil(x))

_duor!
=2

=HE) + f1-9)}

and

(B(r)1f)(z) = 2f (22)xp, () (Blr)2f){z) = 2f(2 = 22)x3 ().
Let e = 1 = x[o,11- Then A(7)e = e. Now we put
e =€ and Clig,in — B(T)ikB(T)ik_l . ‘B(T),‘Z(Zl

for iy, ...,0% € {1,2}. Then we have
ern = 2Xp,1p €12 = 2X1p €11 = 4Xp etz = AXyy €121 = 4x;
ez = 4X2.3," -

2
3D

Since (€)= Upe;{€1yis,...ix iz, i € {1,2}}, then we have

and

Therefore by Theorem 2.2, we have

nll_i{l)o WA()™f = Xl =0

for all f in PDF(]0,1]). Namely we have the following proposition.

Proposition 3.1. Let 7 be the tent map on the unit interval X = [0,1] with the
Lebesque measure and e(z) = 1 (z € [0,1]). Then e is T-invarinat and it follows
that

L'(E(e)) = L'([0,1])-
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Now we consider the Banach space L=(€(e)). We denote by C(]0, 1]) the Banach
space of all continuous functions on [0, 1] with the norm || ||. Since every function
in C{[0,1]) can be approximated by the functions in L(£(e)), it follows that

C([0,1]) € L=(&(e))-

On the other hand, we have known that L>(£(e)) is a commutative C*-algebra,
so it is isometrically isomorphic to C(2), where C(Q) is the Banach space of all
continuous functions on a compact space . This is denoted by L®(&£(e)) = C(Q)
and we can prove that Q@ = []72,{0,1}. Moreover we denote by P([0,1]) the set
of all polynomials on [0,1]. Then we have the following proposition.

Proposition 3.2. Let  be the tent map T on the unit interval X = [0, 1] with the
Lebesgue measure. Then we have the following:

(DP([0,1]) © C(0,1]) C L®(E(e)) € L=([0,1]) < L'([0,1]),

@L(E(e) = C(@),

(8) lim [[A(r)™f = xponle = 0 for all £ in Z([0, L)PDF ([, 1)

Remark 3.3 () For the probability density function f(z) = 2z on [0, 1] we have

(A(r)f)(z) = x aﬂdthusA(T)mf X0, for all m > 2.
(i) For f(z ) , we have
32 3 2.4m1 41
(AT $)(&) = = = iy * 5t

Thus limy, e (A(T)™f}(z) = 1 (uniformly on [0, 1}).
(iii) For any positive continuous function f on [0, 1], the sequence {A(7)™f}%_,
converges to x[o,1; uniformly on [0, 1].

Remark 3.4. Though any function f in PDF{[0,1]) N C([0,1]), the sequence
{A(T)™ f}55~; converging to xje,1) uniformly on [0, 1], there exists a function f in
PDF([0,1]) such that {A(7)™f}2_, does not converge to x[p,1; uniformly on [0, 1].
The following is such an example. First we arrange the set Q(2) = [y, {&|i =
0,...,2%} in an order by using a suitable way, that is, we consider it as a sequence
{rm}_; of mutually distinct numbers. Let

1 1 *
I = [T — 73 Tm T 2m+2] n0,1) and J=|J Jn.
m=1
Then we have 0 < pu(J) £ %, where g is the Lebesgue measure on [0,1]. Let
f= W( 0,1 — X7)- Then f belongs to PDF([0,1]) and thus we have

Tim [ A()™f ~ xpoulli = 0.



Now let m be a positive integer. Then, for each 41,...,4, € {1,2} and each
r, € Q(2), there exists § > 0 such that 7, (7,0 (- (73, ([, = 8, + 61)) -+ ) €
J, where ¢ = 7, '(1;" (- (7,7} (rp))). Thus we have (A(T)"f)(z) = 0 for z €
[rp — 6,7 + 6], that is,

JA(T)™f = Xl =1

for all m.

As mentioned above, C([0,1]) is embedded in C(). Here we show a Banach
subspace of C'() which is isometric isomorphism to C([0,1]). Let p be the map
of  onto [0, 1] defined by

Wy
pw)=) 5  (W=l= el
1=1
We denote by C,(Q) the set of all functions f in C(2) with f (w) = f(u') if
p(w) = p(w'). Let ® be the map of C([0,1]) into Cp(£2) defined by

O(f)w) = flow))  (f€C([0, 1)

Then ® is an isometric isomorphism. Hence we have the following proposition.

Proposition 3.5. Let @ be the tent map 7 on the unit interval X = [0, 1] with the
Lebesgue measure. Then we have

C(10,1]) = G,(2) € () = L=(€(e)) < L™([0, 1)),

§4. Example of the other cases
First we show an example that e is not bounded and L*(€(e)) = L'([0,1).

Example 4.1. Let A be the logistic map on the unit interval X = [0,1] with
the Lebesgue measure, that is, A(z) = 4x(1 — z). Then A is an MW2L with
A(z) = 4z(1 — z) on X; = [0, 3] and Xo(z) = 4z(1 — z) on Xy = [3,1], too. Since
AT Hz) = 2422 and AN (z) = LVIZE e have

AN = 2@ O (@) + 22 (@) f (@)

= A= (F2F) + F(52)

4\/1—z
and

31
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Let e(z) = . Then A(A)e = e. Now we set

a:(l

e1=e and ey;, .5 = B\, BN, - - B(A)ize1

for 4g,...,1 € {1,2}.
Then we have

e = 2ex, 1 €12 = 2eX(Lp  enin = deXparidyp €2 = dexpoi)
€121 = 4eXpriay 1 €Lz = deX(L \si(yy, and so on.
Moreover inductively we can get each ey, ., forip, ..., 5 € {1,2} and we have

oo
= U{el,ig,...,ik i?) ces yik: S {1) 2}}
k=1
The set {(A;' oo A )(0)]ir, ..., ix € {1,2}} consists of 2871 + 1 points in
[0,1] and is arranged as {wz}f_:lﬂ with 0 =2 < 29 < -+ < Zgk-1 < Tgp-147 = L.
Then we have

o

8(6) = U {zkﬁleX[mi,wiH]‘i =12, 2’6;1}
k=1 .

and

gk—1

= U Zazexm sl €R B, LHE(R))= LM([0,1]).

Therefore by Theorem 2.2, we have
Jim A" ~ el =0

for all f € PDF([0,1]). Since the function e is not bounded, for any bounded
function f in PDF([0,1]), the sequence {A(\)"f} cannot converge uniformly to
e on X, though it converges to e in the sense of o(L([0, 1]), L*°(]0, 1]))-topology.

Remark 4.2. The tent map 7 and the Logistic map A are topologically conjugate
by the conjugacy h{z) = sin’(7rz/2)(cf. [3: Theorem 3.24]). However, by Example
2.4 and 2.5, we can see that the behavior of covergence of orbits with rerpect to
each map has dissimilar phenomina.

The following are two examples of L'(£(e)) associated with well-known maps on
a totally disconected compact set X. The Banach space L(€(e)) associated with
one map is the whole space L*([0,1]) and the other L'(£(e)) is one-dimensional.

Example 4.3. Let X = > v = [],en{0,1} and o be the one-sided shift
map of X onto X, that is, y = o (x), where z = (Zp)men, ¥ = (Um)men and
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Ym = Tmy1 (m € N). Let p be the canonical measure on X with p(X) = 1 and
u(E) = o for each cylinder sets E of the form,

E = E(il,‘ . ,ik|cl,. . .,Ck) = {.Z' = (mm>m6N’xi1 =T, = Ck},

where {71, ..., 4} are mutually distinct natural numbers and {c, ..., cx} are num-
bers in {0,1}. Let X; = E(1]1), X3 = E(1|0) and o, of be the restrictions of
oF to X, and X, respectively. Then (o] ) *(resp. (o7)™!) is the map defined

by y = (07)7 (z) (resp. y = (0F) ! (z)), where £ = (Zm)me~ and y; = 1 (resp.

11 = 0), Ym = Zm-1 for m > 2. Therefore we have

dpo (o)

o (o)1
)y = B2 )~ § @ex),

d
Thus we have

(Ale)1) () = 57 (o) @) + F((e) (=)

(Ble™Wf)(z) = 2f(of (2))xmapy (=) and  (BloT)2f)(z) = 2f(03 (2))xE@0) ().
Let e(z) = xx(z), (x € X). Then A{ot)e = e and inductively we have
el,ig,...,ik = B(O-+)ik Tt B(J+)ize = 2,9-1XE(l,Z,.A.,k—Hpk,‘pk_l,M,pz)

where p, =1if i, =1, and p, =0 if iy = 2, for £ =2,..., k. Thus we have

o0

£e) = {ex b U (U2 xm0e, mavsa0 @ € {0,1}}),
k=1

i=1

oo 2k ) ‘
L{&(e)) = U {Z aixg; e € R and E; is of the form E(1,...,klg1,...,qx), (g1, .- a € {0,1})

Therefore L' (£(e)) = L}(Tx) and we have
| lim A(o*)*f —efls =0

for all f in PDF(Y ). Moreover we have L(£)= L®(3 ) and
| Jim A(o*)*f — ellco = 0

for all f in L®(n) U PDF ()
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Example 4.4. Let X = 3>, = [],,cz{0,1} and o be the two-sided shift map
of X onto X, that is, y = o(z), where T = (Zm)mez: ¥ = (Ym)mez and ym =
Tms1 (m € Z). Let u be the canonical measure on X, which satisfies the same
property as y in Example 2.6. Namely, for

F = E(il, e .,’ile1, e ,Ck) = {.’L’ = (xm)mEZ‘xil = Cpy Ty, = C];;}

it follows that pu(E) = 5¢. Since o is a homeomorphism of X onto itself, it is a bi-
measurable map of X onto itself. Hence o is an MW1L on X with B(c); = A(c™")
with dij-li-_—l-(m) =1 and

(A(0)f)(a) = %F(@f@%» - fo=(2)).

Set e = xx. Then e is a unique A(c)-invariant vector in L*(3_,) and the set £(e)
defined in Proposition 1.5 consists of only one vector e. Hence L'(£(e)) is the
one-dimensional space generated by e and PDF(>.,) N L*(E(e)) = {e}. Thus the
following convergency is guaranteed for only f =e.

lim [JA(o)™f —elli =0.
m—r0o0

In fact, we can find easily a vector f in L'(>",) such that {A(c)™f}5_; does not
converge to e in the || - ||;-topology. Namely, put f = 2Xg(op), Where E(0[0) =
{z = (z4) € X|zo = 0}. Then we have

A(0)"f = 2xB(-mo) and  [[2Xemp) — Xx|l1 =1
for all m in N.
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